实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (4): 381-397.DOI: 10.12300/j.issn.1674-5817.2023.048
收稿日期:
2023-04-07
修回日期:
2023-05-28
出版日期:
2023-08-25
发布日期:
2023-09-14
通讯作者:
庄乐南(1983—),男,博士,研究员,研究方向:心血管疾病。E-mail: zhuangln@zju.edu.cn。ORCID:0000-0001-9561-8396作者简介:
俞佳慧(2001—),女,本科生,专业方向:动物医学专业。E-mail: 3190101359@zju.edu.cn
基金资助:
Jiahui YU1, Qian GONG1, Lenan ZHUANG1,2,3()()
Received:
2023-04-07
Revised:
2023-05-28
Published:
2023-08-25
Online:
2023-09-14
Contact:
ZHUANG Lenan (ORCID: 0000-0001-9561-8396), E-mail: zhuangln@zju.edu.cn摘要:
肺动脉高压是一种由肺血管重构引起血管阻力增大的临床综合征,若不治疗将导致右心衰竭,甚至死亡。目前关于肺动脉高压的病理机制尚未明确,且临床治疗方法未能有效改善预后或降低死亡率。为了深入研究肺动脉高压的发病机制并开发更加安全有效的药物,建立合适的疾病动物模型在临床前研究中必不可少。本文概述了肺动脉高压的病理特征,并总结了各类肺动脉高压动物模型,同时阐述了近5年内肺动脉高压动物模型在3种治疗途径及相关药物研究中的应用进展,以期为肺动脉高压动物模型的选择和研究应用提供参考。
中图分类号:
俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397.
Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397.
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱 Monocrotaline (MCT) | SD大鼠 | 单次皮下注射/腹腔注射MCT(60~80 mg/kg)。造模时间为3~4周 | 操作简便,可重复,成本低。mPAP升高、PVR升高、右心室肥大、中膜肥厚,主要用于炎症相关的PAH研究[ | 实验性治疗效果过度改善(出现逆转);倾向死于MCT综合征(肺间质水肿、心肌炎、肝小静脉闭塞症),病理终点与人类肺高压无关;无严重的血管闭塞性病变(丛状病变和内膜增生);疾病进展为死亡的时间可能太短,无法形成代偿机制 | PAH (Group 1) |
慢性低氧 Chronic hypoxia | SD、FH 大鼠 | 低压氧舱10%供氧量或者380 mmHg低压环境暴露。造模时间为3~4周 | 可重复性好,造模时间3~4周,FH大鼠可诱导重度肺高压 | 无严重的血管闭塞性病变(丛状病变和内膜增生);该模型在常氧下可逆;低氧舱设备昂贵;对低氧的反应受动物年龄影响;低氧肺结构的改变受多种因素影响(不仅是低氧);属于轻/中度肺高压,与低氧所致的肺高压相关(第三类肺高压) | 肺部疾病/低氧所致的肺高压(Group 3) |
分流手术 Shunt surgery | SD大鼠/ 仔猪 | SPS型主动脉-肺动脉吻合术[ | 可模拟先天性心脏病相关的PAH病理变化,大动物模型具有独特优势 | 手术操作复杂,造模技术难度大;动物术后死亡率较高;难以确定增加的血流量,手术风险高,并发症多;大动物饲养成本高;造模时间相对较长 | CHD-PAH (Group 1) |
肺动脉环缩手术 Pulmonary arterial banding | SD大鼠 | 通过左侧开胸从主动脉分离肺动脉,并沿肺动脉放置18号针头,针头和肺动脉周围紧紧捆绑一根丝线,将针取出以产生与针直径成正比的固定肺动脉收缩[ | 不影响肺血管情况下产生右心室重构和功能障碍 | 操作较复杂,技术要求较高;可作为右心衰竭模型,但不会出现肺血管重构和PAH;动物术后死亡率相对高 | 右心衰竭(PAH晚期症状) |
表1 常见的单因素病理损伤肺动脉高压动物模型的特点归纳
Table 1 Summary of characteristics of single pathological injury- induced pulmonary arterial hypertension (PAH) models
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱 Monocrotaline (MCT) | SD大鼠 | 单次皮下注射/腹腔注射MCT(60~80 mg/kg)。造模时间为3~4周 | 操作简便,可重复,成本低。mPAP升高、PVR升高、右心室肥大、中膜肥厚,主要用于炎症相关的PAH研究[ | 实验性治疗效果过度改善(出现逆转);倾向死于MCT综合征(肺间质水肿、心肌炎、肝小静脉闭塞症),病理终点与人类肺高压无关;无严重的血管闭塞性病变(丛状病变和内膜增生);疾病进展为死亡的时间可能太短,无法形成代偿机制 | PAH (Group 1) |
慢性低氧 Chronic hypoxia | SD、FH 大鼠 | 低压氧舱10%供氧量或者380 mmHg低压环境暴露。造模时间为3~4周 | 可重复性好,造模时间3~4周,FH大鼠可诱导重度肺高压 | 无严重的血管闭塞性病变(丛状病变和内膜增生);该模型在常氧下可逆;低氧舱设备昂贵;对低氧的反应受动物年龄影响;低氧肺结构的改变受多种因素影响(不仅是低氧);属于轻/中度肺高压,与低氧所致的肺高压相关(第三类肺高压) | 肺部疾病/低氧所致的肺高压(Group 3) |
分流手术 Shunt surgery | SD大鼠/ 仔猪 | SPS型主动脉-肺动脉吻合术[ | 可模拟先天性心脏病相关的PAH病理变化,大动物模型具有独特优势 | 手术操作复杂,造模技术难度大;动物术后死亡率较高;难以确定增加的血流量,手术风险高,并发症多;大动物饲养成本高;造模时间相对较长 | CHD-PAH (Group 1) |
肺动脉环缩手术 Pulmonary arterial banding | SD大鼠 | 通过左侧开胸从主动脉分离肺动脉,并沿肺动脉放置18号针头,针头和肺动脉周围紧紧捆绑一根丝线,将针取出以产生与针直径成正比的固定肺动脉收缩[ | 不影响肺血管情况下产生右心室重构和功能障碍 | 操作较复杂,技术要求较高;可作为右心衰竭模型,但不会出现肺血管重构和PAH;动物术后死亡率相对高 | 右心衰竭(PAH晚期症状) |
