实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (2): 163-172.DOI: 10.12300/j.issn.1674-5817.2022.171
收稿日期:
2022-11-09
修回日期:
2023-02-18
出版日期:
2023-04-25
发布日期:
2023-05-16
通讯作者:
孟彦(1983—),男,博士,副教授,副主任医师,研究方向:慢性肾脏病、血液透析。E-mail: mbao124@qq.com。ORCID: 0000-0002-9236-5546作者简介:
赖 灿(1993—),男,硕士研究生,研究方向:胃肠疾病、慢性肾脏病。E-mail:1353837956@qq.com
基金资助:
Can LAI1(), Lele LI1, Tala HU1, Yan MENG2(
)(
)
Received:
2022-11-09
Revised:
2023-02-18
Published:
2023-04-25
Online:
2023-05-16
Contact:
MENG Yan (ORCID: 0000-0002-9236-5546), E-mail: mbao124@qq.com摘要:
肾脏间质纤维化是许多肾脏疾病不断进展的共同路径。不管是各种慢性肾脏病,或是各种因素所引起的无法完全恢复的急性肾损伤,其进展过程多数是在经过肾脏间质纤维化后进入终末期肾功能衰竭。肾脏间质纤维化的动物模型是探索肾脏间质纤维化发生机制和新诊断治疗方法的主要研究工具。不同的动物模型各有特色,研究者可依据个人经验及实验目的建立不同的模型,并以此为基础开展科学研究,为肾脏疾病的防治提供更多新方法、新思路。本文着重综合阐述目前常见的几种肾脏间质纤维化动物模型,包括单侧输尿管梗阻、缺血?再灌注损伤、肾大部切除、微栓塞诱导形成的手术模型,环孢素A、阿霉素、马兜铃酸、氯化汞、庆大霉素、马兜铃酸、顺铂、腺嘌呤诱导形成的化学模型,转基因杂交、肾损伤因子?1诱导形成的转基因修饰模型,双侧缺血?再灌注损伤术联合庆大霉素、单侧肾切除联合血管紧张素Ⅱ、单侧缺血?再灌注损伤术联合pLVX-shTNC质粒诱导形成的复合模型,以供相关研究人员了解和借鉴。
中图分类号:
赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172.
Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis[J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172.
1 | LIU X Y, ZHANG X B, ZHAO Y F, et al. Research progress of Chinese herbal medicine intervention in renal interstitial fibrosis[J]. Front Pharmacol, 2022, 13:900491. DOI: 10.3389/fphar.2022.900491 . |
2 | SZETO H H. Pharmacologic approaches to improve mitochondrial function in AKI and CKD[J]. J Am Soc Nephrol, 2017, 28(10):2856-2865. DOI: 10.1681/ASN.2017030247 . |
3 | ZEISBERG M, KALLURI R. Physiology of the renal interstitium[J]. Clin J Am Soc Nephrol, 2015, 10(10):1831-1840. DOI: 10.2215/CJN.00640114 . |
4 | MUÑOZ-FÉLIX J M, MARTÍNEZ-SALGADO C. Dissecting the involvement of ras GTPases in kidney fibrosis[J]. Genes, 2021, 12(6):800. DOI: 10.3390/genes12060800 . |
5 | MARTÍNEZ-SALGADO C, SÁNCHEZ-JUANES F, LÓPEZ-HERNÁNDEZ F J, et al. Endothelial activin receptor-like kinase 1 (ALK1) regulates myofibroblast emergence and peritubular capillary stability in the early stages of kidney fibrosis[J]. Front Pharmacol, 2022, 13:843732. DOI: 10.3389/fphar.2022.843732 . |
6 | GBD CHRONIC KIDNEY DISEASE COLLABORATION. Global, regional, and national burden of chronic kidney disease, 1990‒2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225):709-733. DOI: 10.1016/S0140-6736(20)30045-3 . |
7 | ZHOU J Q, JIANG H. Livin is involved in TGF-β1-induced renal tubular epithelial-mesenchymal transition through lncRNA-ATB[J]. Ann Transl Med, 2019, 7(18):463. DOI: 10.21037/atm.2019.08.29 . |
8 | MARTÍNEZ-KLIMOVA E, APARICIO-TREJO O E, TAPIA E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments[J]. Biomolecules, 2019, 9(4):141. DOI: 10.3390/biom9040141 . |
9 | SONG J, LIU J, LUO J, et al. A modified relief of unilateral ureteral obstruction model[J]. Ren Fail, 2019, 41(1):497-506. DOI: 10.1080/0886022X.2019.1624263 . |
10 | KUMAR R, SONI H, AFOLABI J M, et al. Induction of reactive oxygen species by mechanical stretch drives endothelin production in neonatal pig renal epithelial cells[J]. Redox Biol, 2022, 55:102394. DOI: 10.1016/j.redox.2022.102394 . |
11 | KLINKHAMMER B M, BUCHTLER S, DJUDJAJ S, et al. Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease[J]. Kidney Int, 2022, 102(2):307-320. DOI: 10.1016/j.kint.2022. 02.039 . |
