实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (4): 406-414.DOI: 10.12300/j.issn.1674-5817.2023.026
邓亚胜(), 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银()()
收稿日期:
2023-02-24
修回日期:
2023-04-11
出版日期:
2023-08-25
发布日期:
2023-09-14
通讯作者:
韩丝银(1991—),女,博士,副教授,研究方向:海洋药物研究及产品开发工作。E-mail:1715252639@qq.com。ORCID:0000-0001-8562-7723作者简介:
邓亚胜(1993—),男,硕士研究生,研究方向:特色方剂的配伍及成药化研究。E-mail:1440362586@qq.com
基金资助:
Yasheng DENG(), Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN()()
Received:
2023-02-24
Revised:
2023-04-11
Published:
2023-08-25
Online:
2023-09-14
Contact:
HAN Siyin (ORCID: 0000-0001-8562-7723), E-mail: 1715252639@qq.com摘要:
目的 分析皮肤光老化动物模型的造模要素和受试物情况,为该动物模型的制备和完善提供参考,也为科学评价受试物提供依据。 方法 通过在中国知网、万方、PubMed数据库中检索收集2010—2022年皮肤光老化动物模型制备的相关文献,对文献中记载的模型动物种类、性别、造模方法、造模周期、辐射光源与造模部位距离、累计辐射量、检测指标、受试物(药物或治疗手段)内容进行整理归纳,建立数据库后进行统计分析。 结果 筛选出257篇符合纳入标准的文献,其中模型动物使用最多的是SKH-1无毛小鼠,其次为SD大鼠和KM小鼠;动物的性别选择以单一雌性为主,常采用中波紫外线(ultraviolet B,UVB)作为辐射光源,辐射光源与造模部位的距离多为30 cm,造模周期多控制在40~60 d;长波紫外线(ultraviolet A,UVA)累计照射剂量在100~150 J/cm2的所占比例最大,中波紫外线(ultraviolet B,UVB)累计照射剂量在5~10 J/cm2的所占比例最大。模型建立后采用的检测指标为皮肤组织病理检查、皮肤组织匀浆、纤维染色、免疫印迹检查等。受试物包括中药、中药提取物、中成药、中药复方、化学药、生物制剂以及其他治疗手段,同时皮肤光老化动物模型还应用于中医外治、物理疗法、阳性对照药方面的临床疗效研究。 结论 皮肤光老化动物实验常选用SKH-1雌性无毛小鼠,采用UVB作为辐射光源,造模周期多控制在40~60 d,UVB累计照射剂量在0~10 J/cm2,按照最小红斑量(minimum erythema dose,MED)逐周递增方式进行造模,具有成模率高、重现性好以及与临床疾病高度吻合等优点。
中图分类号:
邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414.
Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414.
动物种类 Animal species | 品种品系 Breed or strain | 频次(所占百分比) Frequency (percentage/%) |
---|---|---|
小鼠Mouse | SKH-1无毛小鼠 | 60 (23.34) |
KM小鼠 | 52 (20.23) | |
BALB/c小鼠 | 23 (8.95) | |
HR-1无毛小鼠 | 22 (8.56) | |
ICR小鼠 | 20 (7.78) | |
C57BL/6小鼠 | 3 (1.17) | |
Swiss小鼠 | 3 (1.17) | |
HRM-2无毛小鼠 | 2 (0.78) | |
未知种类无毛小鼠 | 2 (0.78) | |
大鼠Rat | SD大鼠 | 53 (20.62) |
Wistar大鼠 | 8 (3.11) | |
F344大鼠 | 2 (0.78) | |
HWY/Slc无毛大鼠 | 1 (0.39) | |
豚鼠Guinea pig | 未知种类 | 4 (1.56) |
猪Pig | 广西巴马小型猪 | 2 (0.78) |
表1 皮肤光老化模型的动物选择种类及频次分布
Table 1 Species and frequency distribution of skin photoaging model animals
动物种类 Animal species | 品种品系 Breed or strain | 频次(所占百分比) Frequency (percentage/%) |
---|---|---|
小鼠Mouse | SKH-1无毛小鼠 | 60 (23.34) |
KM小鼠 | 52 (20.23) | |
BALB/c小鼠 | 23 (8.95) | |
HR-1无毛小鼠 | 22 (8.56) | |
ICR小鼠 | 20 (7.78) | |
C57BL/6小鼠 | 3 (1.17) | |
Swiss小鼠 | 3 (1.17) | |
HRM-2无毛小鼠 | 2 (0.78) | |
未知种类无毛小鼠 | 2 (0.78) | |
大鼠Rat | SD大鼠 | 53 (20.62) |
Wistar大鼠 | 8 (3.11) | |
F344大鼠 | 2 (0.78) | |
HWY/Slc无毛大鼠 | 1 (0.39) | |
豚鼠Guinea pig | 未知种类 | 4 (1.56) |
猪Pig | 广西巴马小型猪 | 2 (0.78) |
辐射光源与造模部位距离/cm Distance between the radiation source and the moulding site/cm | 频次(所占百分比/%) Frequency (percentage/%) | 累计照射剂量/(J·cm2) Cumulative exposure dose/ (J·cm2) | 频次(所占百分比/%) Frequency (percentage/%) |