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱-全肺切除术 MCT- PNT | SD大鼠[ | 左侧全肺切除术[ | 可模拟重度PAH,具有新生内膜形成和丛状病变的病理特点 | 操作较复杂,造模难度大,动物死亡率高;可能出现血管周围增生性病变 | PAH (Group 1) |
野百合碱-分流 MCT-shunt | Lewis/Wistar[ SD大鼠[ | MCT诱导处理后采用主动脉腔静脉分流[ | 触发疾病的病理生理,具有新生内膜病变与右心室衰竭的特征;具有阶段性进行性病理变化 | 手术难度大、风险高,术后死亡率高、并发症多;大动物饲养成本高;无法实现体内分流关闭 | CHD-PAH (Group 1) |
Sugen5416-低氧 Sugen5416-hypoxia | SD大鼠 | 单次皮下注射Sugen(20 mg/kg)后进行3~4周低氧暴露(10%氧气),再恢复常氧3~5周 | 可诱导重度PAH,出现丛样病变和右心室衰竭;该模型置于常氧后不会出现逆转;病变器官局限于肺部 | 血管周围未出现炎性细胞(巨噬/单核细胞)浸润;仅少数基因的表达与人类患者肺部变化相同;物种间(大鼠和小鼠)、品系间(Fischer大鼠和SD大鼠)实验性PAH的差异较大 | PAH (Group 1) |
野百合碱-低氧 MCT-hypoxia | SD大鼠 | 单次皮下注射MCT(60 mg/kg)后暴露于低氧环境中3~4周左右 | 操作简单,造模时间较短;出现重度PAH的组织学病理特征;具有炎性反应(巨噬细胞浸润)、血栓形成的特点[ | 物种间造模效果差异较大,目前主要选择SD大鼠;目前研究应用较少 | PAH (Group 1) |
表2 常见的多因素病理损伤肺动脉高压动物模型的特点归纳
Table 2 Summary of characteristics of multifactorial pathological injury- induced pulmonary arterial hypertension (PAH) models
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱-全肺切除术 MCT- PNT | SD大鼠[ | 左侧全肺切除术[ | 可模拟重度PAH,具有新生内膜形成和丛状病变的病理特点 | 操作较复杂,造模难度大,动物死亡率高;可能出现血管周围增生性病变 | PAH (Group 1) |
野百合碱-分流 MCT-shunt | Lewis/Wistar[ SD大鼠[ | MCT诱导处理后采用主动脉腔静脉分流[ | 触发疾病的病理生理,具有新生内膜病变与右心室衰竭的特征;具有阶段性进行性病理变化 | 手术难度大、风险高,术后死亡率高、并发症多;大动物饲养成本高;无法实现体内分流关闭 | CHD-PAH (Group 1) |
Sugen5416-低氧 Sugen5416-hypoxia | SD大鼠 | 单次皮下注射Sugen(20 mg/kg)后进行3~4周低氧暴露(10%氧气),再恢复常氧3~5周 | 可诱导重度PAH,出现丛样病变和右心室衰竭;该模型置于常氧后不会出现逆转;病变器官局限于肺部 | 血管周围未出现炎性细胞(巨噬/单核细胞)浸润;仅少数基因的表达与人类患者肺部变化相同;物种间(大鼠和小鼠)、品系间(Fischer大鼠和SD大鼠)实验性PAH的差异较大 | PAH (Group 1) |
野百合碱-低氧 MCT-hypoxia | SD大鼠 | 单次皮下注射MCT(60 mg/kg)后暴露于低氧环境中3~4周左右 | 操作简单,造模时间较短;出现重度PAH的组织学病理特征;具有炎性反应(巨噬细胞浸润)、血栓形成的特点[ | 物种间造模效果差异较大,目前主要选择SD大鼠;目前研究应用较少 | PAH (Group 1) |
1 | SCHERMULY R T, GHOFRANI H A, WILKINS M R, et al. Mechanisms of disease: pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2011, 8(8):443-455. DOI: 10.1038/nrcardio.2011.87 . |
2 | HUMBERT M, GUIGNABERT C, BONNET S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives[J]. Eur Respir J, 2019, 53(1):1801887. DOI: 10.1183/13993003.01887-2018 . |
3 | STENMARK K R, MEYRICK B, GALIE N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1013-L1032. DOI: 10.1152/ajplung.00217.2009 . |
4 | SOUTHGATE L, MACHADO R D, GRÄF S, et al. Molecular genetic framework underlying pulmonary arterial hyper-tension[J]. Nat Rev Cardiol, 2020, 17(2):85-95. DOI: 10.1038/s41569-019-0242-x . |
5 | LAU E M T, GIANNOULATOU E, CELERMAJER D S, et al. Epidemiology and treatment of pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2017, 14(10):603-614. DOI: 10.1038/nrcardio.2017.84 . |
6 | HASSOUN P M. Pulmonary arterial hypertension[J]. N Engl J Med, 2021, 385(25):2361-2376. DOI: 10.1056/NEJMra2000348 . |
7 | RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14):1379-1391. DOI: 10.1001/jama.2022.4402 . |
8 | HUETSCH J C, SURESH K, BERNIER M, et al. Update on novel targets and potential treatment avenues in pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(5):L811-L831. DOI: 10.1152/ajplung.00302.2016 . |
