实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (3): 288-296.DOI: 10.12300/j.issn.1674-5817.2022.194
谭志刚1,2(), 刘锦信1,2, 郑楚雅1,2, 廖文峰1,2, 冯露平1,2, 彭红丽1,2, 严秀3, 卓振建1,2()()
收稿日期:
2022-12-29
修回日期:
2023-04-11
出版日期:
2023-06-25
发布日期:
2023-07-18
通讯作者:
卓振建(1990—),男,博士,副研究员,主要从事肿瘤模型构建、实验动物管理、肿瘤机制研究。E-mail: zhenjianzhuo@163.com。ORCID: 0000-0003-0142-4086作者简介:
谭志刚(1989—),男,硕士,兽医师,主要从事实验动物设施管理、实验动物疾病研究等。E-mail: 18819267200@163.com
基金资助:
Zhigang TAN1,2(), Jinxin LIU1,2, Chuya ZHENG1,2, Wenfeng LIAO1,2, Luping FENG1,2, Hongli PENG1,2, Xiu YAN3, Zhenjian ZHUO1,2()()
Received:
2022-12-29
Revised:
2023-04-11
Published:
2023-06-25
Online:
2023-07-18
Contact:
ZHUO Zhenjian (ORCID: 0000-0003-0142-4086), E-mail: zhenjianzhuo@163.com摘要:
神经母细胞瘤(neuroblastoma,NB)是儿童最常见的实体恶性肿瘤,居我国儿童肿瘤发病率第四位,占儿童肿瘤死亡人数的15%,高危患者存活率低。目前对于NB的发病及药物治疗机制知之甚少。NB动物模型可以表征NB发展特征,是研究预防和治疗NB的重要工具,然而尚未有一种动物模型可以模拟人类NB的所有特征。本文介绍了当前研究较多的几种NB动物模型(小鼠模型、鸡胚绒毛尿囊膜模型和斑马鱼模型),并对每种NB动物模型的种类、构建方法、特征、优缺点及研究进展做了详细阐述,同时对NB的应用方向及前景进行概括,以期为NB动物模型构建和NB治疗等提供理论依据。
中图分类号:
谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296.
Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296.
细胞系 Cell line | 小鼠品系 Mouse stain | MYCN基因状态 MYCN status | ALK基因突变 ALK mutation | P53基因突变 P53 mutation | 参考文献 Reference |
---|---|---|---|---|---|
KELLY | BALB/c-nude小鼠 | 扩增 | 野生型 | 野生型 | [ |
CHP-212 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
SKNAS | BALB/c-nude小鼠 | 非扩增 | 野生型 | H168R | [ |
SH-SY-5Y | Foxn1nu/Nju小鼠、ICR小鼠、BALB/c-nude小鼠 | 非扩增 | F1174L | 野生型 | [ |
IMR-32 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
IMR-05 | SHC小鼠 | 扩增 | 野生型 | 野生型 | [ |
LA-N-5 | BALB/c-nude小鼠 | 扩增 | R1275Q | 野生型 | [ |
NB-1 | BALB/c-nude小鼠 | 扩增 | 野生型扩增 | 野生型 | [ |
SK-N-BE(2) | SCID-Beige小鼠 | 扩增 | 野生型 | C135F | [ |
SK-N-BE(2)-C | BALB/c- nude小鼠、Foxn1nu/Nju小鼠 | 扩增 | 野生型 | C135F | [ |
CHP-134 | NOD-SCID小鼠 | 扩增 | 野生型 | 野生型 | [ |
SK-N-DZ | BALB/c-nude小鼠 | 扩增 | 野生型 | R110L | [ |
表1 常见的NB细胞系来源的临床前实验小鼠模型
Table 1 Frequently used preclinical laboratory mouse models derived from NB cell lines
