实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (5): 512-523.DOI: 10.12300/j.issn.1674-5817.2023.076
收稿日期:
2023-06-13
修回日期:
2023-08-14
出版日期:
2023-10-25
发布日期:
2023-11-01
通讯作者:
沈如凌(1981—),女,博士,副研究员,研究方向:模式动物模型研发及表型研究。E-mail: shenruling@slarc.org.cn。ORCID:0000-0002-7529-810X作者简介:
陈艳娟(1991—),女,本科,中级兽医师,研究方向:模式动物模型研发及表型研究。E-mail: chenyanjuan@slarc.org.cn
基金资助:
Yanjuan CHEN(), Ruling SHEN()()
Received:
2023-06-13
Revised:
2023-08-14
Published:
2023-10-25
Online:
2023-11-01
Contact:
SHEN Ruling (ORCID: 0000-0002-7529-810X), E-mail: shenruling@slarc.org.cn摘要:
结直肠癌(colorectal cancer,CRC)是全球第三大常见的恶性肿瘤,最新统计数据显示CRC发病人数占全球癌症病例总数的10%,为癌症死亡的第二大主因。CRC是一种高度异质性疾病,其发生发展是由多个基因表达突变引起功能异常或表观遗传变化所驱动,并经过不同途径发展为肿瘤。由于遗传、环境、伦理以及患者本身个体差异等复杂因素限制了CRC在人体上的研究,动物疾病模型已成为研究该疾病必不可少的工具,在预防、治疗、临床前研究和基础性研究中发挥重要作用。CRC疾病模型种类丰富,其中小鼠模型应用最为广泛,根据造模方式不同分为自发性、化学诱导、移植瘤和基因工程小鼠模型,各有其不同特点及应用前景。本文重点阐述CRC小鼠模型,同时介绍大鼠、实验猪、斑马鱼等动物模型的最新研究进展,以期为CRC动物模型的选择和应用提供参考。
中图分类号:
陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523.
Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer[J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523.
肿瘤细胞系名称 Tumor cell line names | 来源 Source | MSI状态 MSI status | 突变基因 Mutant gene | 参考文献 Reference |
---|---|---|---|---|
HCT116 | 人源 | MSI | KRAS、PIK3CA | [ |
LIM1215 | 人源 | - | - | - |
HT29 | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
SW480 | 人源 | MSS | APC、KRAS、TP53 | [ |
SW620 | 人源 | MSS | APC、KRAS、TP53 | [ |
HCT15 | 人源 | MSI | APC[ | [ |
Colo320DM | 人源 | MSS | APC、TP53 | [ |
Co115 | 人源 | MSI | BRAF、PTEN | [ |
CaCo2 | 人源 | MSS | APC、TP53 | [ |
WiDr | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
COLO205 | 人源 | MSS[ | BRAF[ | - |
DLD-1 | 人源 | MSI | KRAS、PIK3CA、TP53 | [ |
CT26 | BALB/c小鼠 | MSS[ | KRAS[ | [ |
MC38 | C57BL/6J小鼠 | MSI[ | - | [ |
表1 用于构建移植瘤小鼠模型的结直肠癌细胞系特征
Table 1 Characterization of colorectal cancer cell lines used to construct transplanted tumor mouse models
肿瘤细胞系名称 Tumor cell line names | 来源 Source | MSI状态 MSI status | 突变基因 Mutant gene | 参考文献 Reference |
---|---|---|---|---|
HCT116 | 人源 | MSI | KRAS、PIK3CA | [ |
LIM1215 | 人源 | - | - | - |
HT29 | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
SW480 | 人源 | MSS | APC、KRAS、TP53 | [ |
SW620 | 人源 | MSS | APC、KRAS、TP53 | [ |
HCT15 | 人源 | MSI | APC[ | [ |
Colo320DM | 人源 | MSS | APC、TP53 | [ |
Co115 | 人源 | MSI | BRAF、PTEN | [ |
CaCo2 | 人源 | MSS | APC、TP53 | [ |
WiDr | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
COLO205 | 人源 | MSS[ | BRAF[ | - |
DLD-1 | 人源 | MSI | KRAS、PIK3CA、TP53 | [ |
CT26 | BALB/c小鼠 | MSS[ | KRAS[ | [ |
MC38 | C57BL/6J小鼠 | MSI[ | - | [ |
模型分类 Model classification | 诱导方式 Induction mode | 动物品种品系 Species | 涉及化合物 及细胞系 Relates to compounds and cell lines | 突变基因Mutant gene | 局限性 Limitation | 有无转移 Metastasis | 应用范围 Application | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