---|---|---|---|
2 | 1 (0.92) | UVA≤50 | 6 (9.09) |
6.5 | 1 (0.92) | 50<UVA≤100 | 13 (19.70) |
10 | 4 (3.67) | 100<UVA≤150 | 20 (30.30) |
15 | 6 (5.50) | 150<UVA≤200 | 13 (19.70) |
18 | 2 (1.84) | 200<UVA≤250 | 0 (0.00) |
20 | 11 (10.09) | 250<UVA≤300 | 5 (7.58) |
22 | 1 (0.92) | UVA>300 | 9 (13.63) |
23 | 2 (1.83) | UVB≤5 | 12 (15.58) |
25 | 3 (2.75) | 5<UVB≤10 | 24 (31.17) |
30 | 36 (33.03) | 10<UVB≤15 | 8 (10.39) |
35 | 10 (9.17) | 15<UVB≤20 | 2 (2.60) |
40 | 21 (19.27) | 20<UVB≤25 | 10 (12.99) |
42 | 2 (1.84) | 25<UVB≤30 | 1 (1.30) |
50 | 6 (5.50) | UVB>30 | 20 (25.97) |
100 | 3 (2.75) |
表2 皮肤光老化动物模型的辐射光源与造模部位距离以及紫外线累计照射剂量
Table 4 Distance between the radiation source and the modelling site as well as cumulative UV exposure doses in the animal model of skin photoaging
辐射光源与造模部位距离/cm Distance between the radiation source and the moulding site/cm | 频次(所占百分比/%) Frequency (percentage/%) | 累计照射剂量/(J·cm2) Cumulative exposure dose/ (J·cm2) | 频次(所占百分比/%) Frequency (percentage/%) |
---|---|---|---|
2 | 1 (0.92) | UVA≤50 | 6 (9.09) |
6.5 | 1 (0.92) | 50<UVA≤100 | 13 (19.70) |
10 | 4 (3.67) | 100<UVA≤150 | 20 (30.30) |
15 | 6 (5.50) | 150<UVA≤200 | 13 (19.70) |
18 | 2 (1.84) | 200<UVA≤250 | 0 (0.00) |
20 | 11 (10.09) | 250<UVA≤300 | 5 (7.58) |
22 | 1 (0.92) | UVA>300 | 9 (13.63) |
23 | 2 (1.83) | UVB≤5 | 12 (15.58) |
25 | 3 (2.75) | 5<UVB≤10 | 24 (31.17) |
30 | 36 (33.03) | 10<UVB≤15 | 8 (10.39) |
35 | 10 (9.17) | 15<UVB≤20 | 2 (2.60) |
40 | 21 (19.27) | 20<UVB≤25 | 10 (12.99) |
42 | 2 (1.84) | 25<UVB≤30 | 1 (1.30) |
50 | 6 (5.50) | UVB>30 | 20 (25.97) |
100 | 3 (2.75) |
分类 Classification | 检测指标 Testing indicators | 频次(所占百分比/%) Frequency(percentage/%) |
---|---|---|
皮肤外观特征 Skin appearance features | 皮肤外观观察 | 80 (9.06) |
皮肤(表皮、真皮)厚度 | 46 (5.21) | |
皱纹测定 | 31 (3.51) | |
皮肤弹性 | 9 (1.02) | |
皮肤含水量变化 Skin moisture content change | 经皮水分损失 | 41 (4.64) |
皮肤(角质层)水合作用测定 | 14 (1.58) | |
皮肤含水量测定 | 5 (0.57) | |
皮肤病理检查 Dermatologic examination | 皮肤组织病理检查 | 173 (19.59) |
纤维染色 | 99 (11.21) | |
免疫组化 | 64 (7.26) | |
免疫荧光 | 9 (1.02) | |
皮肤组织匀浆检测 Skin tissue homogenisation | 丙二醛、羟脯氨酸、过氧化氢酶活性、透明质酸、超氧化物歧化酶活性、谷胱甘肽过氧化酶活性、皮肤组织总抗氧化能力 | 108 (12.23) |
免疫检测 Immunity testing | 免疫印迹 | 81 (9.17) |
酶联免疫吸附试验 | 26 (2.94) | |
PCR分析 PCR analysis | 反转录PCR | 30 (3.40) |
实时荧光PCR | 19 (2.15) | |
血液检查 Blood examination | 血清 | 19 (2.15) |
全血或血浆 | 6 (0.68) | |
其他 Others | β-半乳糖苷酶染色 | 8 (0.91) |
体重变化 | 9 (1.02) | |
活性氧定量分析/髓过氧化物酶活性测定 | 6 (0.68) |
表3 皮肤光老化动物模型的检测指标及分类
Table 3 Testing indicators and classification of skin photoaging animal models
分类 Classification | 检测指标 Testing indicators | 频次(所占百分比/%) Frequency(percentage/%) |
---|---|---|
皮肤外观特征 Skin appearance features | 皮肤外观观察 | 80 (9.06) |
皮肤(表皮、真皮)厚度 | 46 (5.21) | |