细胞系 Cell line | 小鼠品系 Mouse stain | MYCN基因状态 MYCN status | ALK基因突变 ALK mutation | P53基因突变 P53 mutation | 参考文献 Reference |
---|---|---|---|---|---|
KELLY | BALB/c-nude小鼠 | 扩增 | 野生型 | 野生型 | [ |
CHP-212 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
SKNAS | BALB/c-nude小鼠 | 非扩增 | 野生型 | H168R | [ |
SH-SY-5Y | Foxn1nu/Nju小鼠、ICR小鼠、BALB/c-nude小鼠 | 非扩增 | F1174L | 野生型 | [ |
IMR-32 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
IMR-05 | SHC小鼠 | 扩增 | 野生型 | 野生型 | [ |
LA-N-5 | BALB/c-nude小鼠 | 扩增 | R1275Q | 野生型 | [ |
NB-1 | BALB/c-nude小鼠 | 扩增 | 野生型扩增 | 野生型 | [ |
SK-N-BE(2) | SCID-Beige小鼠 | 扩增 | 野生型 | C135F | [ |
SK-N-BE(2)-C | BALB/c- nude小鼠、Foxn1nu/Nju小鼠 | 扩增 | 野生型 | C135F | [ |
CHP-134 | NOD-SCID小鼠 | 扩增 | 野生型 | 野生型 | [ |
SK-N-DZ | BALB/c-nude小鼠 | 扩增 | 野生型 | R110L | [ |
小鼠模型 Mouse model | 优势 Advantage | 局限性 Limitation | 参考文献 Reference |
---|---|---|---|
Th-MYCN | 代表高危NB型,成瘤率高 | 成瘤时间长,转移少 | [ |
LSL-MYCN;dβh-iCre | 比Th-MYCN更明确的转基因插入,发病率更高 | 转移率低 | [ |
Th-MYCN/CASP8(KO) | 存在转移,成瘤率高 | 引起原发肿瘤细胞外基质结构的改变 | [ |
Th-MYCN/Trp53(KI) | 诱导性P53丢失 | P53突变多发于复发肿瘤中,小鼠的存活率低 | [ |
ALK(F1174) | 符合NB表型 | 临床常见率低 | [ |
Th-MYCN/ALK(F1174) | 成瘤率高,肿瘤生长快 | 相关性低 | [ |
SV40 Tag | 与NB表型一致,肿瘤发病率高,存在转移 | 所有小鼠在28周龄前死亡 | [ |
表2 常见的NB基因工程小鼠模型
Table 2 The common genetically engineered mouse models
小鼠模型 Mouse model | 优势 Advantage | 局限性 Limitation | 参考文献 Reference |
---|---|---|---|
Th-MYCN | 代表高危NB型,成瘤率高 | 成瘤时间长,转移少 | [ |
LSL-MYCN;dβh-iCre | 比Th-MYCN更明确的转基因插入,发病率更高 | 转移率低 | [ |
Th-MYCN/CASP8(KO) | 存在转移,成瘤率高 | 引起原发肿瘤细胞外基质结构的改变 | [ |
Th-MYCN/Trp53(KI) | 诱导性P53丢失 | P53突变多发于复发肿瘤中,小鼠的存活率低 | [ |
ALK(F1174) | 符合NB表型 | 临床常见率低 | [ |
Th-MYCN/ALK(F1174) | 成瘤率高,肿瘤生长快 | 相关性低 | [ |
SV40 Tag | 与NB表型一致,肿瘤发病率高,存在转移 | 所有小鼠在28周龄前死亡 | [ |
图1 斑马鱼模型进行NB研究的流程示意图注:斑马鱼肿瘤模型主要用于发育遗传学研究、肿瘤机制研究和抗肿瘤药物评估。
Figure 1 Process diagram of zebrafish model for NB researchNote:Zebrafish tumor model can be mainly used for the developmental genetics research, studies on tumor mechanisms, and antineoplastic drug evaluation.