自发性肠道肿瘤模型 | 自发性 | C57BL、 BALB/c-nu小鼠 | - | - | 发生率极低 | 无 | 老龄化研究 | [ |
单纯饮食诱导 | C57BL/6小鼠 | - | - | 诱导时间长 | 无 | 饮食对肿瘤的影响 | [ | |
化合物诱导模型 | 致癌物诱导模型 | F344大鼠 | PhIP、IQ | Apc | PhIP诱导未发现Kras和Tp53基因突变 | 无 | 化合物预防和风险因素识别 | [ |
F344大鼠 | MNNG、MNU | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠 | DMBA | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠、A/J小鼠 | DMH、AOM | Apc、Kras | 诱导时间长,极少转移 | 无 | [ | |||
F344大鼠、ICR小鼠 | AOM/DSS | Apc、Kras | 极少转移 | 无 | [ | |||
移植瘤模型 | CDX模型 | BALB/c、C57BL/6小鼠 | C T26、MC38 | - | 不能准确反映人类CRC发病过程 | 可发生转移 | 发现新的肿瘤标志物,测试化合物,手术模型 | [ |
PDX模型 | 免疫缺陷小鼠、人源化小鼠 | HCT116、HT29、LIM1215、SW480、SW620 | - | 建立周期长(2~4个月),成本高,过程中存在发生突变的可能 | 可发生转移 | [ | ||
基因工程模型 | Apc突变相关模型 | Apcmin小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | 研究特定基因,化合物预防,风险因素识别 | [ |
ApcΔ716、ApcΔ14和Apc1638N小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | [ | |||
Apc CKO/LSL-Kras小鼠 | - | Apc、Kras | 肝转移 | [ | ||||
ApcminSmad3-/-、Apc∆716/+Smad4+/-小鼠 | - | Apc、Smad3或者Smad4 | 寿命短,缺乏转移 | 缺乏转移 | [ | |||
Apcfl/+p53fl/+、Apcfl/+p53R172H/+小鼠 | - | Apc、p53 | 缺乏转移 | 无 | [ | |||
iKAP小鼠 | - | Apc、Kras、p53 | 寿命短 | 肝和肺 | [ | |||
其他基因突变模型 | KrasG12DTgfbr2-/-小鼠 | - | Kras、Tgfbr2 | - | 12%~25%的小鼠肿瘤转移到局部淋巴结、胰腺或肺 | [ | ||
Vil-Cre;BrafV637E/+;p53LSL-R172H/+-/-小鼠 | - | BRAF、p53 | - | 15%转移到淋巴结和肺部 | [ | |||
HNPCC | Mlh1-/-、Msh2-/-、Msh6-/-小鼠 | - | - | 过早死于侵袭性淋巴瘤 | 无 | [ | ||
IBD-CRC | Il-10-/-、Il-2-/-、Muc2-/-小鼠 | - | - | 较低肿瘤发生率,受肠道菌群影响 | 无 | [ | ||
Apc突变模型 | Pirc:F344/NTac-Apcam1137大鼠 | - | Apc | 4个月自发肠道腺瘤,缺乏转移 | 无 | 化合物预防 | [69-70, 63] | |
Apc突变模型 | KAD大鼠 | - | Apc | 不自发肿瘤,经过AOM/DSS联合诱导发生肿瘤 | 无 | 化合物预防 | [ | |
Apc突变模型 | Apc1311猪 | - | Apc | 肠道肿瘤为腺瘤 | 无 | 转化医学研究 | [ |
表2 目前常用CRC动物模型的特点及应用范围汇总
Table 2 The summary of characteristics and applications of currently used CRC animal models
模型分类 Model classification | 诱导方式 Induction mode | 动物品种品系 Species | 涉及化合物 及细胞系 Relates to compounds and cell lines | 突变基因Mutant gene | 局限性 Limitation | 有无转移 Metastasis | 应用范围 Application | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
自发性肠道肿瘤模型 | 自发性 | C57BL、 BALB/c-nu小鼠 | - | - | 发生率极低 | 无 | 老龄化研究 | [ |
单纯饮食诱导 | C57BL/6小鼠 | - | - | 诱导时间长 | 无 | 饮食对肿瘤的影响 | [ | |
化合物诱导模型 | 致癌物诱导模型 | F344大鼠 | PhIP、IQ | Apc | PhIP诱导未发现Kras和Tp53基因突变 | 无 | 化合物预防和风险因素识别 | [ |
F344大鼠 | MNNG、MNU | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠 | DMBA | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠、A/J小鼠 | DMH、AOM | Apc、Kras | 诱导时间长,极少转移 | 无 | [ | |||
F344大鼠、ICR小鼠 | AOM/DSS | Apc、Kras | 极少转移 | 无 | [ | |||
移植瘤模型 | CDX模型 | BALB/c、C57BL/6小鼠 | C T26、MC38 | - | 不能准确反映人类CRC发病过程 | 可发生转移 | 发现新的肿瘤标志物,测试化合物,手术模型 | [ |
PDX模型 | 免疫缺陷小鼠、人源化小鼠 | HCT116、HT29、LIM1215、SW480、SW620 | - | 建立周期长(2~4个月),成本高,过程中存在发生突变的可能 | 可发生转移 | [ | ||
