实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (5): 472-481.DOI: 10.12300/j.issn.1674-5817.2023.083
万颖寒1()(), 顾也欣2, 袁雨浓2,3, 汤忞2()(), 鲁立1()
收稿日期:
2023-06-20
修回日期:
2023-08-28
出版日期:
2023-10-25
发布日期:
2023-11-01
通讯作者:
鲁立(1979—),女,博士,副研究员,研究方向:细胞分子生物学。E-mail: luli@slarc.org.cn;作者简介:
万颖寒(1984—),女,硕士,助理研究员,研究方向:疾病动物模型表型相关研究。E-mail:wanyinghan@slarc.org.cn;
基金资助:
Yinghan WAN1()(), Yexin GU2, Yunong YUAN2,3, Min TANG2()(), Li LU1()
Received:
2023-06-20
Revised:
2023-08-28
Published:
2023-10-25
Online:
2023-11-01
Contact:
TANG Min (ORCID: 0000-0002-6084-1827), E-mail: min@cyberiad.cn摘要:
实验动物是生命科学研究和生物医药产业发展的基础条件,是科学探索和医疗健康事业中不可或缺的技术支撑。科学地开发疾病动物模型对生物医药科研和产业发展意义重大。但鉴于多种新兴体外建模技术在过去十年中的蓬勃发展,2022年美国国会全票通过了FDA Modernization Act 2.0(即《美国食品药品监督管理局现代化法案2.0》,简称FDA现代化法案2.0),取消了自1938年以来实施的FDA批准新药进入人体临床试验前必须经过动物实验的联邦强制要求,并正式提出体外疾病模型也可以被运用在临床前试验中,但并未禁止开展动物实验。本文解读了FDA现代化法案2.0的由来,介绍了细胞培养、类器官、器官芯片、生物3D打印模型和计算机模型这5种体外建模方式在科研、生物化工和制药业中的最新应用及其各自的优缺点,同时概括了实验动物和疾病动物模型发展的新趋势,并关注各种模型之间的交叉应用,旨在为我国今后的疾病动物模型发展提供一些参考。
中图分类号:
万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481.
Yinghan WAN, Yexin GU, Yunong YUAN, Min TANG, Li LU. Implications on the Development of Animal Disease Models from FDA Modernization Act 2.0[J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 472-481.
1 | PAUL R. S. 5002, 117th Congress, FDA Modernization Act 2.0[A/OL]. 2022. http://www.congress.gov/117/bills/s5002/BILLS-117s5002cps.pdf. |
2 | WARING M J, ARROWSMITH J, LEACH A R, et al. An analysis of the attrition of drug candidates from four major pharmaceutical companies[J]. Nat Rev Drug Discov, 2015, 14(7):475-486. DOI: 10.1038/ ,nrd4609. |
3 | BLAY V, TOLANI B, HO S P, et al. High-Throughput Screening: today's biochemical and cell-based approaches[J]. Drug Discov Today, 2020, 25(10):1807-1821. DOI: 10.1016/j.drudis.2020.07.024 . |
4 | BEN-DAVID U, SIRANOSIAN B, HA G, et al. Genetic and transcriptional evolution alters cancer cell line drug response[J]. Nature, 2018, 560(7718):325-330. DOI: 10.1038/s41586-018-0409-3 . |
5 | LIU X, ZHENG W, JIANG X. Cell-based assays on microfluidics for drug screening[J]. ACS Sens, 2019, 4(6):1465-1475. DOI: 10.1021/acssensors.9b00479 . |
6 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. DOI: 10.1038/nature07935 . |
7 | TAGUCHI A, NISHINAKAMURA R. Higher-order kidney organogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2017, 21(6):730-746.e6. DOI: 10.1016/j.stem.2017.10.011 . |
8 | WAN Y S, SHANG J, GRAHAM R, et al. Receptor recognition by the novel coronavirus from Wuhan: an analysis based on decade-long structural studies of SARS coronavirus[J]. J Virol, 2020, 94(7): e00127-e00120. DOI: 10.1128/JVI.00127-20 . |
9 | SALAHUDEEN A A, CHOI S S, RUSTAGI A, et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids[J]. Nature, 2020, 588(7839):670-675. DOI: 10.1038/s41586-020-3014-1 . |
10 | HAN Y L, DUAN X H, YANG L L, et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids[J]. Nature, 2021, 589(7841):270-275. DOI: 10.1038/s41586-020-2901-9 . |