皱纹测定 | 31 (3.51) | |
皮肤弹性 | 9 (1.02) | |
皮肤含水量变化 Skin moisture content change | 经皮水分损失 | 41 (4.64) |
皮肤(角质层)水合作用测定 | 14 (1.58) | |
皮肤含水量测定 | 5 (0.57) | |
皮肤病理检查 Dermatologic examination | 皮肤组织病理检查 | 173 (19.59) |
纤维染色 | 99 (11.21) | |
免疫组化 | 64 (7.26) | |
免疫荧光 | 9 (1.02) | |
皮肤组织匀浆检测 Skin tissue homogenisation | 丙二醛、羟脯氨酸、过氧化氢酶活性、透明质酸、超氧化物歧化酶活性、谷胱甘肽过氧化酶活性、皮肤组织总抗氧化能力 | 108 (12.23) |
免疫检测 Immunity testing | 免疫印迹 | 81 (9.17) |
酶联免疫吸附试验 | 26 (2.94) | |
PCR分析 PCR analysis | 反转录PCR | 30 (3.40) |
实时荧光PCR | 19 (2.15) | |
血液检查 Blood examination | 血清 | 19 (2.15) |
全血或血浆 | 6 (0.68) | |
其他 Others | β-半乳糖苷酶染色 | 8 (0.91) |
体重变化 | 9 (1.02) | |
活性氧定量分析/髓过氧化物酶活性测定 | 6 (0.68) |
1 | CHEN X, YANG C S, JIANG G. Research progress on skin photoaging and oxidative stress[J]. Postepy Dermatol Alergol, 2021, 38(6):931-936. DOI: 10.5114/ada.2021.112275 . |
2 | BOCHEVA G, SLOMINSKI R M, JANJETOVIC Z, et al. Protective role of melatonin and its metabolites in skin aging[J]. Int J Mol Sci, 2022, 23(3):1238. DOI: 10.3390/ijms23031238 . |
3 | PARRADO C, MERCADO-SAENZ S, PEREZ-DAVO A, et al. Environmental stressors on skin aging. mechanistic insights[J]. Front Pharmacol, 2019, 10:759. DOI: 10.3389/fphar.2019.00759 . |
4 | SALMINEN A, KAARNIRANTA K, KAUPPINEN A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin[J]. Inflamm Res, 2022, 71(7):817-831. DOI: 10.1007/s00011-022-01598-8 . |
5 | SWIADER A, CAMARÉ C, GUERBY P, et al. 4-hydroxynonenal contributes to fibroblast senescence in skin photoaging evoked by UV-A radiation[J]. Antioxidants (Basel), 2021, 10(3):365. DOI: 10.3390/antiox10030365 . |
6 | KANG M K, KIM D Y, OH H, et al. Dietary collagen hydrolysates ameliorate furrowed and parched skin caused by photoaging in hairless mice[J]. Int J Mol Sci, 2021, 22(11):6137. DOI: 10.3390/ijms22116137 . |
7 | JIN X X, ZHANG X D, LI Y B, et al. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice[J]. Biomater Adv, 2022, 135:212744. DOI: 10.1016/j.bioadv.2022.212744 . |
8 | CHEN Q Y, ZHANG H Y, YANG Y M, et al. Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway[J]. Int J Mol Sci, 2022, 23(13):6960. DOI: 10.3390/ijms23136960 . |
9 | GUAN L L, LIM H W, MOHAMMAD T F. Sunscreens and Photoaging: A Review of Current Literature[J]. Am J Clin Dermatol, 2021, 22(6): 819-828. DOI: 10.1007/s40257-021-00632-5 . |
10 | POON F, KANG S, CHIEN A L. Mechanisms and treatments of photoaging[J]. Photodermatol Photoimmunol Photomed, 2015, 31(2): 65-74. DOI: 10.1111/phpp.12145 . |
11 | LIANG Y, SIMAITI A, XU M, et al. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles[J]. Nanomaterials (Basel), 2022, 12(16). DOI: 10.3390/nano12162769 . |
12 | 丁苗苗, 魏玲, 陈春宇, 等. 中药有效成分抗皮肤光老化作用及其机制研究进展[J]. 中国中药杂志, 2022, 47(14): 3709-3717. DOI: 10.19540/j.cnki.cjcmm.20220415.601 . |