基因工程模型 | Apc突变相关模型 | Apcmin小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | 研究特定基因,化合物预防,风险因素识别 | [ |
ApcΔ716、ApcΔ14和Apc1638N小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | [ | |||
Apc CKO/LSL-Kras小鼠 | - | Apc、Kras | 肝转移 | [ | ||||
ApcminSmad3-/-、Apc∆716/+Smad4+/-小鼠 | - | Apc、Smad3或者Smad4 | 寿命短,缺乏转移 | 缺乏转移 | [ | |||
Apcfl/+p53fl/+、Apcfl/+p53R172H/+小鼠 | - | Apc、p53 | 缺乏转移 | 无 | [ | |||
iKAP小鼠 | - | Apc、Kras、p53 | 寿命短 | 肝和肺 | [ | |||
其他基因突变模型 | KrasG12DTgfbr2-/-小鼠 | - | Kras、Tgfbr2 | - | 12%~25%的小鼠肿瘤转移到局部淋巴结、胰腺或肺 | [ | ||
Vil-Cre;BrafV637E/+;p53LSL-R172H/+-/-小鼠 | - | BRAF、p53 | - | 15%转移到淋巴结和肺部 | [ | |||
HNPCC | Mlh1-/-、Msh2-/-、Msh6-/-小鼠 | - | - | 过早死于侵袭性淋巴瘤 | 无 | [ | ||
IBD-CRC | Il-10-/-、Il-2-/-、Muc2-/-小鼠 | - | - | 较低肿瘤发生率,受肠道菌群影响 | 无 | [ | ||
Apc突变模型 | Pirc:F344/NTac-Apcam1137大鼠 | - | Apc | 4个月自发肠道腺瘤,缺乏转移 | 无 | 化合物预防 | [69-70, 63] | |
Apc突变模型 | KAD大鼠 | - | Apc | 不自发肿瘤,经过AOM/DSS联合诱导发生肿瘤 | 无 | 化合物预防 | [ | |
Apc突变模型 | Apc1311猪 | - | Apc | 肠道肿瘤为腺瘤 | 无 | 转化医学研究 | [ |
1 | 张正杰, 程云章, 黄陈. 影像组学在结直肠癌诊疗中的应用及研究进展[J]. 生物医学工程研究, 2023, 42(1):96-99. DOI: 10.19529/j.cnki.1672-6278.2023.01.14 . |
ZHANG Z J, CHENG Y Z, HUANG C. Application and research progress of radiomics in the diagnosis and treatment of colorectal cancer[J]. J Biomed Eng Res, 2023, 42(1):96-99. DOI: 10.19529/j.cnki.1672-6278.2023.01.14 . | |
2 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660 . |
3 | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5):584-590. DOI: 10.1097/CM9.0000000000002108 . |
4 | WEITZ J, KOCH M, DEBUS J, et al. Colorectal cancer[J]. Lancet, 2005, 365(9454):153-165. DOI: 10.1016/s0140-6736(05)17706-x . |
5 | GAO X H, LI J, LIU L J, et al. Trends, clinicopathological features, surgical treatment patterns and prognoses of early-onset versus late-onset colorectal cancer: a retrospective cohort study on 34067 patients managed from 2000 to 2021 in a Chinese tertiary center[J]. Int J Surg, 2022, 104:106780. DOI: 10.1016/j.ijsu.2022.106780 . |
6 | SARAIVA M R, ROSA I, CLARO I. Early-onset colorectal cancer: a review of current knowledge[J]. World J Gastroenterol, 2023, 29(8):1289-1303. DOI: 10.3748/wjg.v29.i8.1289 . |
7 | BÜRTIN F, MULLINS C S, LINNEBACHER M. Mouse models of colorectal cancer: past, present and future perspectives[J]. World J Gastroenterol, 2020, 26(13):1394-1426. DOI: 10.3748/wjg.v26.i13.1394 . |
8 | MOSER A R, PITOT H C, DOVE W F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse[J]. Science, 1990, 247(4940):322-324. DOI: 10.1126/science.2296722 . |
9 | STASTNA M, JANECKOVA L, HRCKULAK D, et al. Human colorectal cancer from the perspective of mouse models[J]. Genes, 2019, 10(10):788. DOI: 10.3390/genes10100788 . |
