实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (2): 145-155.DOI: 10.12300/j.issn.1674-5817.2022.174
胡玲1, 胡志斌1,2, 胡筠卿1,2, 丁玉强1,2()(
)
收稿日期:
2022-11-10
修回日期:
2023-02-13
出版日期:
2023-04-25
发布日期:
2023-05-16
通讯作者:
丁玉强(1966—),男,教授,博士生导师,研究方向:疾病动物模型与神经系统疾病发生机制。E-mail:dingyuqiang@vip.163.com。ORCID: 0000-0003-1202-4635作者简介:
胡 玲(1989—),女,博士,副研究员,研究方向:疾病动物模型与神经系统疾病发生机制。E-mail:06huling@163.com;
胡志斌(1997—),男,博士研究生,研究方向:疾病动物模型与神经系统疾病发生机制。E-mail: zbhu20@fudan.edu.cn
基金资助:
Ling HU1, Zhibin HU1,2, Yunqing HU1,2, Yuqiang DING1,2()(
)
Received:
2022-11-10
Revised:
2023-02-13
Published:
2023-04-25
Online:
2023-05-16
Contact:
DING Yuqiang (ORCID: 0000-0003-1202-4635), E-mail: dingyuqiang@vip.163.com摘要:
精神分裂症(schizophrenia)是一类极具破坏性的复杂精神疾病,伴有各种阳性和阴性症状以及认知障碍,给社会带来沉重负担。在神经发育过程中遗传因素和环境因素之间具有复杂的相互作用,使得精神分裂症病因的阐明和治疗的发展面临很大挑战。因此,制备合适的动物模型可帮助人们理解各种致病因素引起精神分裂症的神经生物学基础,为寻找新的治疗方法提供线索和理论依据。本文介绍了几种主要的精神分裂症动物模型的造模方式,包括神经发育模型、药物诱导模型和遗传模型;同时对精神分裂症动物的行为学评估、组织学分析以及可能的分子机制进行了概括,以期为精神分裂症动物模型的应用和改进提供参考。
中图分类号:
胡玲, 胡志斌, 胡筠卿, 丁玉强. 精神分裂症动物模型的研究概述[J]. 实验动物与比较医学, 2023, 43(2): 145-155.
Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia[J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155.
模型类型 Type of model | 操作方式 Operation | 行为学表型 Behavioral phenotype | 组织学表型 Histological phenotype | 参考文献 Reference |
---|---|---|---|---|
神经发育学模型 Neurodevelopmental model | 出生前注射甲基氧化偶氮甲醇 | 对多巴胺通路激动剂安非他明的运动反应增加,社交活动减少,感觉运动门控缺陷,记忆障碍,焦虑增加 | 内侧前额叶体积减少,侧脑室和第三脑室体积增加,边缘和皮层区域的中间神经元标志物减少,腹侧被盖区多巴胺神经元活性增加 | [ |
出生后社会隔离 | 自发运动增加,对新奇事物的反应增强,感觉运动门控障碍,认知障碍,焦虑和攻击性增加 | 前额叶体积减少,树突棘密度降低,海马中PV阳性的中间神经元降低 | [ | |
母体免疫激活 | 感觉运动门控异常、社交行为异常、焦虑样和抑郁样行为增加等阴性症状,同时出现对多巴胺通路激动剂安非他明的运动反应增加等阳性症状 | 树突棘的密度下降,树突的复杂性下降,抑制性神经元的数量也减少。磁共振成像研究发现母体免疫激活的后代脑室扩大和脑区体积减少 | [ | |
胚胎期和青春期进行刺激 | 根据胚胎期和青春期的刺激确定 | 根据胚胎期和青春期的刺激确定 | [ | |
药物诱导模型 Drug-induced model | 多巴胺通路激动剂安非他命 | 运动过度,空间工作记忆障碍,感觉运动门控缺陷,潜在抑制缺陷 | NMDA受体表达异常,树突形态改变,伏隔核和纹状体中多巴胺的释放增加 | [ |
氯胺酮 | 损害空间工作记忆,引起焦虑样行为、社会行为改变,运动过度,感觉运动门控障碍 | 多个脑区BDNF蛋白的表达水平降低,炎性细胞因子失衡,海马区域PV阳性神经元的数量下降 | [ | |
苯环己哌啶 | 记忆和学习障碍,社交能力受损,活动升高,感觉运动门控异常 | 前额叶皮层多巴胺、谷氨酸、5羟色胺以及去甲肾上腺素释放增加,γ-氨基丁酸释放降低,BDNF/TrkB的水平下调 | [ | |
MK-801 | 运动过度,感觉运动门控缺陷,社交能力下降,条件性恐惧记忆异常 | 运动过度,感觉运动门控缺陷,社交能力下降,条件性恐惧记忆的异常 | [ | |
遗传模型 Genetic model | DISC1 | 识别记忆、社交和焦虑行为缺陷,感觉运动门控异常等 | 脑室增大,皮质厚度和脑容量减少,皮层中γ-氨基丁酸能神经元密度降低,NMDA受体亚基和PSD-95的表达减少 | [ |
22q11.2缺失综合征 | 感觉运动门控异常,恐惧条件反射异常,空间记忆受损等 | 皮层和皮层下灰质体积改变,脑室增大,树突棘密度和树突复杂性减少,多巴胺和γ-氨基丁酸系统紊乱 | [ | |
NRG1 | 活动和探索行为增加,在自发交替测试中工作记忆异常,感觉运动门控异常 | 脑中功能性的NMDA受体水平降低,海马锥体神经元上的树突棘密度减少 | [ | |
Dysbindin | 多动,学习和记忆缺陷,冲动和强迫行为增加 | 多巴胺释放增加,细胞表面D2受体过表达 | [ | |
Ulk4 | 感觉运动门控异常,工作和空间记忆异常 | Akt-Gsk3β信号通路异常,Gsk3β活性增加 | [ |
表1 精神分裂症相关的小鼠模型
Table1 The animal models of schizophrenia
模型类型 Type of model | 操作方式 Operation | 行为学表型 Behavioral phenotype | 组织学表型 Histological phenotype | 参考文献 Reference |
---|---|---|---|---|
神经发育学模型 Neurodevelopmental model | 出生前注射甲基氧化偶氮甲醇 | 对多巴胺通路激动剂安非他明的运动反应增加,社交活动减少,感觉运动门控缺陷,记忆障碍,焦虑增加 | 内侧前额叶体积减少,侧脑室和第三脑室体积增加,边缘和皮层区域的中间神经元标志物减少,腹侧被盖区多巴胺神经元活性增加 | [ |