1 | ZAFAR A, WANG W, LIU G, et al. Molecular targeting therapies for neuroblastoma: progress and challenges[J]. Med Res Rev, 2021, 41(2):961-1021. DOI: 10.1002/med.21750 . |
2 | CHUNG C, BOTERBERG T, LUCAS J, et al. Neuroblastoma[J]. Pediatr Blood Cancer, 2021, 68:e28473. DOI: 10.1002/pbc. 28473 . |
3 | SUN X F, ZHEN Z J, GUO Y, et al. Oral metronomic maintenance therapy can improve survival in high-risk neuroblastoma patients not treated with ASCT or anti-GD2 antibodies[J]. Cancers, 2021, 13(14):3494. DOI: 10.3390/cancers13143494 . |
4 | HELSON L, DAS S K, HAJDU S I. Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35(9): 2594-2599. |
5 | BOGDEN A E, COBB W R, LEPAGE D J, et al. Chemotherapy responsiveness of human tumors as first transplant generation xenografts in the normal mouse: six-day subrenal capsule assay[J]. Cancer, 1981, 48(1):10-20. DOI: 10.1002/1097-0142(19810701)48:1<10: AID-CNCR2820480105>3.0.CO;2-I . |
6 | KHANNA C, JABOIN J J, DRAKOS E, et al. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis[J]. In Vivo, 2002, 16(2):77-85. |
7 | ROWE D H, HUANG J Z, LI J, et al. Suppression of primary tumor growth in a mouse model of human neuroblastoma[J]. J Pediatr Surg, 2000, 35(6):977-981. DOI: 10.1053/jpsu. 2000.6946 . |
8 | FLICKINGER K S, JUDWARE R, LECHNER R, et al. Integrin expression in human neuroblastoma cells with or without N-myc amplification and in ectopic/orthotopic nude mouse tumors[J]. Exp Cell Res, 1994, 213(1):156-163. DOI: 10.1006/excr.1994.1185 . |
9 | KANG J, ISHOLA T A, BAREGAMIAN N, et al. Bombesin induces angiogenesis and neuroblastoma growth[J]. Cancer Lett, 2007, 253(2):273-281. DOI: 10.1016/j.canlet.2007.02.007 . |
10 | 刘波, 苗佳宁, 张斯萌, 等. 神经母细胞瘤肾上腺原位移植瘤动物模型的建立[J]. 中国比较医学杂志, 2021, 31(12):1-6. DOI: 10.3969/j.issn.1671-7856.2021.12.001 . |
LIU B, MIAO J N, ZHANG S M, et al. Establishment of an orthotopic xenografted animal model of neuroblastoma[J]. Chin J Comp Med, 2021, 31(12):1-6. DOI: 10.3969/j.issn.1671-7856.2021.12.001 . | |
11 | SENEVIRATNE J A, CARTER D R, MITTRA R, et al. Inhibition of mitochondrial translocase SLC25A5 and histone deacetylation is an effective combination therapy in neuroblastoma[J]. Int J Cancer, 2023, 152(7):1399-1413. DOI: 10.1002/ijc.34349 . |
12 | MISSIOS P, ROCHA E L DA, PEARSON D S, et al. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy[J]. J Clin Invest, 2021, 131(22):e145142. DOI: 10.1172/JCI145142 . |
13 | CANDIDO M F, MEDEIROS M, VERONEZ L C, et al. Drugging hijacked kinase pathways in pediatric oncology: opportunities and current scenario[J]. Pharmaceutics, 2023, 15(2):664. DOI: 10.3390/pharmaceutics15020664 . |
14 | GU Y Y, ZHONG K, PENG L Z, et al. TRAF4 silencing induces cell apoptosis and improves retinoic acid sensitivity in human neuroblastoma[J]. Neurochem Res, 2023, 48(7):2116-2128. DOI: 10.1007/s11064-023-03882-3 . |
15 | CONDURAT A L, AMINZADEH-GOHARI S, MALNAR M, et al. Verteporfin-induced proteotoxicity impairs cell homeostasis and survival in neuroblastoma subtypes independent of YAP/TAZ expression[J]. Sci Rep, 2023, 13(1):3760. DOI: 10.1038/s41598-023-29796-2 . |
16 | HE Y, LUO M H, LEI S, et al. Luteoloside induces G0/G1 phase arrest of neuroblastoma cells by targeting p38 MAPK[J]. Molecules, 2023, 28(4):1748. DOI: 10.3390/molecules28041748 . |