11 | JGAMADZE D, LIM J T, ZHANG Z J, et al. Structural and functional integration of human forebrain organoids with the injured adult rat visual system[J]. Cell Stem Cell, 2023, 30(2):137-152.e7. DOI: 10.1016/j.stem.2023.01.004 . |
12 | VLACHOGIANNIS G, HEDAYAT S, VATSIOU A, et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers[J]. Science, 2018, 359(6378):920-926. DOI: 10.1126/science.aao2774 . |
13 | WEEBER F, VAN DE WETERING M, HOOGSTRAAT M, et al. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases[J]. Proc Natl Acad Sci USA, 2015, 112(43):13308-13311. DOI: 10.1073/pnas.1516689112 . |
14 | ZHOU C, WU Y, WANG Z, et al. Standardization of organoid culture in cancer research[J]. Cancer Med, 2023, 12(13):14375-14386. DOI: 10.1002/cam4.5943 . |
15 | INGBER D E. Reverse engineering human pathophysiology with organs-on-chips[J]. Cell, 2016, 164(6):1105-1109. DOI: 10.1016/j.cell.2016.02.049 . |
16 | HARDWICK R N, BETTS C J, WHRITENOUR J, et al. Drug-induced skin toxicity: gaps in preclinical testing cascade as opportunities for complex in vitro models and assays[J]. Lab Chip, 2020, 20(2):199-214. DOI: 10.1039/c9lc00519f . |
17 | AINSLIE G R, DAVIS M, EWART L, et al. Microphysiological lung models to evaluate the safety of new pharmaceutical modalities: a biopharmaceutical perspective[J]. Lab Chip, 2019, 19(19):3152-3161. DOI: 10.1039/c9lc00492k . |
18 | PETERS M F, CHOY A L, PIN C, et al. Developing in vitro assays to transform gastrointestinal safety assessment: potential for microphysiological systems[J]. Lab Chip, 2020, 20(7):1177-1190. DOI: 10.1039/c9lc01107b . |
19 | PHILLIPS J A, GRANDHI T S P, DAVIS M, et al. A pharmaceutical industry perspective on microphysiological kidney systems for evaluation of safety for new therapies[J]. Lab Chip, 2020, 20(3):468-476. DOI: 10.1039/c9lc00925f . |
20 | BAUDY A R, OTIENO M A, HEWITT P, et al. Liver microphysiological systems development guidelines for safety risk assessment in the pharmaceutical industry[J]. Lab Chip, 2020, 20(2):215-225. DOI: 10.1039/c9lc00768g . |
21 | CHEN Z, TANG M, HUANG D, et al. Real-time observation of leukocyte-endothelium interactions in tissue-engineered blood vessel[J]. Lab Chip, 2018, 18(14):2047-2054. DOI: 10.1039/C8LC00202A . |
22 | NOVAK R, INGRAM M, MARQUEZ S, et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips[J]. Nat Biomed Eng, 2020, 4(4):407-420. DOI: 10.1038/s41551-019-0497-x . |
23 | MURPHY S V, DE COPPI P, ATALA A. Opportunities and challenges of translational 3D bioprinting[J]. Nat Biomed Eng, 2020, 4(4):370-380. DOI: 10.1038/s41551-019-0471-7 . |
24 | LAWLOR K T, VANSLAMBROUCK J M, HIGGINS J W, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nat Mater, 2021, 20(2):260-271. DOI: 10.1038/s41563-020-00853-9 . |
25 | GRIGORYAN B, PAULSEN S J, CORBETT D C, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464. DOI: 10.1126/science.aav9750 . |