10 | COLUSSI D, BRANDI G, BAZZOLI F, et al. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention[J]. Int J Mol Sci, 2013, 14(8):16365-16385. DOI: 10.3390/ijms140816365 . |
11 | 周雄, 胡明, 蒋栋铭, 等. 结直肠癌进展相关关键分子事件研究进展[J]. 肿瘤防治研究, 2023, 50(6): 609-615. DOI: 10.3971/j.issn.1000-8578.2023.22.1242 . |
ZHOU X, HU M, JIANG D M, et al. Research progress of key molecular events related to progression of colorectal cancer[J]. Cancer Res Prev Treat, 2023, 50(6): 609-615. DOI: 10.3971/j.issn.1000-8578.2023.22.1242 . | |
12 | DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207):1467-1480. DOI: 10.1016/S0140-6736(19)32319-0 . |
13 | CARBALLAL S, BALAGUER F, IJSPEERT J G. Serrated polyposis syndrome; epidemiology and management[J]. Best Pract Res Clin Gastroenterol, 2022, 58-59:101791. DOI: 10.1016/j.bpg.2022.101791 . |
14 | ZHOU Y J, LU X F, CHEN H M, et al. Single-cell transcriptomics reveals early molecular and immune alterations underlying the serrated neoplasia pathway toward colorectal cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(2):393-424. DOI: 10.1016/j.jcmgh.2022.10.001 . |
15 | CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA A Cancer J Clin, 2022, 72(4):372-401. DOI: 10.3322/caac.21728 . |
16 | JOHNSON R L, FLEET J C. Animal models of colorectal cancer[J]. Cancer Metastasis Rev, 2013, 32(1):39-61. DOI: 10.1007/s10555-012-9404-6 . |
17 | ANISIMOV V N, ZABEZHINSKI M A, ROSSOLINI G, et al. Long-live euthymic BALB/c-nu mice. II: spontaneous tumors and other pathologies[J]. Mech Ageing Dev, 2001, 122(5):477-489. DOI: 10.1016/s0047-6374(01)00228-7 . |
18 | NEWMARK H L, YANG K, KURIHARA N, et al. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer[J]. Carcinogenesis, 2009, 30(1):88-92. DOI: 10.1093/carcin/bgn229 . |
19 | YANG J, WEI H, ZHOU Y F, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites[J]. Gastroenterology, 2022, 162(1):135-149.e2. DOI: 10.1053/j.gastro.2021.08.041 . |
20 | SONG M Y, CHAN A T, SUN J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer[J]. Gastroenterology, 2020, 158(2):322-340. DOI: 10.1053/j.gastro.2019.06.048 . |
21 | DE ROBERTIS M, MASSI E, POETA M L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies[J]. J Carcinog, 2011, 10:9. DOI: 10.4103/1477-3163.78279 . |
22 | SUGIMURA T. Nutrition and dietary carcinogens[J]. Carcinogenesis, 2000, 21(3):387-395. DOI: 10.1093/carcin/21.3.387 . |
23 | MCLELLAN E A, BIRD R P. Specificity study to evaluate induction of aberrant crypts in murine colons[J]. Cancer Res, 1988, 48(21):6183-6186. |
24 | EVANS J P, SUTTON P A, WINIARSKI B K, et al. From mice to men: Murine models of colorectal cancer for use in translational research[J]. Crit Rev Oncol, 2016, 98:94-105. DOI: 10.1016/j.critrevonc.2015.10.009 . |