9 | SZTUKA K, JASIŃSKA-STROSCHEIN M. Animal models of pulmonary arterial hypertension: a systematic review and meta-analysis of data from 6126 animals[J]. Pharmacol Res, 2017, 125(Pt B):201-214. DOI: 10.1016/j.phrs.2017.08.003 . |
10 | MAARMAN G, LECOUR S, BUTROUS G, et al. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet?[J]. Pulm Circ, 2013, 3(4):739-756. DOI: 10.1086/674770 . |
11 | BISSERIER M, MATHIYALAGAN P, ZHANG S H, et al. Regulation of the methylation and expression levels of the BMPR2 gene by SIN3a as a novel therapeutic mechanism in pulmonary arterial hypertension[J]. Circulation, 2021, 144(1):52-73. DOI: 10.1161/CIRCULATIONAHA.120.047978 . |
12 | XIAO R, SU Y, FENG T, et al. Monocrotaline induces endothelial injury and pulmonary hypertension by targeting the extracellular calcium-sensing receptor[J]. J Am Heart Assoc, 2017, 6(4):e004865. DOI: 10.1161/JAHA.116.004865 . |
13 | CHEN D, ZHANG H F, YUAN T Y, et al. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models[J]. Acta Pharmacol Sin, 2022, 43(9):2325-2339. DOI: 10.1038/s41401-022-00865-y . |
14 | SU H, XU X L, YAN C, et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension[J]. Respir Res, 2018, 19(1):254. DOI: 10.1186/s12931-018-0956-z . |
15 | OMURA J, HABBOUT K, SHIMAUCHI T, et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension[J]. Circulation, 2020, 142(15):1464-1484. DOI: 10.1161/CIRCULATIONAHA.120.047626 . |
16 | WU X H, MA J L, DING D, et al. Experimental animal models of pulmonary hypertension: development and challenges[J]. Animal Model Exp Med, 2022, 5(3):207-216. DOI: 10.1002/ame2.12220 . |
17 | YAMAZATO Y, YAMAZATO M, ISHIDA A, et al. Intratracheal administration of autologous bone marrow-derived cells ameliorates monocrotaline-induced pulmonary vessel remodeling and lung inflammation in rats[J]. Lung, 2018, 196(2):147-155. DOI: 10.1007/s00408-017-0075-5 . |
18 | CARMAN B L, PREDESCU D N, MACHADO R, et al. Plexiform arteriopathy in rodent models of pulmonary arterial hypertension[J]. Am J Pathol, 2019, 189(6):1133-1144. DOI: 10.1016/j.ajpath.2019.02.005 . |
19 | DIGNAM J P, SCOTT T E, KEMP-HARPER B K, et al. Animal models of pulmonary hypertension: getting to the heart of the problem[J]. Br J Pharmacol, 2022, 179(5):811-837. DOI: 10.1111/bph.15444 . |
20 | BOUCHERAT O, AGRAWAL V, LAWRIE A, et al. The latest in animal models of pulmonary hypertension and right ventricular failure[J]. Circ Res, 2022, 130(9):1466-1486. DOI: 10.1161/CIRCRESAHA.121.319971 . |
21 | RYAN J, BLOCH K, ARCHER S L. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH[J]. Int J Clin Pract Suppl, 2011(172):15-34. DOI: 10.1111/j.1742-1241.2011.02710.x . |
22 | REHMAN J, ARCHER S L. A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2010, 661: 171-185. DOI:10.1007/978-1-60761-500-2_11 . |
23 | ARCHER S L, MARSBOOM G, KIM G H, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target[J]. Circulation, 2010, 121(24):2661-2671. DOI: 10.1161/CIRCULATIONAHA. 109.916098 . |