12 | SONG J, XIA Y Y, YAN X, et al. Losartan accelerates the repair process of renal fibrosis in UUO mouse after the surgical recanalization by upregulating the expression of Tregs[J]. Int Urol Nephrol, 2019, 51(11):2073-2081. DOI: 10.1007/s11255-019-02253-8 . |
13 | NARVÁEZ BARROS A, GUITERAS R, SOLA A, et al. Reversal unilateral ureteral obstruction: a mice experimental model[J]. Nephron, 2019, 142(2):125-134. DOI: 10.1159/000497119 . |
14 | BASILE D P, DONOHOE D L, ROETHE K, et al. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage[J]. Am J Physiol Renal Physiol, 2003, 284(2): F338-F348. DOI: 10.1152/ajprenal.00169.2002 . |
15 | YANG L, BESSCHETNOVA T Y, BROOKS C R, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5):535-543, 143. DOI: 10.1038/nm.2144 . |
16 | 陈国晓, 刘修恒, 张祥生, 等. 臭氧氧化后处理对肾脏缺血再灌注损伤的作用[J]. 中国现代医学杂志, 2017, 27(9): 19-24. DOI: 10.3969/j.issn.1005-8982.2017.09.004 . |
CHEN G X, LIU X H, ZHANG X S, et al. Ozone oxidative post-conditioning protects rat kidney from ischemia reperfusion injury[J]. China J Mod Med, 2017, 27(9): 19-24. DOI: 10.3969/j.issn.1005-8982.2017.09.004 . | |
17 | SATO Y, YANAGITA M. Immune cells and inflammation in AKI to CKD progression[J]. Am J Physiol Renal Physiol, 2018, 315(6): F1501-F1512. DOI: 10.1152/ajprenal.00195.2018 . |
18 | LIU B C, TANG T T, LV L L, et al. Renal tubule injury: a driving force toward chronic kidney disease[J]. Kidney Int, 2018, 93(3):568-579. DOI: 10.1016/j.kint.2017.09.033 . |
19 | ZHENG Z H, LI C L, SHAO G Z, et al. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI[J]. Cell Death Dis, 2021, 12(8):754. DOI: 10.1038/s41419-021-04041-8 . |
20 | LE CLEF N, VERHULST A, D'HAESE P C, et al. Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice[J]. PLoS One, 2016, 11(3): e0152153. DOI: 10.1371/journal.pone.0152153 . |
21 | HESKETH E E, CZOPEK A, CLAY M, et al. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration[J]. J Vis Exp, 2014(88): e51816. DOI: 10.3791/51816 . |
22 | 许辉, 刘惺, 宁旺斌, 等. HIF-1α在5/6肾切除大鼠慢性肾纤维化模型中的表达[J]. 中南大学学报(医学版), 2009, 34(4):308-312. |
XU H, LIU X, NING W B, et al. Expression of HIF-1α in 5/6-nephrectomized rat models of chronic kidney fibrosis[J]. J Central South Univ Med Sci, 2009, 34(4):308-312. | |
23 | KIM K, ANDERSON E M, THOME T, et al. Skeletal myopathy in CKD: a comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice[J]. Am J Physiol Renal Physiol, 2021, 321(1): F106-F119. DOI: 10.1152/ajprenal.00117.2021 . |
24 | WANG X L, CHAUDHRY M A, NIE Y, et al. A mouse 5/6th nephrectomy model that induces experimental uremic cardiomyopathy[J]. J Vis Exp, 2017(129):55825. DOI: 10.3791/55825 . |
25 | TAN R Z, ZHONG X, LI J C, et al. An optimized 5/6 nephrectomy mouse model based on unilateral kidney ligation and its application in renal fibrosis research[J]. Ren Fail, 2019, 41(1):555-566. DOI: 10.1080/0886022X.2019.1627220 . |
26 | KIMURA M, SUZUKI T, HISHIDA A. A rat model of progressive chronic renal failure produced by microembolism[J]. Am J Pathol, 1999, 155(4):1371-1380. DOI: 10.1016/S0002-9440(10)65239-X . |