17 | GAO Y, VOLEGOVA M, NASHOLM N, et al. Synergistic anti-tumor effect of combining selective CDK7 and BRD4 inhibition in neuroblastoma[J]. Front Oncol, 2022, 11:773186. DOI: 10.3389/fonc.2021.773186 . |
18 | MAKVANDI M, SAMANTA M, MARTORANO P, et al. Pre-clinical investigation of astatine-211-parthanatine for high-risk neuroblastoma[J]. Commun Biol, 2022, 5(1):1260. DOI: 10.1038/s42003-022-04209-8 . |
19 | ZHU Q Q, FENG C, LIAO W W, et al. Target delivery of MYCN siRNA by folate-nanoliposomes delivery system in a metastatic neuroblastoma model[J]. Cancer Cell Int, 2013, 13(1):65. DOI: 10.1186/1475-2867-13-65 . |
20 | RYU S, HAYASHI M, AIKAWA H, et al. Heterogeneous distribution of alectinib in neuroblastoma xenografts revealed by matrix-assisted laser desorption ionization mass spectrometry imaging: a pilot study[J]. Br J Pharmacol, 2018, 175(1):29-37. DOI: 10.1111/bph.14067 . |
21 | NOMURA M, SHIMBO T, MIYAMOTO Y, et al. 13-Cis retinoic acid can enhance the antitumor activity of non-replicating Sendai virus particle against neuroblastoma[J]. Cancer Sci, 2013, 104(2):238-244. DOI: 10.1111/cas.12063 . |
22 | SEPPORTA M V, PRAZ V, BALMAS BOURLOUD K, et al. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth[J]. Commun Biol, 2022, 5(1):42. DOI: 10.1038/s42003-021-02958-6 . |
23 | LAMPIS S, RAIELI S, MONTEMURRO L, et al. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma[J]. J Exp Clin Cancer Res, 2022, 41(1):160. DOI: 10.1186/s13046-022-02367-5 . |
24 | XIAO H L, LI Y H, ZHANG Y, et al. Long noncoding RNA LINC01296 regulates the cell proliferation, migration and invasion in neuroblastoma[J]. Metab Brain Dis, 2022, 37(4):1247-1258. DOI: 10.1007/s11011-022-00935-4 . |
25 | KAMILI A, GIFFORD A J, LI N, et al. Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy[J]. Br J Cancer, 2020, 122(5):680-691. DOI: 10.1038/s41416-019-0682-4 . |
26 | BYRNE F L, MCCARROLL J A, KAVALLARIS M. Analyses of tumor burden in vivo and metastasis ex vivo using luciferase-expressing cancer cells in an orthotopic mouse model of neuroblastoma[J]. Methods Mol Biol, 2016, 1372:61-77. DOI: 10.1007/978-1-4939-3148-4_5 . |
27 | GRANT C N, WILLS C A, LIU X M, et al. Thoracic neuroblastoma: a novel surgical model for the study of extra-adrenal neuroblastoma[J]. In Vivo, 2022, 36(1):49-56. DOI: 10.21873/invivo.12675 . |
28 | WEISS W A, ALDAPE K, MOHAPATRA G, et al. Targeted expression of MYCN causes neuroblastoma in transgenic mice[J]. EMBO J, 1997, 16(11):2985-2995. DOI: 10.1093/emboj/16.11.2985 . |
29 | MARSHALL G M, CARTER D R, CHEUNG B B, et al. The prenatal origins of cancer[J]. Nat Rev Cancer, 2014, 14(4):277-289. DOI: 10.1038/nrc3679 . |
30 | Rasmuson A, Segerström L, Nethander M, et al. Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma[J]. PLoS One, 2012, 7(12):e51297. |
31 | ALTHOFF K, BECKERS A, BELL E, et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies[J]. Oncogene, 2015, 34(26):3357-3368. DOI: 10.1038/onc.2014.269 . |
32 | ROSSWOG C, FASSUNKE J, ERNST A, et al. Genomic ALK alterations in primary and relapsed neuroblastoma[J]. Br J Cancer, 2023, 128(8):1559-1571. DOI: 10.1038/s41416-023-02208-y . |
33 | BRESLER S C, WEISER D A, HUWE P J, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma[J]. Cancer Cell, 2014, 26(5): 682-694. DOI: 10.1016/j.ccell.2014.09.019 . |
34 | HEUKAMP L C, THOR T, SCHRAMM A, et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice[J]. Sci Transl Med, 2012, 4(141):141ra91. DOI: 10.1126/scitranslmed.3003967 . |