25 | NARISAWA T, MAGADIA NE, WEISBURGER J H, et al. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitroso-guanidine in rats[J]. J Natl Cancer Inst, 1974, 53(4):1093-1097. DOI: 10.1093/jnci/53.4.1093 . |
26 | NEUFERT C, BECKER C, NEURATH M F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression[J]. Nat Protoc, 2007, 2(8):1998-2004. DOI: 10.1038/nprot.2007.279 . |
27 | SEDLAK J C, YILMAZ Ö H, ROPER J. Metabolism and colorectal cancer[J]. Annu Rev Pathol, 2023, 18:467-492. DOI: 10.1146/annurev-pathmechdis-031521-041113 . |
28 | FERNÁNDEZ-PONCE C, GERIBALDI-DOLDÁN N, SÁNCHEZ-GOMAR I, et al. The role of glycosyltransferases in colorectal cancer[J]. Int J Mol Sci, 2021, 22(11):5822. DOI: 10.3390/ijms 22115822 . |
29 | LIANG X, HU J N, HE J M. An optimized protocol of azoxymethane-dextran sodium sulfate induced colorectal tumor model in mice[J]. Chin Med Sci J, 2019, 34(4):281-288. DOI: 10.24920/003495 . |
30 | TANAKA T, KOHNO H, SUZUKI R, et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate[J]. Cancer Sci, 2003, 94(11):965-973. DOI: 10.1111/j.1349-7006.2003.tb01386.x . |
31 | MODESTO R, ESTARREJA J, SILVA I, et al. Chemically induced colitis-associated cancer models in rodents for pharmacological modulation: A systematic review[J]. J Clin Med, 2022, 11(10):2739. DOI: 10.3390/jcm11102739 . |
32 | CORPET D E, PIERRE F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in Min mice and choice of the model system[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(5):391-400. |
33 | YANG Y S, LIU C Y, WEN D, et al. Recent advances in the development of transplanted colorectal cancer mouse models[J]. Transl Res, 2022, 249:128-143. DOI: 10.1016/j.trsl. 2022.07.003 . |
34 | LI C G, LAU H C H, ZHANG X, et al. Mouse models for application in colorectal cancer: understanding the pathogenesis and relevance to the human condition[J]. Biomedicines, 2022, 10(7):1710. DOI: 10.3390/biomedicines 10071710 . |
35 | RODRIGUEZ R, RITTER M A, FOWLER J F, et al. Kinetics of cell labeling and thymidine replacement after continuous infusion of halogenated pyrimidines in vivo [J]. Int J Radiat Oncol Biol Phys, 1994, 29(1):105-113. DOI: 10.1016/0360-3016(94)90232-1 . |
36 | BELLAMKONDA K, SATAPATHY S R, DOUGLAS D, et al. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer[J]. Cancer Lett, 2018, 437:13-24. DOI: 10.1016/j.canlet.2018.08.019 . |
37 | BERNHARD O K, GREENING D W, BARNES T W, et al. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma[J]. Biochim Biophys Acta, 2013, 1834(11):2372-2379. DOI: 10.1016/j.bbapap.2013.03.022 . |
38 | FLATMARK K, MAELANDSMO G M, MARTINSEN M, et al. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice[J]. Eur J Cancer, 2004, 40(10):1593-1598. DOI: 10.1016/j.ejca.2004.02.023 . |
39 | CÉSPEDES M V, ESPINA C, GARCÍA-CABEZAS M A, et al. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites[J]. Am J Pathol, 2007, 170(3):1077-1085. DOI: 10.2353/ajpath.2007.060773 . |