27 | BERSANI-AMADO L E, ROCHA B A DA, SCHNEIDER L C L, et al. Nephropathy induced by renal microembolism: a characterization of biochemical and histopathological changes in rats[J]. Int J Clin Exp Pathol, 2019, 12(6):2311-2323. |
28 | ROSEN S, GREENFELD Z, BREZIS M. Chronic cyclosporine-induced nephropathy in the rat. A medullary ray and inner stripe injury[J]. Transplantation, 1990, 49(2):445-452.DOI: 10.1097/00007890-199002000-00041 . |
29 | LIM S W, DOH K C, JIN L, et al. Ginseng treatment attenuates autophagic cell death in chronic cyclosporine nephropathy[J]. Nephrology (Carlton), 2014, 19(8):490-499. DOI: 10.1111/nep.12273 . |
30 | CAIRES A, FERNANDES G S, LEME A M, et al. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-a in normotensive and hypertensive rats[J]. Braz J Med Biol Res, 2017, 51(2): e6373. DOI: 10.1590/1414-431X20176373 . |
31 | AMADOR C A, BERTOCCHIO J P, ANDRE-GREGOIRE G, et al. Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration[J]. Kidney Int, 2016, 89(2):354-362. DOI: 10.1038/ki.2015.312 . |
32 | HOUÉE-LÉVIN C, BOBROWSKI K, HORAKOVA L, et al. Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences[J]. Free Radic Res, 2015, 49(4):347-373. DOI: 10.3109/10715762.2015.1007968 . |
33 | WEI Z H, XUE Y R, XUE Y C, et al. Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways[J]. J Pharmacol Sci, 2021, 147(1):72-80. DOI: 10.1016/j.jphs.2021.05.006 . |
34 | MONTAGNINO G, BANFI G, CAMPISE M R, et al. Impact of chronic allograft nephropathy and subsequent modifications of immunosuppressive therapy on late graft outcomes in renal transplantation[J]. Nephrol Dial Transplant, 2004, 19(10):2622-2629. DOI: 10.1093/ndt/gfh453 . |
35 | 李渭敏, 仲吉英, 陈奕豪, 等. 蛋白激酶B介导的APPL1在肾缺血再灌注损伤致肾脏慢性纤维化的机制研究[J]. 临床肾脏病杂志, 2019, 19(10):772-777. DOI: 10.3969/j.issn.1671-2390.2019.10.012 . |
LI W M, ZHONG J Y, CHEN Y H, et al. The mechanism of Akt-mediated APPL1 in chronic renal fibrosis induced by acute renal ischemia-reperfusion injury[J]. J Clin Nephrol, 2019, 19(10): 772-777. DOI: 10.3969/j.issn.1671-2390.2019.10.012 . | |
36 | LI A P, YANG L, ZHANG L C, et al. Evaluation of injury degree of adriamycin-induced nephropathy in rats based on serum metabolomics combined with proline marker[J]. J Proteome Res, 2020, 19(7):2575-2584. DOI: 10.1021/acs.jproteome.9b00785 . |
37 | PIPPIN J W, BRINKKOETTER P T, CORMACK-ABOUD F C, et al. Inducible rodent models of acquired podocyte diseases[J]. Am J Physiol Renal Physiol, 2009, 296(2):F213-F229. DOI: 10.1152/ajprenal.90421.2008 . |
38 | BOHNERT B N, ESSIGKE D, JANESSA A, et al. Experimental nephrotic syndrome leads to proteolytic activation of the epithelial Na+ channel in the mouse kidney[J]. Am J Physiol Renal Physiol, 2021, 321(4): F480-F493. DOI: 10.1152/ajprenal.00199.2021 . |
39 | HULKKO J, PATRAKKA J, LAL M, et al. Neph1 is reduced in primary focal segmental glomerulosclerosis, minimal change nephrotic syndrome, and corresponding experimental animal models of adriamycin-induced nephropathy and puromycin aminonucleoside nephrosis[J]. Nephron Extra, 2014, 4(3):146-154. DOI: 10.1159/000365091 . |
40 | WANG Y L, FAN S N, YANG M, et al. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches[J]. J Ethnopharmacol, 2020, 261:113020. DOI: 10.1016/j.jep. 2020. 113020 . |