24 | PIAO L, SIDHU V K, FANG Y H, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate[J]. J Mol Med, 2013, 91(3):333-346. DOI: 10.1007/s00109-012-0982-0 . |
25 | BOUCHERAT O, PETERLINI T, BOURGEOIS A, et al. Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2018, 198(1):90-103. DOI: 10.1164/rccm.201708-1751OC . |
26 | ZHANG M J, FENG Z Y, HUANG R, et al. Characteristics of pulmonary vascular remodeling in a novel model of shunt-associated pulmonary arterial hypertension[J]. Med Sci Monit, 2018, 24:1624-1632. DOI: 10.12659/msm.905654 . |
27 | WANG L P, GUO L L, ZHU L M, et al. Characteristics of pulmonary vascular remodeling in a porcine model of shunt-associated pulmonary arterial hypertension[J]. Pediatr Cardiol, 2020, 41(4):669-676. DOI: 10.1007/s00246-019-02275-0 . |
28 | JIANG Y Y, HE G W. Early diagnostic features of left-to-right shunt-induced pulmonary arterial hypertension in piglets[J]. Ann Thorac Surg, 2018, 106(5):1396-1405. DOI: 10.1016/j.athoracsur.2018.05.052 . |
29 | MENG L K, TENG X, LIU Y, et al. Vital roles of gremlin-1 in pulmonary arterial hypertension induced by systemic-to-pulmonary shunts[J]. J Am Heart Assoc, 2020, 9(15):e016586. DOI: 10.1161/jaha.120.016586 . |
30 | MENG L K, YUAN W, CHI H J, et al. Genetic deletion of CMG2 exacerbates systemic-to-pulmonary shunt-induced pulmonary arterial hypertension[J]. FASEB J, 2021, 35(4):e21421. DOI: 10.1096/fj.202000299R . |
31 | WANG K, CHEN C S, MA J F, et al. Contribution of calcium-activated chloride channel to elevated pulmonary artery pressure in pulmonary arterial hypertension induced by high pulmonary blood flow[J]. Int J Clin Exp Pathol, 2015, 8(1):146-154. |
32 | GARCIA R, DIEBOLD S. Simple, rapid, and effective method of producing aortocaval shunts in the rat[J]. Cardiovasc Res, 1990, 24(5):430-432. DOI: 10.1093/cvr/24.5.430 . |
33 | SHANG L F, WANG K, LIU D L, et al. TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model[J]. Exp Ther Med, 2020, 19(5):3275-3281. DOI: 10.3892/etm.2020.8589 . |
34 | LIU D L, WANG K, SU D Y, et al. TMEM16A regulates pulmonary arterial smooth muscle cells proliferation via p38MAPK/ERK pathway in high pulmonary blood flow-induced pulmonary arterial hypertension[J]. J Vasc Res, 2020, 58(1):27-37. DOI: 10.1159/000511267 . |
35 | LIU X Y, MENG L K, YUAN W, et al. Evidence for ANTXR2 as a therapeutic target on systemic-to-pulmonary shunt induced pulmonary arterial hypertension[J]. Eur Heart J, 2019, 40 ():ehz746.0733. DOI: 10.1093/eurheartj/ehz746.0733 . |
36 | GUAN H, YANG X F, SHI T, et al. CTRP9 mitigates the progression of arteriovenous shunt-induced pulmonary artery hypertension in rats[J]. Cardiovasc Ther, 2021, 2021:4971300. DOI: 10.1155/2021/4971300 . |
37 | SHIMAUCHI T, BOUCHERAT O, YOKOKAWA T, et al. PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension[J]. JACC Basic Transl Sci, 2022, 7(4):384-403. DOI: 10.1016/j.jacbts.2022.01.005 . |