26 | MIRONOV V, BOLAND T, TRUSK T, et al. Organ printing: computer-aided jet-based 3D tissue engineering[J]. Trends Biotechnol, 2003, 21(4): 157-161. DOI: 10.1016/s0167-7799(03)00033-7 . |
27 | YOU S T, XIANG Y, HWANG H H, et al. High cell density and high-resolution 3D bioprinting for fabricating vascularized tissues[J]. Sci Adv, 2023, 9(8): eade7923. DOI: 10.1126/sciadv.ade7923 . |
28 | LEE A, HUDSON A R, SHIWARSKI D J, et al. 3D bioprinting of collagen to rebuild components of the human heart[J]. Science, 2019, 365(6452):482-487. DOI: 10.1126/science.aav9051 . |
29 | TANG M, XIE Q, GIMPLE R C, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Res, 2020, 30 (10):833-853. DOI: 10.1038/s41422-020-0338-1 . |
30 | TANG M, TIWARI S K, AGRAWAL K, et al. Rapid 3D bioprinting of glioblastoma model mimicking native biophysical heterogeneity[J]. Small, 2021, 17(15): e2006050. DOI: 10.1002/smll.202006050 . |
31 | KOFFLER J, ZHU W, QU X, et al. Biomimetic 3D-printed scaffolds for spinal cord injury repair[J]. Nat Med, 2019. 25(2):263-269. DOI: 10.1038/s41591-018-0296-z . |
32 | MA X, QU X, ZHU W, et al. Deterministically patterned biomimetic human iPSC-derived hepatic model via rapid 3D bioprinting[J]. Proc Natl Acad Sci U S A, 2016, 113(8):2206-2011. DOI: 10.1073/pnas.1524510113 . |
33 | LIU J, MILLER K, MA X, al et, Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium[J]. Biomaterials, 2020, 256:120204. DOI: 10.1016/j.biomaterials.2020.120204 . |
34 | MA X Y, LIU J, ZHU W, et al. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling[J]. Adv Drug Deliv Rev, 2018, 132:235-251. DOI: 10.1016/j.addr.2018.06.011 . |
35 | TSAKALOZOU E, ALAM K, BABISKIN A, et al. Physiologically-based pharmacokinetic modeling to support determination of bioequivalence for dermatological drug products: scientific and regulatory considerations[J]. Clin Pharma And Therapeutics, 2022, 111(5):1036-1049. DOI: 10.1002/cpt.2356 . |
36 | MURATA Y, NEUHOFF S, ROSTAMI-HODJEGAN A, et al. In vitro to in vivo extrapolation linked to physiologically based pharmacokinetic models for assessing the brain drug disposition[J]. AAPS J, 2022, 24(1):28. DOI: 10.1208/s12248-021-00675-w . |
37 | MCALLISTER M, FLANAGAN T, BOON K, et al. Developing clinically relevant dissolution specifications for oral drug products-industrial and regulatory perspectives[J]. Pharmaceutics, 2019, 12(1):19. DOI: 10.3390/pharmaceutics 12010019 . |
38 | HEIMBACH T, SUAREZ-SHARP S, KAKHI M, et al. Dissolution and translational modeling strategies toward establishing an in vitro-In vivo link—a workshop summary report[J]. Aaps J, 2019, 21(2):29. DOI: 10.1208/s12248-019-0298-x . |
39 | ZHAO L, KIM M J, ZHANG L, et al. Generating model integrated evidence for generic drug development and assessment[J]. Clin Pharmacol Ther, 2019, 105(2):338-349. DOI: 10.1002/cpt.1282 . |