出生后社会隔离 | 自发运动增加,对新奇事物的反应增强,感觉运动门控障碍,认知障碍,焦虑和攻击性增加 | 前额叶体积减少,树突棘密度降低,海马中PV阳性的中间神经元降低 | [ | |
母体免疫激活 | 感觉运动门控异常、社交行为异常、焦虑样和抑郁样行为增加等阴性症状,同时出现对多巴胺通路激动剂安非他明的运动反应增加等阳性症状 | 树突棘的密度下降,树突的复杂性下降,抑制性神经元的数量也减少。磁共振成像研究发现母体免疫激活的后代脑室扩大和脑区体积减少 | [ | |
胚胎期和青春期进行刺激 | 根据胚胎期和青春期的刺激确定 | 根据胚胎期和青春期的刺激确定 | [ | |
药物诱导模型 Drug-induced model | 多巴胺通路激动剂安非他命 | 运动过度,空间工作记忆障碍,感觉运动门控缺陷,潜在抑制缺陷 | NMDA受体表达异常,树突形态改变,伏隔核和纹状体中多巴胺的释放增加 | [ |
氯胺酮 | 损害空间工作记忆,引起焦虑样行为、社会行为改变,运动过度,感觉运动门控障碍 | 多个脑区BDNF蛋白的表达水平降低,炎性细胞因子失衡,海马区域PV阳性神经元的数量下降 | [ | |
苯环己哌啶 | 记忆和学习障碍,社交能力受损,活动升高,感觉运动门控异常 | 前额叶皮层多巴胺、谷氨酸、5羟色胺以及去甲肾上腺素释放增加,γ-氨基丁酸释放降低,BDNF/TrkB的水平下调 | [ | |
MK-801 | 运动过度,感觉运动门控缺陷,社交能力下降,条件性恐惧记忆异常 | 运动过度,感觉运动门控缺陷,社交能力下降,条件性恐惧记忆的异常 | [ | |
遗传模型 Genetic model | DISC1 | 识别记忆、社交和焦虑行为缺陷,感觉运动门控异常等 | 脑室增大,皮质厚度和脑容量减少,皮层中γ-氨基丁酸能神经元密度降低,NMDA受体亚基和PSD-95的表达减少 | [ |
22q11.2缺失综合征 | 感觉运动门控异常,恐惧条件反射异常,空间记忆受损等 | 皮层和皮层下灰质体积改变,脑室增大,树突棘密度和树突复杂性减少,多巴胺和γ-氨基丁酸系统紊乱 | [ | |
NRG1 | 活动和探索行为增加,在自发交替测试中工作记忆异常,感觉运动门控异常 | 脑中功能性的NMDA受体水平降低,海马锥体神经元上的树突棘密度减少 | [ | |
Dysbindin | 多动,学习和记忆缺陷,冲动和强迫行为增加 | 多巴胺释放增加,细胞表面D2受体过表达 | [ | |
Ulk4 | 感觉运动门控异常,工作和空间记忆异常 | Akt-Gsk3β信号通路异常,Gsk3β活性增加 | [ |
1 | MCCUTCHEON R A, REIS MARQUES T, HOWES O D. Schizophrenia-an overview[J]. JAMA Psychiatry, 2020, 77(2):201-210. DOI: 10.1001/jamapsychiatry.2019.3360 . |
2 | CORRELL C U, SCHOOLER N R. Negative symptoms in schizophrenia: a review and clinical guide for recognition, assessment, and treatment[J]. Neuropsychiatr Dis Treat, 2020, 16:519-534. DOI: 10.2147/NDT.S225643 . |
3 | CONSORTIUM I S, PURCELL S M, WRAY N R, et al. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder[J]. Nature, 2009, 460(7256):748-752. DOI: 10.1038/nature08185 . |
4 | YEE B K, SINGER P. A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia[J]. Cell Tissue Res, 2013, 354(1):221-246. DOI: 10.1007/s00441-013-1611-0 . |
5 | GREEN J G, MCLAUGHLIN K A, BERGLUND P A, et al. Childhood adversities and adult psychiatric disorders in the national comorbidity survey replication I: associations with first onset of DSM-IV disorders[J]. Arch Gen Psychiatry, 2010, 67(2):113-123. DOI: 10.1001/archgenpsychiatry.2009.186 . |
6 | LIPSKA B K, WEINBERGER D R. To model a psychiatric disorder in animals: schizophrenia as a reality test[J]. Neuropsychopharmacology, 2000, 23(3):223-239. DOI:10.1016/ S0893-13.3X(00)00137-8 . |
7 | HU L, ZHANG L. Adult neural stem cells and schizophrenia[J]. World J Stem Cells, 2022, 14(3):219-230. DOI: 10.4252/wjsc.v14.i3.219 . |
8 | LAPIZ M S, FULFORD A, MUCHIMAPURA S, et al. Influence of postweaning social isolation in the rat on brain development, conditioned behavior, and neurotransmission[J]. Neurosci Behav Physiol, 2003, 33(1):13-29. DOI: 10.1023/A: 1021171129766 . |
9 | SHEU J R, HSIEH C Y, JAYAKUMAR T, et al. A critical period for the development of schizophrenia-like pathology by aberrant postnatal neurogenesis[J]. Front Neurosci, 2019, 13:635. DOI: 10.3389/fnins.2019.00635 . |