38 | AKAZAWA Y, OKUMURA K, ISHII R, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension[J]. J Appl Physiol (1985), 2020, 129(2):238-246. DOI: 10.1152/japplphysiol.00148.2020 . |
39 | MENG L K, LIU X Y, ZHENG Z, et al. Original rat model of high kinetic unilateral pulmonary hypertension surgically induced by combined surgery[J]. J Thorac Cardiovasc Surg, 2013, 146(5):1220-1226.e1. DOI: 10.1016/j.jtcvs.2013.01.018 . |
40 | LACHANT D J, MEOLI D F, HAIGHT D, et al. Low dose monocrotaline causes a selective pulmonary vascular lesion in male and female pneumonectomized rats[J]. Exp Lung Res, 2018, 44(1):51-61. DOI: 10.1080/01902148.2017.1422157 . |
41 | KATZ M G, FARGNOLI A S, GUBARA S M, et al. The left pneumonectomy combined with monocrotaline or sugen as a model of pulmonary hypertension in rats[J]. J Vis Exp, 2019(145):10.3791/59050. DOI: 10.3791/59050 . |
42 | BISSERIER M, BOUCHERAT O, BONNET S, et al. Intra-airway gene delivery for pulmonary hypertension in rodent models[J]. Methods Mol Biol, 2022, 2573:263-278. DOI: 10.1007/978-1-0716-2707-5_20 . |
43 | YAN J, SHEN Y, WANG Y, et al. Increased expression of hypoxia-inducible factor-1α in proliferating neointimal lesions in a rat model of pulmonary arterial hypertension[J]. Am J Med Sci, 2013, 345(2):121-128. DOI: 10.1097/MAJ.0b013e31824cf5a2 . |
44 | DUAN Y, WANG T, WU S S, et al. The role of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway in the pulmonary vascular remodeling of pulmonary arterial hypertension in rats[J]. ScienceAsia, 2023, 49(1):56. DOI: 10.2306/scienceasia1513-1874.2023.130 . |
45 | MEDARAMETLA V, FESTIN S, SUGARRAGCHAA C, et al. PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension[J]. Pulm Circ, 2014, 4(1):82-102. DOI: 10.1086/674881 . |
46 | SITAPARA R, SLEE D, SALTER-CID L, et al. Abstract 12947: In vivo efficacy of a novel, inhaled Pdgfra/b inhibitor, Gb002, in the rat monocrotaline and pneumonectomy model of pulmonary arterial hypertension[J]. Circulation, 2019, 140(): A12947. DOI:10.1161/circ.140.suppl_1.12947 . |
47 | BISSERIER M, KATZ M G, BUENO-BETI C, et al. Combination therapy with STAT3 inhibitor enhances SERCA2a-induced BMPR2 expression and inhibits pulmonary arterial hypertension[J]. Int J Mol Sci, 2021, 22(17):9105. DOI: 10.3390/ijms22179105 . |
48 | VAN DER FEEN D E, WEIJ M, SMIT-VAN OOSTEN A, et al. Shunt surgery, right heart catheterization, and vascular morphometry in a rat model for flow-induced pulmonary arterial hypertension[J]. J Vis Exp, 2017(120):55065. DOI: 10.3791/55065 . |
49 | VAN DER FEEN D E, KURAKULA K, TREMBLAY E, et al. Multicenter preclinical validation of BET inhibition for the treatment of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2019, 200(7):910-920. DOI: 10.1164/rccm.201812-2275OC . |
50 | VAN DER FEEN D E, BOSSERS G P L, HAGDORN Q A J, et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension[J]. Sci Transl Med, 2020, 12(554):eaaw4974. DOI: 10.1126/scitranslmed.aaw4974 . |