40 | SAGER J E, YU J J, RAGUENEAU-MAJLESSI I, et al. Physiologically based pharmacokinetic (PBPK) modeling and simulation approaches: a systematic review of published models, applications, and model verification[J]. Drug Metab Dispos, 2015, 43(11):1823-1837. DOI: 10.1124/dmd.115.065920 . |
41 | GEORGE B, LUMEN A N, NGUYEN C, et al. Application of physiologically based pharmacokinetic modeling for sertraline dosing recommendations in pregnancy[J]. NPJ Syst Biol Appl, 2020, 6(1):36. DOI: 10.1038/s41540-020-00157-3 . |
42 | CHEN T, LIAN G P, KATTOU P. In silico modelling of transdermal and systemic kinetics of topically applied solutes: model development and initial validation for transdermal nicotine[J]. Pharm Res, 2016, 33(7):1602-1614. DOI: 10.1007/s11095-016-1900-x . |
43 | TSAKOVSKA I, PAJEVA I, SHARIF M AL, et al. Quantitative structure-skin permeability relationships[J]. Toxicology, 2017, 387:27-42. DOI: 10.1016/j.tox.2017.06.008 . |
44 | Wörsdörfer P, Ergün S. The impact of oxygen availability and multilineage communication on organoid maturation[J]. Antioxid Redox Signal, 2021,35(3):217-233. DOI: 10.1089/ars. 2020.8195 . |
45 | GREBENYUK S, RANGA A. Engineering organoid vascularization[J]. Front Bioeng Biotechnol, 2019, 7:39. DOI: 10.3389/fbioe.2019.00039 . |
46 | QIAN X, NGUYEN H N, SONG M M, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5):1238-1254. DOI: 10.1016/j.cell.2016.04.032 . |
47 | YU F, HUNZIKER W, CHOUDHURY D. Engineering microfluidic organoid-on-a-chip platforms[J]. Micromachines (Basel), 2019, 10(3): E165. DOI: 10.3390/mi10030165 . |
48 | ZHANG Y S, ALEMAN J, SHIN S R, et al. Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors[J]. Proc Natl Acad Sci USA, 2017, 114(12): E2293-E2302. DOI: 10.1073/pnas.1612906114 . |
49 | RAMME A P, KOENIG L, HASENBERG T, et al. Autologous induced pluripotent stem cell-derived four-organ-chip[J]. Future Sci OA, 2019, 5(8): FSO413. DOI: 10.2144/fsoa-2019-0065 . |
50 | KOLESKY D B, HOMAN K A, SKYLAR-SCOTT M A, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proc Natl Acad Sci USA, 2016, 113(12):3179-3184. DOI: 10.1073/pnas.1521342113 . |
51 | ROGERS C I, QADERI K, WOOLLEY A T, et al. 3D printed microfluidic devices with integrated valves[J]. Biomicrofluidics, 2015, 9(1):016501. DOI: 10.1063/1.4905840 . |
52 | 国家科技基础条件平台中心. 中国实验动物资源调查与发展趋势[M]. 北京: 科学出版社, 2017. |
National Platform for Basic Conditions of Science and Technology. Survey and Development Trend of Laboratory Animal Resources in China[M]. Beijing: Science Press, 2017. | |
53 | MONTGOMERY R A, STERN J M, LONZE B E, et al. Results of two cases of pig-to-human kidney xenotransplantation[J]. N Engl J Med, 2022, 386(20):1889-1898. DOI: 10.1056/nejmoa 2120238 . |
54 | YAN S, TU Z C, LIU Z M, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 17.3(4):989-1002.e13. DOI: 10.1016/j.cell.2018.03.005 . |
55 | 国家科技基础条件平台中心. 国家生物种质与实验材料资源发 展报告2017-2018[M]. 北京: 科学出版社, 2020. |