35 | BERRY T, LUTHER W, BHATNAGAR N, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma[J]. Cancer Cell, 2012, 22(1):117-130. DOI: 10.1016/j.ccr.2012.06.001 . |
36 | UEDA T, NAKATA Y, YAMASAKI N, et al. ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN[J]. Oncogene, 2016, 35(34):4447-4458. DOI: 10.1038/onc.2015.519 . |
37 | LIN Z H, RADAEVA M, CHERKASOV A, et al. Lin28 regulates cancer cell stemness for tumour progression[J]. Cancers, 2022, 14(19):4640. DOI: 10.3390/cancers14194640 . |
38 | MOLENAAR J J, DOMINGO-FERNÁNDEZ R, EBUS M E, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression[J]. Nat Genet, 2012, 44(11):1199-1206. DOI: 10.1038/ng.2436 . |
39 | MASSUDI H, LUO J S, HOLIEN J K, et al. Inhibitors of the oncogenic PA2G4-MYCN protein-protein interface[J]. Cancers, 2023, 15(6):1822. DOI: 10.3390/cancers15061822 . |
40 | KAMBE K, IGUCHI M, HIGASHI M, et al. Development of minimally invasive cancer immunotherapy using anti-disialoganglioside GD2 antibody-producing mesenchymal stem cells for a neuroblastoma mouse model[J]. Pediatr Surg Int, 2022, 39(1):43. DOI: 10.1007/s00383-022-05310-z . |
41 | TEITZ T, INOUE M, VALENTINE M B, et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis[J]. Cancer Res, 2013, 73(13):4086-4097. DOI: 10.1158/0008-5472.CAN-12-2681 . |
42 | YOGEV O, BARKER K, SIKKA A, et al. p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance[J]. Cancer Res, 2016, 76(10):3025-3035. DOI: 10.1158/0008-5472.CAN-15-1939 . |
43 | EIBL R H, SCHNEEMANN M. Medulloblastoma: from TP53 mutations to molecular classification and liquid biopsy[J]. Biology, 2023, 12(2):267. DOI: 10.3390/biology12020267 . |
44 | MITREVSKA K, MERLOS RODRIGO M A, CERNEI N, et al. Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism[J]. Mater Today Bio, 2023, 19:100570. DOI: 10.1016/j.mtbio.2023.100570 . |
45 | RIBATTI D, ALESSANDRI G, VACCA A, et al. Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenic in vivo [J]. Int J Cancer, 1998, 77(3):449-454. DOI: 10.1002/(sici)1097-0215(19980729)77:3449: aid-ijc22>3.0.co;2-1 . |
46 | MANGIERI D, NICO B, COLUCCIA A M L, al at. An alternative in vivo system for testing angiogenic potential of human neuroblastoma cells[J]. Cancer Lett, 2009, 277(2):199-204. DOI: 10.1016/j.canlet.2008.12.014 . |
47 | HERRMANN A, RICE M, LÉVY R, et al. Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells[J]. Oncogenesis, 2015, 4(2): e138. DOI: 10.1038/oncsis.2014.52 . |
48 | SWADI R, MATHER G, PIZER B L, et al. Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery[J]. BMC Cancer, 2018, 18(1):28. DOI: 10.1186/s12885-017-3978-x . |
49 | LI S, YEO K S, LEVEE T M, et al. Zebrafish as a neuroblastoma model: progress made, promise for the future[J]. Cells, 2021, 10(3):580. DOI: 10.3390/cells10030580 . |
50 | STANTON M F. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, brachydanio rerio[J]. J Natl Cancer Inst, 1965, 34:117-130. DOI: 10.1093/jnci/34.1.117 . |
51 | LANGENAU D M, TRAVER D, FERRANDO A A, et al. Myc-induced T cell leukemia in transgenic zebrafish[J]. Science, 2003, 299(5608):887-890. DOI: 10.1126/science.1080280 . |
52 | ETCHIN J, KANKI J P, LOOK A T. Zebrafish as a model for the study of human cancer[J]. Methods Cell Biol, 2011, 105:309-337. DOI: 10.1016/B978-0-12-381320-6.00013-8 . |