51 | ALAMRI A K, SHELBURNE N J, MAYEUX J D, et al. Pulmonary hypertension association's 2022 international conference scientific Sessions overview[J]. Pulm Circ, 2023, 13(1):e12182. DOI: 10.1002/pul2.12182 . |
52 | ZHOU J J, LI H, QIAN Y L, et al. Nestin represents a potential marker of pulmonary vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease[J]. J Mol Cell Cardiol, 2020, 149:41-53. DOI: 10.1016/j.yjmcc.2020.09.005 . |
53 | ZHOU J J, LI H, LI L, et al. CYLD mediates human pulmonary artery smooth muscle cell dysfunction in congenital heart disease-associated pulmonary arterial hypertension[J]. J Cell Physiol, 2021, 236(9):6297-6311. DOI: 10.1002/jcp.30298 . |
54 | ZHOU J J, YANG J, LI L, et al. Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt-related pulmonary arterial hypertension[J]. ESC Heart Fail, 2022, 9(5):3407-3417. DOI: 10.1002/ehf2.14080 . |
55 | ZHOU J J. Synemin promotes pulmonary artery smooth muscle cell phenotypic switch in shunt-induced pulmonary arterial hypertension[J]. ESC Heart Fail, 2022, 9(5):3221-3231. DOI: 10.1002/ehf2.14048 . |
56 | ZHOU J J, LI F R, YANG Y C. Protective effects of calcyclin-binding protein against pulmonary vascular remodeling in flow-associated pulmonary arterial hypertension[J]. Respir Res, 2022, 23(1):223. DOI: 10.1186/s12931-022-02137-z . |
57 | TARASEVICIENE-STEWART L, KASAHARA Y, ALGER L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension[J/OL]. FASEB J, 2001, 15(2): 427-438. DOI:10.1096/fj.00-0343com . |
58 | HURST L A, DUNMORE B J, LONG L, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling[J]. Nat Commun, 2017, 8:14079. DOI: 10.1038/ncomms14079 . |
59 | WU Z H, ZHU L, NIE X R, et al. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner[J]. Exp Mol Med, 2023, 55(1):183-195. DOI: 10.1038/s12276-022-00920-y . |
60 | SHEN H, ZHANG J, WANG C, et al. MDM2-mediated ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension[J]. Circulation, 2020, 142(12):1190-1204. DOI: 10.1161/CIRCULATIONAHA.120.048191 . |
61 | CLEMENTS R T, VANG A, FERNANDEZ-NICOLAS A, et al. Treatment of pulmonary hypertension with angiotensin II receptor blocker and neprilysin inhibitor sacubitril/valsartan[J]. Circ Heart Fail, 2019, 12(11):e005819. DOI: 10.1161/CIRCHEARTFAILURE.119.005819 . |
62 | BAO C L, HE Q, WANG H, et al. Artemisinin and its derivate alleviate pulmonary hypertension and vasoconstriction in rodent models[J]. Oxid Med Cell Longev, 2022, 2022:2782429. DOI: 10.1155/2022/2782429 . |
63 | JIA D L, BAI P Y, WAN N F, et al. Niacin attenuates pulmonary hypertension through H-PGDS in macrophages[J]. Circ Res, 2020, 127(10):1323-1336. DOI: 10.1161/CIRCRESAHA.120.316784 . |
64 | WANG L N, ZHANG X Y, CAO Y P, et al. Mice with a specific deficiency of Pfkfb3 in myeloid cells are protected from hypoxia-induced pulmonary hypertension[J]. Br J Pharmacol, 2021, 178(5):1055-1072. DOI: 10.1111/bph.15339 . |
65 | MACIAS D, MOORE S, CROSBY A, et al. Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension[J]. Eur Respir J, 2021, 57(3):1902061. DOI: 10.1183/13993003.02061-2019 . |