10 | LODGE D J, GRACE A A. Gestational methylazoxymethanol acetate administration: a developmental disruption model of schizophrenia[J]. Behav Brain Res, 2009, 204(2):306-312. DOI: 10.1016/j.bbr.2009.01.031 . |
11 | WALKER D M, CUNNINGHAM A M, GREGORY J K, et al. Long-term behavioral effects of post-weaning social isolation in males and females[J]. Front Behav Neurosci, 2019, 13:66. DOI: 10.3389/fnbeh.2019.00066 . |
12 | SKELLY M J, CHAPPELL A E, CARTER E, et al. Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: possible role of disrupted noradrenergic signaling[J]. Neuropharmacology, 2015, 97:149-159. DOI: 10.1016/j.neuropharm.2015.05.025 . |
13 | FABRICIUS K, HELBOE L, FINK-JENSEN A, et al. Pharmacological characterization of social isolation-induced hyperactivity[J]. Psychopharmacology, 2011, 215(2):257-266. DOI: 10.1007/s00213-010-2128-9 . |
14 | SCHUBERT M I, PORKESS M V, DASHDORJ N, et al. Effects of social isolation rearing on the limbic brain: a combined behavioral and magnetic resonance imaging volumetry study in rats[J]. Neuroscience, 2009, 159(1):21-30. DOI: 10.1016/j.neuroscience.2008.12.019 . |
15 | BERGDOLT L, DUNAEVSKY A. Brain changes in a maternal immune activation model of neurodevelopmental brain disorders[J]. Prog Neurobiol, 2019, 175: 1-19. DOI: 10.1016/j.pneurobio.2018.12.002 . |
16 | HADAR R, DONG L, DEL-VALLE-ANTON L, et al. Deep brain stimulation during early adolescence prevents microglial alterations in a model of maternal immune activation[J]. Brain Behav Immun, 2017, 63: 71-80. DOI: 10.1016/j.bbi. 2016.12.003 . |
17 | COIRO P, PADMASHRI R, SURESH A, et al. Impaired synaptic development in a maternal immune activation mouse model of neurodevelopmental disorders[J]. Brain Behav Immun, 2015, 50:249-258. DOI: 10.1016/j.bbi.2015.07.022 . |
18 | SHORT S J, LUBACH G R, KARASIN A I, et al. Maternal influenza infection during pregnancy impacts postnatal brain development in the Rhesus monkey[J]. Biol Psychiatry, 2010, 67(10):965-973. DOI: 10.1016/j.biopsych.2009.11.026 . |
19 | DESBONNET L, KONKOTH A, LAIGHNEACH A, et al. Dual hit mouse model to examine the long-term effects of maternal immune activation and post-weaning social isolation on schizophrenia endophenotypes[J]. Behav Brain Res, 2022, 430:113930. DOI: 10.1016/j.bbr.2022.113930 . |
20 | WILSON C, TERRY A V Jr. Neurodevelopmental animal models of schizophrenia: role in novel drug discovery and development[J]. Clin Schizophr Relat Psychoses, 2010, 4(2):124-137. DOI: 10.3371/CSRP.4.2.4 . |
21 | MCCUTCHEON R A, ABI-DARGHAM A, HOWES O D. Schizophrenia, dopamine and the Striatum: from biology to symptoms[J]. Trends Neurosci, 2019, 42(3): 205-220. DOI: 10.1016/j.tins.2018.12.004 . |
22 | BIAŁOŃ M, WĄSIK A. Advantages and limitations of animal schizophrenia models[J]. Int J Mol Sci, 2022, 23(11):5968. DOI: 10.3390/ijms23115968 . |
23 | NAKAZAWA K, JEEVAKUMAR V, NAKAO K. Spatial and temporal boundaries of NMDA receptor hypofunction leading to schizophrenia[J]. NPJ Schizophr, 2017, 3:7. DOI: 10.1038/s41537-016-0003-3 . |