DING M M, WEI L, CHEN C Y, et al. Anti-photoaging effects and mechanisms of active ingredients of Chinese medicine: a review[J]. China J Chin Mater Med, 2022, 47(14): 3709-3717. DOI: 10.19540/j.cnki.cjcmm.20220415.601 . | |
13 | 朱姗, 赵志月, 王子静, 等. 皮肤老化分子机制及中药防治皮肤老化研究进展[J]. 天津中医药大学学报, 2021, 40(4): 431-439. DOI: 10.11656/j.issn.1673-9043.2021.04.06 . |
ZHU S, ZHAO Z Y, WANG Z J, et al. Research progress of molecular mechanism of skin aging and prevention of skin aging with traditional Chinese medicine[J]. J Tianjin Univ Tradit Chin Med, 2021, 40(4): 431-439. DOI: 10.11656/j.issn.1673-9043.2021.04.06 . | |
14 | 王璐, 李中平, 曹艳亚, 等. 沙参麦冬汤对皮肤光老化模型小鼠的保护作用[J]. 中国老年学杂志, 2015, 35(6): 1628-1631. DOI: 10.3969/j.issn.1005-9202.2015.06.091 . |
WANG L, LI Z P, CAO Y Y, et al. Protective effect of Shashen Maidong Decoction on skin photoaging model mice[J]. Chin J Gerontol, 2015, 35(6): 1628-1631. DOI: 10.3969/j.issn.1005-9202.2015.06.091 . | |
15 | 张宇, 曹南开, 张小卿, 等. 桃红四物汤对光老化小鼠皮肤组织中MMP-1、MMP-3 mRNA及血清中TNF-α、IL-1含量表达的影响[J]. 中华中医药学刊, 2015, 33(4): 919-921, 后插8. DOI: 10.13193/j.issn.1673-7717.2015.04.048 . |
ZHANG Y, CAO N K, ZHANG X Q, et al. Effect of Taohongsiwu Decoction on expressions of MMP-1, MMP-3 mRNA in skin tissue and TNF-a, IL-1 in blood serum of photoaged mice[J]. Chin Arch Tradit Chin Med, 2015, 33(4): 919-921, 10008. DOI: 10.13193/j.issn.1673-7717.2015.04.048 . | |
16 | SHAMLOUL N, HASHIM P W, NIA J J, et al. The role of vitamins and supplements on skin appearance[J]. Cutis, 2019, 104(4): 220-224. |
17 | 邓映, 杜宇, 刘萍, 等. 氧化应激在皮肤光老化中的作用[J]. 中国医疗美容, 2020, 10(8): 117-122. DOI: 10.19593/j.issn.2095-0721.2020.08.030 . |
DENG Y, DU Y, LIU P, et al. The role of oxidative stress in skin photoaging[J]. Chin Med Cosmetol, 2020, 10(8): 117-122. DOI: 10.19593/j.issn.2095-0721.2020.08.030 . | |
18 | CHENOUARD V, REMY S, TESSON L, et al. Advances in genome editing and application to the generation of genetically modified rat models[J]. Front Genet, 2021, 12:615491. DOI: 10.3389/fgene.2021.615491 . |
19 | MEEK S, MASHIMO T, BURDON T. From engineering to editing the rat genome[J]. Mamm Genome, 2017, 28(7):302-314. DOI: 10.1007/s00335-017-9705-8 . |
20 | 王诗萌, 李甜, 杨田野, 等. 紫外线照射实验动物的皮肤光老化模型研究进展[J]. 中国美容医学, 2018, 27(7):146-150. DOI: 10.14163/j.cnki.11-5547/r.2016.30.160 . |
WANG S M, LI T, YANG T Y, et al. Progressof skin photoaging models of ultraviolet irradiated experimental animals[J]. Chin J Aesthetic Med, 2018, 27(7):146-150. DOI: 10.14163/j.cnki.11-5547/r.2016.30.160 . | |
21 | RUIZ-LARREA M B, MARTÍN C, MARTÍNEZ R, et al. Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens[J]. Chem Phys Lipids, 2000, 105(2):179-188. DOI: 10.1016/S0009-3084(00)00120-1 . |