66 | DANEVA Z, CHEN Y L, TA H Q, et al. Endothelial IK and SK channel activation decreases pulmonary arterial pressure and vascular remodeling in pulmonary hypertension[J]. Pulm Circ, 2023, 13(1):e12186. DOI: 10.1002/pul2.12186 . |
67 | SUEN C M, CHAUDHARY K R, DENG Y P, et al. Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure[J]. Cardiovasc Res, 2019, 115(4):788-799. DOI: 10.1093/cvr/cvy258 . |
68 | MORIMATSU Y, SAKASHITA N, KOMOHARA Y, et al. Development and characterization of an animal model of severe pulmonary arterial hypertension[J]. J Vasc Res, 2012, 49(1):33-42. DOI: 10.1159/000329594 . |
69 | INTERNATIONAL PPH CONSORTIUM, LANE K B, MACHADO R D, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension[J]. Nat Genet, 2000, 26(1):81-84. DOI: 10.1038/79226 . |
70 | DANNEWITZ PROSSEDA S, ALI M K, SPIEKERKOETTER E. Novel advances in modifying BMPR2 signaling in PAH[J]. Genes, 2020, 12(1):8. DOI: 10.3390/genes12010008 . |
71 | MACHADO R D, PAUCIULO M W, THOMSON J R, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension[J]. Am J Hum Genet, 2001, 68(1):92-102. DOI: 10.1086/316947 . |
72 | BEPPU H, ICHINOSE F, KAWAI N, et al. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 287(6):L1241-L1247. DOI: 10.1152/ajplung.00239.2004 . |
73 | LONG L, ORMISTON M L, YANG X D, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension[J]. Nat Med, 2015, 21(7):777-785. DOI: 10.1038/nm.3877 . |
74 | HAUTEFORT A, MENDES-FERREIRA P, SABOURIN J, et al. Bmpr2 mutant rats develop pulmonary and cardiac characteristics of pulmonary arterial hypertension[J]. Circulation, 2019, 139(7):932-948. DOI: 10.1161/CIRCULATIONAHA.118.033744 . |
75 | TIAN W, JIANG X G, SUNG Y K, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140(17):1409-1425. DOI: 10.1161/CIRCULATIONAHA.119.040629 . |
76 | WEST J D, CHEN X P, PING L, et al. Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension[J]. Pulm Circ, 2019, 10(1):2045894019856483. DOI: 10.1177/2045894019856483 . |
77 | THEILMANN A L, HAWKE L G, HILTON L R, et al. Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11):2605-2618. DOI: 10.1161/ATVBAHA.119.313357 . |
78 | MORENO J, ESCOBEDO D, CALHOUN C, et al. Arterial wall stiffening in caveolin-1 deficiency-induced pulmonary artery hypertension in mice[J]. Exp Mech, 2021, 61(1):217-228. DOI: 10.1007/s11340-020-00666-6 . |
79 | LAMBERT M, CAPUANO V, BOET A, et al. Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension[J]. Circ Res, 2019, 125(7):678-695. DOI: 10.1161/CIRCRESAHA.119.314793 . |
80 | WEST J D, AUSTIN E D, RIZZI E M, et al. KCNK3 mutation causes altered immune function in pulmonary arterial hypertension patients and mouse models[J]. Int J Mol Sci, 2021, 22(9):5014. DOI: 10.3390/ijms22095014 . |
81 | TU L, DESROCHES-CASTAN A, MALLET C, et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension[J]. Circ Res, 2019, 124(6):846-855. DOI: 10.1161/CIRCRESAHA.118.313356 . |