24 | CERETTA A P C, SCHAFFER L F, DE FREITAS C M, et al. Gabapentin prevents behavioral changes on the amphetamine-induced animal model of schizophrenia[J]. Schizophr Res, 2016, 175(1-3): 230-231. DOI: 10.1016/j.schres.2016.04.044 . |
25 | ARROYO-GARCÍA L E, TENDILLA-BELTRÁN H, VÁZQUEZ-ROQUE R A, et al. Amphetamine sensitization alters hippocampal neuronal morphology and memory and learning behaviors[J]. Mol Psychiatry, 2021, 26(9):4784-4794. DOI: 10.1038/s41380-020-0809-2 . |
26 | SAMS-DODD F. A test of the predictive validity of animal models of schizophrenia based on phencyclidine and D-amphetamine[J]. Neuropsychopharmacology, 1998, 18(4):293-304. DOI: 10.1016/S0893-133X(97)00161-9 . |
27 | ROBINSON T E, KOLB B. Persistent structural modifications in nucleus accumbens and prefrontal cortex neurons produced by previous experience with amphetamine[J]. J Neurosci, 1997, 17(21):8491-8497. DOI:10.1523/JNEUROSCI.17- 21-08491.1997 . |
28 | WALLACH J, KANG H, COLESTOCK T, et al. Pharmacological investigations of the dissociative 'legal highs' diphenidine, methoxphenidine and analogues[J]. PLoS One, 2016, 11(6): e0157021. DOI: 10.1371/journal.pone.0157021 . |
29 | GRAYSON B, BARNES S A, MARKOU A, et al. Postnatal phencyclidine (PCP) as a neurodevelopmental animal model of schizophrenia pathophysiology and symptomatology: a review[J]. Curr Top Behav Neurosci, 2016, 29:403-428. DOI: 10.1007/7854_2015_403 . |
30 | TSIVION-VISBORD H, PERETS N, SOFER T, et al. Correction: Mesenchymal stem cells derived extracellular vesicles improve behavioral and biochemical deficits in a phencyclidine model of schizophrenia[J]. Transl Psychiatry, 2020, 10(1):327. DOI: 10.1038/s41398-020-01016-9 . |
31 | GIGG J, MCEWAN F, SMAUSZ R, et al. Synaptic biomarker reduction and impaired cognition in the sub-chronic PCP mouse model for schizophrenia[J]. J Psychopharmacol, 2020, 34(1):115-124. DOI: 10.1177/0269881119874446 . |
32 | NEUGEBAUER N M, MIYAUCHI M, SATO T, et al. Hippocampal GABAA antagonism reverses the novel object recognition deficit in sub-chronic phencyclidine-treated rats[J]. Behav Brain Res, 2018, 342:11-18. DOI: 10.1016/j.bbr. 2017.12.033 . |
33 | MOGHADDAM B, ADAMS B W. Reversal of phencyclidine effects by a group II metabotropic glutamate receptor agonist in rats[J]. Science, 1998, 281(5381):1349-1352. DOI: 10.1126/science , 281.5381.1349. |
34 | TANQUEIRO S R, MOURO F M, FERREIRA C B, et al. Sustained NMDA receptor hypofunction impairs brain-derived neurotropic factor signalling in the PFC, but not in the hippocampus, and disturbs PFC-dependent cognition in mice[J]. J Psychopharmacol, 2021, 35(6):730-743. DOI: 10.1177/02698811211008560 . |
35 | MOGHADAM A A, VOSE L R, MIRY O, et al. Pairing of neonatal phencyclidine exposure and acute adolescent stress in male rats as a novel developmental model of schizophrenia[J]. Behav Brain Res, 2021, 409:113308. DOI: 10.1016/j.bbr.2021.113308 . |