53 | FEITSMA H, CUPPEN E. Zebrafish as a cancer model[J]. Mol Cancer Res, 2008, 6(5):685-694. DOI: 10.1158/1541-7786.MCR-07-2167 . |
54 | BENJAMIN D C, HYNES R O. Intravital imaging of metastasis in adult Zebrafish[J]. BMC Cancer, 2017, 17(1):660. DOI: 10.1186/s12885-017-3647-0 . |
55 | TAO T, SONDALLE S B, SHI H, et al. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma[J]. Oncogene, 2017, 36(27):3852-3867. DOI: 10.1038/onc.2016.527 . |
56 | ZHU S Z, LEE J S, GUO F, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis[J]. Cancer Cell, 2012, 21(3):362-373. DOI: 10.1016/j.ccr.2012.02.010 . |
57 | ZHANG X L, DONG Z W, ZHANG C, et al. Critical role for GAB2 in neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation[J]. Cell Rep, 2017, 18(12):2932-2942. DOI: 10.1016/j.celrep.2017.02.065 . |
58 | COSTA B, ESTRADA M F, MENDES R V, et al. Zebrafish avatars towards personalized medicine-a comparative review between avatar models[J]. Cells, 2020, 9(2):293. DOI: 10.3390/cells9020293 . |
59 | FIOR R, PÓVOA V, MENDES R V, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts[J]. Proc Natl Acad Sci USA, 2017, 114(39):E8234-E8243. DOI: 10.1073/pnas.1618389114 . |
60 | ALMSTEDT E, ELGENDY R, HEKMATI N, et al. Integrative discovery of treatments for high-risk neuroblastoma[J]. Nat Commun, 2020, 11(1):71. DOI: 10.1038/s41467-019-13817-8 . |
61 | VEINOTTE C J, DELLAIRE G, BERMAN J N. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era[J]. Dis Model Mech, 2014, 7(7):745-754. DOI: 10.1242/dmm.015784 . |
62 | HANEY M G, MOORE L H, BLACKBURN J S. Drug screening of primary patient derived tumor xenografts in zebrafish[J]. J Vis Exp, 2020(158):10.3791/60996. DOI: 10.3791/60996 . |
63 | CABEZAS-SÁINZ P, PENSADO-LÓPEZ A, SÁINZ B Jr, et al. Modeling cancer using zebrafish xenografts: drawbacks for mimicking the human microenvironment[J]. Cells, 2020, 9(9):1978. DOI: 10.3390/cells9091978 . |
64 | IBARRA B A, JIANG X H, TREFFY R W, et al. Injection of human neuroblastoma cells into neural crest streams in live zebrafish embryos[J]. STAR Protoc, 2022, 3(2):101380. DOI: 10.1016/j.xpro.2022.101380 . |
65 | DELLOYE-BOURGEOIS C, BERTIN L, THOINET K,et al. Microenvironment-driven shift of cohesion/detachment balance within tumors induces a switch toward metastasis in neuroblastoma[J]. Cancer Cell, 2017, 32(4):427-443.e8. DOI: 10.1016/j.ccell.2017.09.006 . |
66 | ZHU S Z, ZHANG X L, WEICHERT-LEAHEY N, et al. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis[J]. Cancer Cell, 2017, 32(3):310-323.e5. DOI: 10.1016/j.ccell.2017.08.002 . |
67 | DONG Z W, YEO K S, LOPEZ G, et al. GAS7 deficiency promotes metastasis in MYCN-Driven neuroblastoma[J]. Cancer Res, 2021, 81(11):2995-3007. DOI: 10.1158/0008-5472.CAN-20-1890 . |
68 | YANG T Y, LI J H, ZHUO Z J, et al. TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis[J]. iScience, 2022, 25(7):104655. DOI: 10.1016/j.isci. 2022. 104655 . |
69 | MIAO L, ZHUO Z J, TANG J, et al. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression[J]. Clin Transl Med, 2021, 11(4): e395. DOI: 10.1002/ctm2.395 . |
70 | GARBATI P, BARBIERI R, CALDERONI M, et al. Efficacy of a three drug-based therapy for neuroblastoma in mice[J]. Int J Mol Sci, 2021, 22(13):6753. DOI: 10.3390/ijms22136753 . |