22 | LEPHART E D. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms[J]. Ageing Res Rev, 2016, 31:36-54. DOI: 10.1016/j.arr.2016.08.001 . |
23 | LEPHART E D, NAFTOLIN F. Menopause and the skin: old Favorites and new innovations in cosmeceuticals for estrogen-deficient skin[J]. Dermatol Ther (Heidelb), 2021, 11(1):53-69. DOI: 10.1007/s13555-020-00468-7 . |
24 | PARK H M, CHO M H, CHO Y, et al. Royal jelly increases collagen production in rat skin after ovariectomy[J]. J Med Food, 2012, 15(6):568-575. DOI: 10.1089/jmf.2011.1888 . |
25 | LEPHART E D. A review of the role of estrogen in dermal aging and facial attractiveness in women[J]. J Cosmet Dermatol, 2018, 17(3):282-288. DOI: 10.1111/jocd.12508 . |
26 | LEPHART E D, NAFTOLIN F. Factors influencing skin aging and the important role of estrogens and selective estrogen receptor modulators (SERMs)[J]. Clin Cosmet Investig Dermatol, 2022, 15:1695-1709. DOI: 10.2147/CCID.S333663 . |
27 | LI W G, LUO X Y. An invariant-based damage model for human and animal skins[J]. Ann Biomed Eng, 2016, 44(10):3109-3122. DOI: 10.1007/s10439-016-1603-9 . |
28 | 陶丛敏, 马文宇. 光老化的动物模型研究进展[J]. 临床皮肤科杂志, 2018, 47(6):386-388. DOI: 10.16761/j.cnki.1000-4963.2018.06.017 . |
TAO C M, MA W Y. Research progress of animal model of skin photoaging[J]. J Clin Dermatol, 2018, 47(6):386-388. DOI: 10.16761/j.cnki.1000-4963.2018.06.017 . | |
29 | GUO K K, LIU R, JING R R, et al. Cryptotanshinone protects skin cells from ultraviolet radiation-induced photoaging via its antioxidant effect and by reducing mitochondrial dysfunction and inhibiting apoptosis[J]. Front Pharmacol, 2022, 13:1036013. DOI: 10.3389/fphar.2022.1036013 . |
30 | 孔悦, 郭砚. 皮肤光老化小鼠模型的构建及效果评估[J]. 实验动物与比较医学, 2021, 41(2):116-121. DOI: 10.12300/j.issn.1674-5817.2020.191 |
KONG Y, GUO Y. Construction and evaluation of skin photoaging mouse model[J]. Lab Animal Comp Med, 2021, 41(2):116-121. DOI: 10.12300/j.issn.1674-5817.2020.191 . | |
31 | GENDRISCH F, ESSER P R, SCHEMPP C M, et al. Luteolin as a modulator of skin aging and inflammation[J]. Biofactors, 2021, 47(2):170-180. DOI: 10.1002/biof.1699 . |
32 | ZAMARRÓN A, LORRIO S, GONZÁLEZ S, et al. Fernblock prevents dermal cell damage induced by visible and infrared A radiation[J]. Int J Mol Sci, 2018, 19(8):2250. DOI: 10.3390/ijms19082250 . |
33 | CHOI K S, KUNDU J K, CHUN K S, et al. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets[J]. Arch Biochem Biophys, 2014, 559:38-45. DOI: 10.1016/j.abb.2014.05.016 . |
34 | KUNDU J K, CHANG E J, FUJII H, et al. Oligonol inhibits UVB-induced COX-2 expression in HR-1 hairless mouse skin: AP-1 and C/EBP as potential upstream targets[J]. Photochem Photobiol, 2008, 84(2):399-406. DOI: 10.1111/j.1751-1097.2007.00277.x . |