36 | OSHODI T O, BEN-AZU B, ISHOLA I O, et al. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice[J]. Mol Biol Rep, 2021, 48(3):2335-2350. DOI: 10.1007/s11033-021-06264-6 . |
37 | BECK K, HINDLEY G, BORGAN F, et al. Association of ketamine with psychiatric symptoms and implications for its therapeutic use and for understanding schizophrenia: a systematic review and meta-analysis[J]. JAMA Netw Open, 2020, 3(5): e204693. DOI: 10.1001/jamanetworkopen.2020. 4693 . |
38 | AZIMI SANAVI M, GHAZVINI H, ZARGARI M, et al. Effects of clozapine and risperidone antipsychotic drugs on the expression of CACNA1C and behavioral changes in rat 'Ketamine model of schizophrenia[J]. Neurosci Lett, 2022, 770:136354. DOI: 10.1016/j.neulet.2021.136354 . |
39 | XU Y, DENG C, ZHENG Y, et al. Applying vinpocetine to reverse synaptic ultrastructure by regulating BDNF-related PSD-95 in alleviating schizophrenia-like deficits in rat[J]. Compr Psychiatry, 2019, 94:152122. DOI: 10.1016/j.comppsych. 2019.152122 . |
40 | LI Y N, SHEN R P, WEN G H, et al. Effects of ketamine on levels of inflammatory cytokines IL-6, IL-1β, and TNF-α in the Hippocampus of mice following acute or chronic administration[J]. Front Pharmacol, 2017, 8:139. DOI: 10.3389/fphar.2017.00139 . |
41 | FUJIKAWA R, YAMADA J, JINNO S. Subclass imbalance of parvalbumin-expressing GABAergic neurons in the hippocampus of a mouse ketamine model for schizophrenia, with reference to perineuronal nets[J]. Schizophr Res, 2021, 229:80-93. DOI: 10.1016/j.schres.2020.11.016 . |
42 | KRAEUTER A K, MASHAVAVE T, SUVARNA A, et al. Effects of beta-hydroxybutyrate administration on MK-801-induced schizophrenia-like behaviour in mice[J]. Psychopharma-cology, 2020, 237(5):1397-1405. DOI: 10.1007/s00213-020-05467-2 . |
43 | FAN H R, DU W F, ZHU T, et al. Quercetin reduces cortical GABAergic transmission and alleviates MK-801-induced hyperactivity[J]. EBioMedicine, 2018, 34:201-213. DOI: 10.1016/j.ebiom.2018.07.031 . |
44 | FLORES-BARRERA E, THOMASES D R, TSENG K Y. MK-801 exposure during adolescence elicits enduring disruption of prefrontal E-I balance and its control of fear extinction behavior[J]. J Neurosci, 2020, 40(25):4881-4887. DOI: 10.1523/JNEUROSCI.0581-20.2020 . |
45 | CHEN G D, LIN X D, LI G Y, et al. Risperidone reverses the spatial object recognition impairment and hippocampal BDNF-TrkB signalling system alterations induced by acute MK-801 treatment[J]. Biomed Rep, 2017, 6(3):285-290. DOI: 10.3892/br.2017.850 . |
46 | FARRELL M S, WERGE T, SKLAR P, et al. Evaluating historical candidate genes for schizophrenia[J]. Mol Psychiatry, 2015, 20(5):555-562. DOI: 10.1038/mp.2015.16 . |
47 | SCHIZOPHRENIA WORKING GROUP OF THE PSYCHIATRIC GENOMICS CONSORTIUM. Biological insights from 108 schizophrenia-associated genetic loci[J]. Nature, 2014, 511(7510):421-427. DOI: 10.1038/nature13595 . |
48 | TRUBETSKOY V, PARDIÑAS A F, QI T, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia[J]. Nature, 2022, 604(7906):502-508. DOI: 10.1038/s41586-022-04434-5 . |