40 | AHMED D, EIDE P W, EILERTSEN I A, et al. Epigenetic and genetic features of 24 colon cancer cell lines[J]. Oncogenesis, 2013, 2(9): e71. DOI: 10.1038/oncsis.2013.35 . |
41 | GAYET J, ZHOU X P, DUVAL A, et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines[J]. Oncogene, 2001, 20(36):5025-5032. DOI: 10.1038/sj.onc.1204611 . |
42 | KOUSTAS E, SARANTIS P, THEOHARIS S, et al. Autophagy-related proteins as a prognostic factor of patients with colorectal cancer[J]. Am J Clin Oncol, 2019, 42(10):767-776. DOI: 10.1097/coc.0000000000000592 . |
43 | KOUMAKI K, KONTOGIANNI G, KOSMIDOU V, et al. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4):166061. DOI: 10.1016/j.bbadis.2020.166061 . |
44 | RIOS-DORIA J, STEVENS C, MADDAGE C, et al. Characterization of human cancer xenografts in humanized mice[J]. J Immunother Cancer, 2020, 8(1): e000416. DOI: 10.1136/jitc-2019-000416 . |
45 | CASTLE J C, LOEWER M, BOEGEL S, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma[J]. BMC Genomics, 2014, 15(1):190. DOI: 10.1186/1471-2164-15-190 . |
46 | RIVERA M, FICHTNER I, WULF-GOLDENBERG A, et al. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine[J]. Neoplasia, 2021, 23(1):21-35. DOI: 10.1016/j.neo.2020.11.005 . |
47 | ZHAO X F, JIANG Y H, LIU C L, et al. Organoid technology and clinical applications in digestive system cancer[J]. Engineering, 2022, 9:123-130. DOI: 10.1016/j.eng.2021.04.017 . |
48 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. DOI: 10.1038/nature07935 . |
49 | SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. DOI: 10.1053/j.gastro. 2011.07.050 . |
50 | DROST J, VAN JAARSVELD R H, PONSIOEN B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47. DOI: 10.1038/nature14415 . |
51 | PAULI C, HOPKINS B D, PRANDI D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5):462-477. DOI: 10.1158/2159-8290.CD-16-1154 . |
52 | PONSIOEN B, POST J B, BUISSANT DES AMORIE J R, et al. Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling[J]. Nat Cell Biol, 2021, 23(4):377-390. DOI: 10.1038/s41556-021-00654-5 . |
53 | GOBERT A P, LATOUR Y L, ASIM M, et al. Protective role of spermidine in colitis and colon carcinogenesis[J]. Gastroenterology, 2022, 162(3):813-827.e8. DOI: 10.1053/j.gastro.2021.11.005 . |
54 | BAYDI Z, LIMAMI Y, KHALKI L, et al. An update of research animal models of inflammatory bowel disease[J]. Sci World J, 2021, 2021:7479540. DOI: 10.1155/2021/7479540 . |
55 | MIYOSHI Y, ANDO H, NAGASE H, et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients[J]. Proc Natl Acad Sci USA, 1992, 89(10):4452-4456. DOI: 10.1073/pnas.89.10.4452 . |