35 | PAL H C, ATHAR M, ELMETS C A, et al. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice[J]. Photochem Photobiol, 2015, 91(1):225-234. DOI: 10.1111/php.12337 . |
36 | MOON N R, KANG S, PARK S. Consumption of ellagic acid and dihydromyricetin synergistically protects against UV-B induced photoaging, possibly by activating both TGF-β1 and Wnt signaling pathways[J]. J Photochem Photobiol B Biol, 2018, 178:92-100. DOI: 10.1016/j.jphotobiol.2017.11.004 . |
37 | TSUKAHARA K, MORIWAKI S, FUJIMURA T, et al. Inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet-B-induced photodamage of rat skin[J]. Biol Pharm Bull, 2001, 24(9):998-1003. DOI: 10.1248/bpb.24.998 . |
38 | TANG Z T, TONG X L, HUANG J H, et al. Research progress of keratinocyte-programmed cell death in UV-induced Skin photodamage[J]. Photodermatol Photoimmunol Photomed, 2021, 37(5):442-448. DOI: 10.1111/phpp.12679 . |
39 | Oh J H, KARADENIZ F, LEE J I, et al. Antiphotoaging Effect of (2'S)-Columbianetin from Corydalis heterocarpa in UVA-Irradiated Human Dermal Fibroblasts[J]. App Sci, 2020, 10(7): 2568. DOI:10.3390/app10072568 . |
40 | VATS K, KRUGLOV O, MIZES A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021, 47:102143. DOI: 10.1016/j.redox.2021.102143 . |
41 | RANA S, FATIMA N, YAQOOB S, et al. Probing photoprotection properties of lipophilic chain conjugated thiourea-aryl group molecules to attenuate ultraviolet-A induced cellular and DNA damages[J]. Sci Rep, 2022, 12(1):20907. DOI: 10.1038/s41598-022-25515-5 . |
42 | ZAMARRÓN A, MOREL E, LUCENA S R, et al. Extract of Deschampsia antarctica (EDA) prevents dermal cell damage induced by UV radiation and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin[J]. Int J Mol Sci, 2019, 20(6):1356. DOI: 10.3390/ijms20061356 . |
43 | ATALAY S, GĘGOTEK A, WROŃSKI A, et al. Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study[J]. J Pharm Biomed Anal, 2021, 192:113656. DOI: 10.1016/j.jpba.2020.113656 . |
44 | KHAN A Q, TRAVERS J B, KEMP M G. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis[J]. Environ Mol Mutagen, 2018, 59(5):438-460. DOI: 10.1002/em.22176 . |
45 | KHAN A, BAI H L, KHAN A, et al. Neferine prevents ultraviolet radiation-induced skin photoaging[J]. Exp Ther Med, 2020, 19(5):3189-3196. DOI: 10.3892/etm.2020.8587 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[10] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[11] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[12] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[13] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[14] | 赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172. |
[15] | 胡玲, 胡志斌, 胡筠卿, 丁玉强. 精神分裂症动物模型的研究概述[J]. 实验动物与比较医学, 2023, 43(2): 145-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||