41 | LI A P, YANG L, CUI T, et al. Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology[J]. Phytomedicine, 2020, 77:153274. DOI: 10.1016/j.phymed.2020.153274 . |
42 | URATE S, WAKUI H, AZUSHIMA K, et al. Aristolochic acid induces renal fibrosis and senescence in mice[J]. Int J Mol Sci, 2021, 22(22):12432. DOI: 10.3390/ijms222212432 . |
43 | TAGUCHI S, AZUSHIMA K, YAMAJI T, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy[J]. Sci Rep, 2021, 11(1):23587. DOI: 10.1038/s41598-021-02864-1 . |
44 | WANG S F, FAN J J, MEI X B, et al. Interleukin-22 attenuated renal tubular injury in aristolochic acid nephropathy via suppressing activation of NLRP3 inflammasome[J]. Front Immunol, 2019, 10:2277. DOI: 10.3389/fimmu.2019.02277 . |
45 | WANG Q L, YUAN J L, TAO Y Y, et al. Fuzheng Huayu recipe and vitamin E reverse renal interstitial fibrosis through counteracting TGF-beta1-induced epithelial-to-mesenchymal transition[J]. J Ethnopharmacol, 2010, 127(3):631-640. DOI: 10.1016/j.jep.2009.12.011 . |
46 | ABDEL HALEEM N Y, EL-AASAR H M, ZAKI S M, et al. Concomitant protective and therapeutic role of verapamil in chronic mercury induced nephrotoxicity in the adult rat: histological, morphometric and ultrastructural study[J]. Arch Med Sci, 2015, 11(1):199-209. DOI: 10.5114/aoms.2013.37342 . |
47 | ROJAS-FRANCO P, FRANCO-COLÍN M, TORRES-MANZO A P, et al. Endoplasmic reticulum stress participates in the pathophysiology of mercury-caused acute kidney injury[J]. Ren Fail, 2019, 41(1):1001-1010. DOI: 10.1080/0886022X.2019.1686019 . |
48 | HUANG H H, JIN W W, HUANG M, et al. Gentamicin-induced acute kidney injury in an animal model involves programmed necrosis of the collecting duct[J]. J Am Soc Nephrol, 2020, 31(9):2097-2115. DOI: 10.1681/ASN.2019020204 . |
49 | ALBINO A H, ZAMBOM F F F, FORESTO-NETO O, et al. Renal inflammation and innate immune activation underlie the transition from gentamicin-induced acute kidney injury to renal fibrosis[J]. Front Physiol, 2021, 12:606392. DOI: 10.3389/fphys.2021.606392 . |
50 | YE L, PANG W X, HUANG Y H, et al. Lansoprazole promotes cisplatin-induced acute kidney injury via enhancing tubular necroptosis[J]. J Cell Mol Med, 2021, 25(5):2703-2713. DOI: 10.1111/jcmm.16302 . |
51 | HAMROUN A, LENAIN R, BIGNA J J, et al. Prevention of cisplatin-induced acute kidney injury: a systematic review and meta-analysis[J]. Drugs, 2019, 79(14):1567-1582. DOI: 10.1007/s40265-019-01182-1 . |
52 | GHOSH S. Cisplatin: The first metal based anticancer drug[J]. Bioorg Chem, 2019, 88:102925. DOI: 10.1016/j.bioorg.2019. 102925 . |
53 | CIARIMBOLI G. Membrane transporters as mediators of cisplatin side-effects[J]. Anticancer Res, 2014, 34(1):547-550. |
54 | OH G S, KIM H J, SHEN A H, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies[J]. Electrolyte Blood Press, 2014, 12(2):55. DOI: 10.5049/EBP.2014.12.2.55 . |
55 | DEWAELES E, CARVALHO K, FELLAH S, et al. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects[J]. J Clin Invest, 2022, 132(22): e152924. DOI: 10.1172/JCI152924 . |
56 | 陈建新, 刘刚, 杨麟, 等. 5种方法制备高尿酸血症大鼠模型的实验研究[J]. 广州中医药大学学报, 2021, 38(11):2456-2461. DOI: 10.13359/j.cnki.gzxbtcm.2021.11.027 . |