National Platform for Basic Conditions of Science and Technology. National report on the development of biological germplasm and experimental material resources 2017-2018 [M]. Beijing: Science Press, 2020. | |
56 | GAO Q, BAO L, MAO H, et al. Development of an inactivated vaccine candidate for SARS-CoV-2[J]. Science, 2020, 369(6499):77-81. DOI: 10.1126/science.abc1932 . |
57 | LU Z, HE S, JIANG J, et al. Base-edited cynomolgus monkeys mimic core symptoms of STXBP1 encephalopathy[J]. Mol Ther, 2022, 30(6):2163-2175. DOI: 10.1016/j.ymthe.2022.03.001 . |
58 | BYRNE A T, ALFÉREZ D G, AMANT F, et al. Interrogating open issues in cancer precision medicine with patient-derived xenografts[J]. Nat Rev Cancer, 2017, 17(4):254-268. DOI: 10.1038/nrc.2016.140 . |
59 | ABDOLAHI S, GHAZVINIAN Z, MUHAMMADNEJAD S, et al. Patient-derived xenograft (PDX) models, applications and challenges in cancer research[J]. J Transl Med, 2022, 20(1):206. DOI: 10.1186/s12967-022-03405-8 . |
60 | OH D Y, BANG Y J. HER2-targeted therapies - a role beyond breast cancer[J]. Nat Rev Clin Oncol, 2020, 17(1):33-48. DOI: 10.1038/s41571-019-0268-3 . |
61 | CORSO S, CARGNELUTTI M, DURANDO S, et al. Rituximab treatment prevents lymphoma onset in gastric cancer patient-derived xenografts[J]. Neoplasia, 2018, 20(5):443-455. DOI: 10.1016/j.neo.2018.02.003 . |
62 | LIU Y W, YIN T, FENG Y B, et al. Mammalian models of chemically induced primary malignancies exploitable for imaging-based preclinical theragnostic research[J]. Quant Imaging Med Surg, 2015, 5(5):708-729. DOI: 10.3978/j.issn. 2223-4292.2015.06.01 . |
63 | CHEN C C, LI H W, WANG Y L, et al. Patient-derived tumor organoids as a platform of precision treatment for malignant brain tumors[J]. Sci Rep, 2022, 12:16399. DOI: 10.1038/s41598-022-20487-y . |
64 | JIAN M, REN L, HE G D, et al. A novel patient-derived organoids-based xenografts model for preclinical drug response testing in patients with colorectal liver metastases [J]. J Transl Med, 2020, 18(1):234. DOI: 10.1186/s12967-020- 02407-8 . |
65 | ROSS E J, GORDON E R, SOTHERS H, et al. Three dimensional modeling of biologically relevant fluid shear stress in human renal tubule cells mimics in vivo transcriptional profiles[J]. Sci Rep, 2021, 11(1):14053. DOI: 10.1038/s41598-021-93570-5 . |
66 | BOUHADDOU M, YU L J, LUNARDI S, et al. Predicting in vivo efficacy from in vitro data: quantitative systems pharmacology modeling for an epigenetic modifier drug in cancer[J]. Clin Transl Sci, 2020, 13(2):419-429. DOI: 10.1111/cts. 12727 . |
67 | DIEGMILLER R, SALPHATI L, ALICKE B, et al. Growth-rate model predicts in vivo tumor response from in vitro data[J]. CPT Pharmacom & Syst Pharma, 2022, 11(9):1183-1193. DOI: 10.1002/psp4.12836 . |
[1] | 巩淼淼, 周丽桂, 赵菊梅, 师长宏. 胃癌类器官在精准医学研究中的应用[J]. 实验动物与比较医学, 2022, 42(3): 248-254. |
[2] | 罗宝花, 张永斌, 刘晓秋, 师长宏. 肿瘤类器官模型的建立及应用[J]. 实验动物与比较医学, 2020, 40(6): 540-546. |
[3] | 闫明霞,刘蕾,荚德水,吴海燕,王晓敏,孔韩卫,姚明. 人脑星型胶质母细胞瘤裸小鼠术后转移模型的建立[J]. , 2008, 28(4): 204-208. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||