49 | LIU C M, LIU Y L, HWU H G, et al. Genetic associations and expression of extra-short isoforms of disrupted-in-schizophrenia 1 in a neurocognitive subgroup of schizophrenia[J]. J Hum Genet, 2019, 64(7):653-663. DOI: 10.1038/s10038-019-0597-1 . |
50 | BRADSHAW N, PORTEOUS D J. DISC1-binding proteins in neural development, signalling and schizophrenia[J]. Neuropharmacology, 2012, 62(3):1230-1241. DOI: 10.1016/j.neuropharm.2010.12.027 . |
51 | PLETNIKOV M V, AYHAN Y, XU Y, et al. Enlargement of the lateral ventricles in mutant DISC1 transgenic mice[J]. Mol Psychiatry, 2008, 13(2):115. DOI: 10.1038/sj.mp.4002144 . |
52 | ELLISON-WRIGHT I, GLAHN D C, LAIRD A R, et al. The anatomy of first-episode and chronic schizophrenia: an anatomical likelihood estimation meta-analysis[J]. Am J Psychiatry, 2008, 165(8):1015-1023. DOI: 10.1176/appi.ajp.2008.07101562 . |
53 | UMEDA K, IRITANI S, FUJISHIRO H, et al. Immuno-histochemical evaluation of the GABAergic neuronal system in the prefrontal cortex of a DISC1 knockout mouse model of schizophrenia[J]. Synapse, 2016, 70(12):508-518. DOI: 10.1002/syn.21924 . |
54 | CUI L, SUN W, YU M, et al. Disrupted-in-schizophrenia1 (DISC1) L100P mutation alters synaptic transmission and plasticity in the hippocampus and causes recognition memory deficits[J]. Mol Brain, 2016, 9(1):89. DOI: 10.1186/ s13041-016-0270-y . |
55 | VAN L, BOOT E, BASSETT A S. Update on the 22q11.2 deletion syndrome and its relevance to schizophrenia[J]. Curr Opin Psychiatry, 2017, 30(3):191-196. DOI: 10.1097/YCO.0000000000000324 . |
56 | SUN Z Y, WILLIAMS D J, XU B, et al. Altered function and maturation of primary cortical neurons from a 22q11.2 deletion mouse model of schizophrenia[J]. Transl Psychiatry, 2018, 8(1):85. DOI: 10.1038/s41398-018-0132-8 . |
57 | KARAYIORGOU M, SIMON T J, GOGOS J A. 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia[J]. Nat Rev Neurosci, 2010, 11(6):402-416. DOI: 10.1038/nrn2841 . |
58 | ZINKSTOK J R, BOOT E, BASSETT A S, et al. Neurobiological perspective of 22q11.2 deletion syndrome[J]. Lancet Psychiatry, 2019, 6(11): 951-960. DOI: 10.1016/S2215-0366(19)30076-8 . |
59 | MOSTAID M S, LLOYD D, LIBERG B, et al. Neuregulin-1 and schizophrenia in the genome-wide association study era[J]. Neurosci Biobehav Rev, 2016, 68:387-409. DOI: 10.1016/j.neubiorev.2016.06.001 . |
60 | JOSHI D, FULLERTON J M, WEICKERT C S. Elevated ErbB4 mRNA is related to interneuron deficit in prefrontal cortex in schizophrenia[J]. J Psychiatr Res, 2014, 53:125-132. DOI: 10.1016/j.jpsychires.2014.02.014 . |
61 | KARL T, DUFFY L, SCIMONE A, et al. Altered motor activity, exploration and anxiety in heterozygous neuregulin 1 mutant mice: implications for understanding schizophrenia[J]. Genes Brain Behav, 2007, 6(7):677-687. DOI: 10.1111/j.1601-183X. 2006.00298.x . |
62 | BANERJEE A, MACDONALD M L, BORGMANN-WINTER K E, et al. Neuregulin 1-erbB4 pathway in schizophrenia: from genes to an interactome[J]. Brain Res Bull, 2010, 83(3-4):132-139. DOI: 10.1016/j.brainresbull.2010.04.011 . |