71 | HARUKI H, PEDERSEN M G, GORSKA K I, et al. Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs[J]. Science, 2013, 340(6135):987-991. DOI: 10.1126/science.1232972 . |
72 | SHANG T S, KOTAMRAJU S, ZHAO H T, et al. Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide, and proteasome activation[J]. Free Radic Biol Med, 2005, 39(8):1059-1074. DOI: 10.1016/j.freeradbiomed.2005.05.022 . |
73 | MOONEY M R, GEERTS D, KORT E J, et al. Anti-tumor effect of sulfasalazine in neuroblastoma[J]. Biochem Pharmacol, 2019, 162:237-249. DOI: 10.1016/j.bcp.2019.01.007 . |
74 | MAÑAS A, AALTONEN K, ANDERSSON N, et al. Clinically relevant treatment of PDX models reveals patterns of neuroblastoma chemoresistance[J]. Sci Adv, 2022, 8(43): eabq4617. DOI: 10.1126/sciadv.abq4617 . |
75 | ZHANG H M, XIA H F, CHEN H, et al. The inhibition of GHR enhanced cytotoxic effects of etoposide on neuroblastoma[J]. Cell Signal, 2021, 86:110081. DOI: 10.1016/j.cellsig. 2021.110081 . |
76 | NUNES C, DEPESTEL L, MUS L, et al. RRM2 enhances MYCN- driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition[J]. Sci Adv, 2022, 8(28): eabn1382. DOI: 10.1126/sciadv.abn1382 . |
77 | COSTA A, THIRANT C, KRAMDI A, et al. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma[J]. J Immunother Cancer, 2022, 10(8): e004807. DOI: 10.1136/jitc-2022-004807 . |
78 | LI N, TORRES M B, SPETZ M R, et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice[J]. Cell Rep Med, 2021, 2(6):100297. DOI: 10.1016/j.xcrm.2021.100297 . |
79 | THERUVATH J, MENARD M, SMITH B A H, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication[J]. Nat Med, 2022, 28(2):333-344. DOI: 10.1038/s41591-021-01625-x . |
80 | SWADI R R, SAMPAT K, HERRMANN A, et al. CDK inhibitors reduce cell proliferation and reverse hypoxia-induced metastasis of neuroblastoma tumours in a chick embryo model[J]. Sci Rep, 2019, 9(1):9136. DOI: 10.1038/s41598-019-45571-8 . |
81 | LEIBA J, ÖZBILGIÇ R, HERNÁNDEZ L, et al. Molecular actors of inflammation and their signaling pathways: mechanistic insights from zebrafish[J]. Biology, 2023, 12(2):153. DOI: 10.3390/biology12020153 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 梁敏, 郭洋, 王津津, 朱梦妍, 池骏, 陈艳娟, 王成稷, 喻智澜, 沈如凌. Dmd基因突变小鼠构建及在肌肉及免疫系统的表型验证[J]. 实验动物与比较医学, 2024, 44(1): 42-51. |
[3] | 郑建华, 法云智, 董巧燕, 邱业峰, 陈菁青. 高原急性缺氧肠道应激损伤小鼠模型的构建与评价[J]. 实验动物与比较医学, 2024, 44(1): 31-41. |
[4] | 唐倩倩, 张秀莉, 常在. 清华大学实验动物中心小鼠自动饮水系统漏水情况统计分析[J]. 实验动物与比较医学, 2024, 44(1): 85-91. |
[5] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[6] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[7] | 王丹, 张晓璐, 王妍, 傅博, 王文栋, 刘京, 张甦寅, 武怡荷, 吴德国, 杜小燕, 战大伟, 章秀林, 李长龙. Big-BALB/c小鼠亚系选育前后的抗体制备效率比较研究[J]. 实验动物与比较医学, 2023, 43(6): 612-618. |
[8] | 聂永强, 王朝霞. 濒危基因编辑小鼠品系拯救技术及其应用探讨[J]. 实验动物与比较医学, 2023, 43(6): 636-640. |
[9] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[10] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[11] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[12] | 林金杏, 王新栋, 白雪兵, 冯丽萍, 谢淑武, 陈秋生. 成年斑马鱼体肾的微细结构及其外泌体的分布鉴定[J]. 实验动物与比较医学, 2023, 43(5): 531-540. |
[13] | 于灵芝, 谢建芸, 冯丽萍, 魏晓锋. 金黄色葡萄球菌荧光定量PCR检测方法的建立及其在大鼠、小鼠粪便检测中的应用[J]. 实验动物与比较医学, 2023, 43(5): 566-573. |
[14] | 王成稷, 王珏, 王海杰, 陆炜晟, 史岩, 顾正页, 万鸣秋, 沈如凌. 乳胶血管灌注技术制作小鼠头面部静脉血管模型方法初探[J]. 实验动物与比较医学, 2023, 43(5): 574-578. |
[15] | 翟珊珊, 梁亮, 曹颖颖, 李竹欣, 王青, 陶俊宇, 运晨霞, 冷静, 唐海波. 一例树鼩毛发上皮瘤的诊断及细胞生物学特性观察[J]. 实验动物与比较医学, 2023, 43(4): 440-445. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||