56 | KUCHERLAPATI M H. Mouse models in colon cancer, inferences, and implications[J]. iScience, 2023, 26(6):106958. DOI: 10.1016/j.isci.2023.106958 . |
57 | MULLER P A J, CASWELL P T, DOYLE B, et al. Mutant p53 drives invasion by promoting integrin recycling[J]. Cell, 2009, 139(7):1327-1341. DOI: 10.1016/j.cell.2009.11.026 . |
58 | SANSOM O J, MENIEL V, WILKINS J A, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo [J]. Proc Natl Acad Sci USA, 2006, 103(38):14122-14127. DOI: 10.1073/pnas.0604130103 . |
59 | ROMANO G, CHAGANI S, KWONG L N. The path to metastatic mouse models of colorectal cancer[J]. Oncogene, 2018, 37(19):2481-2489. DOI: 10.1038/s41388-018-0155-x . |
60 | HUNG K E, MARICEVICH M A, RICHARD L G, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment[J]. Proc Natl Acad Sci USA, 2010, 107(4):1565-1570. DOI: 10.1073/pnas. 0908682107 . |
61 | BOUTIN A T, LIAO W T, WANG M, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer[J]. Genes Dev, 2017, 31(4):370-382. DOI: 10.1101/gad.293449.116 . |
62 | RAD R, CADIÑANOS J, RAD L. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention[J]. Cancer Cell, 2013, 24(1):15-29. DOI: 10.1016/j.ccr.2013.05.014 . |
63 | TROBRIDGE P, KNOBLAUGH S, WASHINGTON M K, et al. TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway[J]. Gastroenterology, 2009, 136(5):1680-1688.e7. DOI: 10.1053/j.gastro.2009.01.066 . |
64 | TONG Y G, YANG W C, KOEFFLER H P. Mouse models of colorectal cancer[J]. Chin J Cancer, 2011, 30(7):450-462. DOI: 10.5732/cjc.011.10041 . |
65 | VELCICH A, YANG W C, HEYER J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2[J]. Science, 2002, 295(5560):1726-1729. DOI: 10.1126/science.1069094 . |
66 | VAN DER KRAAK L, GROS P, BEAUCHEMIN N. Colitis-associated colon cancer: is it in your genes?[J]. World J Gastroenterol, 2015, 21(41):11688-11699. DOI: 10.3748/wjg.v21.i41.11688 . |
67 | BRISTOL I J, FARMER M A, CONG Y Z, et al. Heritable susceptibility for colitis in mice induced by IL-10 deficiency[J]. Inflamm Bowel Dis, 2000, 6(4):290-302. DOI: 10.1097/00054725-200011000-00006 . |
68 | TAKEDA H, WEI Z B, KOSO H, et al. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression[J]. Nat Genet, 2015, 47(2):142-150. DOI: 10.1038/ng.3175 . |
69 | FEMIA A P, BECHERUCCI C, CRUCITTA S, et al. Apc-driven colon carcinogenesis in Pirc rat is strongly reduced by polyethylene glycol[J]. Int J Cancer, 2015, 137(9):2270-2273. DOI: 10.1002/ijc.29581 . |
70 | AMOS-LANDGRAF J M, KWONG L N, KENDZIORSKI C M, et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer[J]. Proc Natl Acad Sci USA, 2007, 104(10):4036-4041. DOI: 10.1073/pnas. 0611690104 . |
71 | IRVING A A, YOSHIMI K, HART M L, et al. The utility of Apc-mutant rats in modeling human colon cancer[J]. Dis Model Mech, 2014, 7(11):1215-1225. DOI: 10.1242/dmm.016980 . |