63 | WANG H T, XU J P, LAZAROVICI P, et al. Dysbindin-1 involvement in the etiology of schizophrenia[J]. Int J Mol Sci, 2017, 18(10):2044. DOI: 10.3390/ijms18102044 . |
64 | WOLF C, JACKSON M C, KISSLING C, et al. Dysbindin-1 genotype effects on emotional working memory[J]. Mol Psychiatry, 2011, 16(2):145-155. DOI: 10.1038/mp.2009.129 . |
65 | WEICKERT C S, ROTHMOND D A, HYDE T M, et al. Reduced DTNBP1 (dysbindin-1) mRNA in the hippocampal formation of schizophrenia patients[J]. Schizophr Res, 2008, 98(1-3):105-110. DOI: 10.1016/j.schres.2007.05.041 . |
66 | KARLSGODT K H, ROBLETO K, TRANTHAM-DAVIDSON H, et al. Reduced dysbindin expression mediates N-methyl-D-aspartate receptor hypofunction and impaired working memory performance[J]. Biol Psychiatry, 2011, 69(1):28-34. DOI: 10.1016/j.biopsych.2010.09.012 . |
67 | JI Y Y, YANG F, PAPALEO F, et al. Role of dysbindin in dopamine receptor trafficking and cortical GABA function[J]. Proc Natl Acad Sci USA, 2009, 106(46):19593-19598. DOI: 10.1073/pnas.0904289106 . |
68 | WANG Q Z, JI W D, HE K J, et al. Genetic analysis of common variants in the ZNF804A gene with schizophrenia and major depressive disorder[J]. Psychiatr Genet, 2018, 28(1):1-7. DOI: 10.1097/YPG.0000000000000185 . |
69 | HUANG Y, HUANG J, ZHOU Q X, et al. ZFP804A mutant mice display sex-dependent schizophrenia-like behaviors[J]. Mol Psychiatry, 2021, 26(6):2514-2532. DOI: 10.1038/s41380-020-00972-4 . |
70 | LANG B, ZHANG L, JIANG G Y, et al. Control of cortex development by ULK4, a rare risk gene for mental disorders including schizophrenia[J]. Sci Rep, 2016, 6:31126. DOI: 10.1038/srep31126 . |
71 | HU L, ZHOU B Y, YANG C P, et al. Deletion of schizophrenia susceptibility gene Ulk4 leads to abnormal cognitive behaviors via Akt-GSK-3 signaling pathway in mice[J]. Schizophr Bull, 2022, 48(4):804-813. DOI: 10.1093/schbul/sbac040 . |
72 | AMANN L C, GANDAL M J, HALENE T B, et al. Mouse behavioral endophenotypes for schizophrenia[J]. Brain Res Bull, 2010, 83(3-4):147-161. DOI: 10.1016/j.brainresbull. 2010. 04.008 . |
73 | SWERDLOW N R, WEBER M, QU Y, et al. Realistic expectations of prepulse inhibition in translational models for schizophrenia research[J]. Psychopharmacology, 2008, 199(3):331-388. DOI: 10.1007/s00213-008-1072-4 . |
74 | GEYER M A, MCILWAIN K L, PAYLOR R. Mouse genetic models for prepulse inhibition: an early review[J]. Mol Psychiatry, 2002, 7(10):1039-1053. DOI: 10.1038/sj.mp.4001159 . |
75 | STERU L, CHERMAT R, THIERRY B, et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology, 1985, 85(3):367-370. DOI: 10.1007/BF00428203 . |
76 | LIU M Y, YIN C Y, ZHU L J, et al. Sucrose preference test for measurement of stress-induced anhedonia in mice[J]. Nat Protoc, 2018, 13(7):1686-1698. DOI: 10.1038/s41596-018-0011-z . |
77 | KOMADA M, TAKAO K, MIYAKAWA T. Elevated plus maze for mice[J]. J Vis Exp, 2008(22):1088. DOI: 10.3791/1088 . |