CHEN J X, LIU G, YANG L, et al. Experimental study on preparation of hyperuricemia rat model by five methods[J]. J Guangzhou Univ Tradit Chin Med, 2021, 38(11):2456-2461. DOI: 10.13359/j.cnki.gzxbtcm.2021.11.027 . | |
57 | JOHNSON R J, KANG D H, FEIG D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?[J]. Hypertension, 2003, 41(6):1183-1190. DOI: 10.1161/01.HYP.0000069700.62727.C5 . |
58 | HASEGAWA J, MAEJIMA I, IWAMOTO R, et al. Selective autophagy: lysophagy[J]. Methods, 2015, 75: 128-132. DOI: 10.1016/j.ymeth.2014.12.014 . |
59 | KIELSTEIN J T, PONTREMOLI R, BURNIER M. Management of hyperuricemia in patients with chronic kidney disease: a focus on renal protection[J]. Curr Hypertens Rep, 2020, 22(12):102. DOI: 10.1007/s11906-020-01116-3 . |
60 | JAFFE D H, KLEIN A B, BENIS A, et al. Incident gout and chronic Kidney Disease: healthcare utilization and survival[J]. BMC Rheumatol, 2019, 3(1):1-11. DOI: 10.1186/s41927-019-0060-0 . |
61 | SELLMAYR M, HERNANDEZ PETZSCHE M R, MA Q Y, et al. Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease[J]. J Am Soc Nephrol, 2020, 31(12):2773-2792. DOI: 10.1681/ASN.2020040523 . |
62 | LIM B J, YANG J W, ZOU J, et al. Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury[J]. Kidney Int, 2017, 92(6):1395-1403. DOI: 10.1016/j.kint. 2017. 04.010 . |
63 | HUMPHREYS B D, XU F F, SABBISETTI V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis[J]. J Clin Invest, 2013, 123(9):4023-4035. DOI: 10.1172/JCI45361 . |
64 | XU L Y, SHARKEY D, CANTLEY L G. Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury[J]. J Am Soc Nephrol, 2019, 30(10):1825-1840. DOI: 10.1681/ASN.2019010068 . |
65 | PIETRUKANIEC M, MIGACZ M, ŻAK-GOŁĄB A, et al. Could KIM-1 and NGAL levels predict acute kidney injury after paracentesis?‒preliminary study[J]. Ren Fail, 2020, 42(1):853-859. DOI: 10.1080/0886022X.2020.1801468 . |
66 | ZHANG C, GEORGE S K, WU R P, et al. Reno-protection of urine-derived stem cells in a chronic kidney disease rat model induced by renal ischemia and nephrotoxicity[J]. Int J Biol Sci, 2020, 16(3):435-446. DOI: 10.7150/ijbs.37550 . |
67 | 陈建, 曾莉, 陈刚, 等. 单侧肾切除及微渗透泵灌注血管紧张素Ⅱ诱导小鼠肾纤维化与高血压模型的建立[J]. 中国比较医学杂志, 2015, 25(2):26-29, 37. DOI: 10.3969/j.issn.1671-7856.2015.02.008 . |
CHEN J, ZENG L, CHEN G, et al. Establishment of a mouse model of renal fibrosis and hypertension induced by unilateral nephrectomy and infusion of angiotensin Ⅱ using a micro-osmotic pump[J]. Chin J Comp Med, 2015, 25(2):26-29, 37. DOI: 10.3969/j.issn.1671-7856.2015.02.008 . | |
68 | ZHU H L, LIAO J L, ZHOU X K, et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling[J]. Kidney Int, 2020, 97(5):1017-1031. DOI: 10.1016/j.kint.2020.01.026 . |
69 | SKRYPNYK N I, HARRIS R C, DE CAESTECKER M P. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice[J]. J Vis Exp, 2013(78):50495. DOI: 10.3791/50495 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[10] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[11] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[12] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[13] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[14] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[15] | 胡玲, 胡志斌, 胡筠卿, 丁玉强. 精神分裂症动物模型的研究概述[J]. 实验动物与比较医学, 2023, 43(2): 145-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||