72 | KALLA D, KIND A, SCHNIEKE A. Genetically engineered pigs to study cancer[J]. Int J Mol Sci, 2020, 21(2):488. DOI: 10.3390/ijms21020488 . |
73 | FLISIKOWSKA T, MERKL C, LANDMANN M, et al. A Porcine model of familial adenomatous polyposis[J]. Gastroenterology, 2012, 143(5):1173-1175.e7. DOI: 10.1053/j.gastro.2012.07.110 . |
74 | LI H H, CHENG W M, CHEN B W, et al. Efficient generation of P53 biallelic mutations in Diannan miniature pigs using RNA-guided base editing[J]. Life (Basel), 2021, 11(12):1417. DOI: 10.3390/life11121417 . |
75 | CALLESEN M M, ÁRNADÓTTIR S S, LYSKJÆR I, et al. A genetically inducible porcine model of intestinal cancer[J]. Mol Oncol, 2017, 11(11):1616-1629. DOI: 10.1002/1878-0261. 12136 . |
76 | TOBIA C, GARIANO G, DE SENA G, et al. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk[J]. Biochim Biophys Acta, 2013, 1832(9):1371-1377. DOI: 10.1016/j.bbadis. 2013.01.016 . |
77 | LOBERT V H, MOURADOV D, HEATH J K. Focusing the spotlight on the zebrafish intestine to illuminate mechanisms of colorectal cancer[J]. Adv Exp Med Biol, 2016, 916:411-437. DOI: 10.1007/978-3-319-30654-4_18 . |
78 | MARADONNA F, FONTANA C M, SELLA F, et al. A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer[J]. Cell Death Dis, 2022, 13(12):1069. DOI: 10.1038/s41419-022-05523-z . |
79 | HUEBNER K, ERLENBACH-WUENSCH K, PROCHAZKA J, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2[J]. Cell Mol Life Sci, 2022, 79(8):423. DOI: 10.1007/s00018-022-04445-5 . |
80 | JACKSTADT R, SANSOM O J. Mouse models of intestinal cancer[J]. J Pathol, 2016, 238(2):141-151. DOI: 10.1002/path. 4645 . |
81 | KAKIUCHI H, WATANABE M, USHIJIMA T, et al. Specific 5'-GGGA-3'-->5'-GGA-3' mutation of the Apc gene in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine[J]. Proc Natl Acad Sci USA, 1995, 92(3):910-914. DOI: 10.1073/pnas.92.3.910 . |
[1] | 包方奇, 屠海烨, 方明笋, 张倩, 陈民利. 基于动物模型的高尿酸肾病病理及分子机制研究进展[J]. 实验动物与比较医学, 2024, 44(2): 180-191. |
[2] | 张莉, 匡宇, 韩凌霞. 人与其他动物椎间盘解剖和组织学结构的比较医学研究进展[J]. 实验动物与比较医学, 2024, 44(2): 192-201. |
[3] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[4] | . 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[5] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[6] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[7] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[8] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[9] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[10] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[11] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[12] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[13] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[14] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[15] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||