78 | O'TUATHAIGH C M, DESBONNET L, WADDINGTON J L. Genetically modified mice related to schizophrenia and other psychoses: seeking phenotypic insights into the pathobiology and treatment of negative symptoms[J]. Eur Neuropsychopharmacol, 2014, 24(5):800-821. DOI: 10.1016/j.euroneuro.2013.08.009 . |
79 | KEEFE R S E, EESLEY C E, POE M P. Defining a cognitive function decrement in schizophrenia[J]. Biol Psychiatry, 2005, 57(6):688-691. DOI: 10.1016/j.biopsych.2005.01.003 . |
80 | CLARK R E, MARTIN S J. Interrogating rodents regarding their object and spatial memory[J]. Curr Opin Neurobiol, 2005, 15(5):593-598. DOI: 10.1016/j.conb.2005.08.014 . |
81 | JAARO-PELED H. Gene models of schizophrenia: DISC1 mouse models[J]. Prog Brain Res, 2009, 179:75-86. DOI: 10.1016/S0079-6123(09)17909-8 . |
82 | BRENNAMAN L H, KOCHLAMAZASHVILI G, STOENICA L, et al. Transgenic mice overexpressing the extracellular domain of NCAM are impaired in working memory and cortical plasticity[J]. Neurobiol Dis, 2011, 43(2):372-378. DOI: 10.1016/j.nbd.2011.04.008 . |
83 | JAUHAR S, JOHNSTONE M, MCKENNA P J. Schizophrenia[J]. Lancet, 2022, 399(10323):473-486. DOI: 10.1016/S0140-6736(21)01730-X . |
84 | JOHNSTONE E C, CROW T J, FRITH C D, et al. Mechanism of the antipsychotic effect in the treatment of acute schizophrenia[J]. Lancet, 1978, 1(8069):848-851. DOI: 10.1016/ s0140-6736(78)90193-9 . |
85 | EMAMIAN E S, HALL D, BIRNBAUM M J, et al. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia[J]. Nat Genet, 2004, 36(2):131-137. DOI: 10.1038/ ng1296 |
86 | ARGUELLO P A, GOGOS J A. A signaling pathway AKTing up in schizophrenia[J]. J Clin Invest, 2008, 118(6):2018-2021. DOI: 10.1172/JCI35931 . |
87 | TAKAYANAGI Y, SASABAYASHI D, TAKAHASHI T, et al. Reduced cortical thickness in schizophrenia and schizotypal disorder[J]. Schizophr Bull, 2020, 46(2):387-394. DOI: 10.1093/schbul/sbz051 . |
88 | HELLER C, WEISS T, DEL RE E C, et al. Smaller subcortical volumes and enlarged lateral ventricles are associated with higher global functioning in young adults with 22q11.2 deletion syndrome with prodromal symptoms of schizophrenia[J]. Psychiatry Res, 2021, 301:113979. DOI: 10.1016/j.psychres.2021.113979 . |
89 | BENES F M, LIM B, MATZILEVICH D, et al. Regulation of the GABA cell phenotype in hippocampus of schizophrenics and bipolars[J]. Proc Natl Acad Sci USA, 2007, 104(24):10164-10169. DOI: 10.1073/pnas.0703806104 . |
90 | FATEMI S H, FOLSOM T D, THURAS P D. GABAA and GABAB receptor dysregulation in superior frontal cortex of subjects with schizophrenia and bipolar disorder[J]. Synapse, 2017, 71(7):e21973. DOI: 10.1002/syn.21973 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[10] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[11] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[12] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[13] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[14] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[15] | 赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||