82 | BOUVARD C, TU L, ROSSI M, et al. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10[J]. Cardiovasc Res, 2022, 118(7):1805-1820. DOI: 10.1093/cvr/cvab187 . |
83 | ZHANG Y N, ZERVOPOULOS S D, BOUKOURIS A E, et al. SNPs for genes encoding the mitochondrial proteins Sirtuin3 and uncoupling protein 2 are associated with disease severity, type 2 diabetes, and outcomes in patients with pulmonary arterial hypertension and this is recapitulated in a new mouse model lacking both genes[J]. J Am Heart Assoc, 2021, 10(23):e020451. DOI: 10.1161/JAHA.120.020451 . |
84 | DEMPSIE Y, NILSEN M, WHITE K, et al. Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females[J]. Respir Res, 2011, 12(1):159. DOI: 10.1186/1465-9921-12-159 . |
85 | WEST J, RATHINASABAPATHY A, CHEN X P, et al. Overexpression of Msx1 in mouse lung leads to loss of pulmonary vessels following vascular hypoxic injury[J]. Cells, 2021, 10(9):2306. DOI: 10.3390/cells10092306 . |
86 | XUE C, SOWDEN M, BERK B C. Extracellular cyclophilin A, especially acetylated, causes pulmonary hypertension by stimulating endothelial apoptosis, redox stress, and inflammation[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6):1138-1146. DOI: 10.1161/ATVBAHA.117.309212 . |
87 | XUE C, SENCHANTHISAI S, SOWDEN M, et al. Endothelial-to-mesenchymal transition and inflammation play key roles in cyclophilin A-induced pulmonary arterial hypertension[J]. Hypertension, 2020, 76(4):1113-1123. DOI: 10.1161/HYPERTENSIONAHA.119.14013 . |
88 | GALIÈ N, HUMBERT M, VACHIERY J L, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)[J]. Eur Heart J, 2016, 37(1):67-119. DOI: 10.1093/eurheartj/ehv317 . |
89 | KIM K H, KIM H K, CHAN S Y, et al. Hemodynamic and histopathologic benefits of early treatment with macitentan in a rat model of pulmonary arterial hypertension[J]. Korean Circ J, 2018, 48(9):839-853. DOI: 10.4070/kcj.2017.0394 . |
90 | LEE H, YEOM A, KIM K C, et al. Effect of ambrisentan therapy on the expression of endothelin receptor, endothelial nitric oxide synthase and NADPH oxidase 4 in monocrotaline-induced pulmonary arterial hypertension rat model[J]. Korean Circ J, 2019, 49(9):866-876. DOI: 10.4070/kcj.2019.0006 . |
91 | NOVELLI D, FUMAGALLI F, STASZEWSKY L, et al. Monocrotaline-induced pulmonary arterial hypertension: time-course of injury and comparative evaluation of macitentan and Y-27632, a Rho kinase inhibitor[J]. Eur J Pharmacol, 2019, 865:172777. DOI: 10.1016/j.ejphar. 2019. 172777 . |
92 | CHAUMAIS M C, DJESSAS M R A, THUILLET R, et al. Additive protective effects of sacubitril/valsartan and bosentan on vascular remodelling in experimental pulmonary hypertension[J]. Cardiovasc Res, 2021, 117(5):1391-1401. DOI: 10.1093/cvr/cvaa200 . |
93 | ZHANG Z Y, LIU C L, BAI Y Y, et al. Pipersentan: a de novo synthetic endothelin receptor antagonist that inhibits monocrotaline- and hypoxia-induced pulmonary hypertension[J]. Front Pharmacol, 2022, 13:920222. DOI: 10.3389/fphar. 2022.920222 . |
94 | VELASOVA E, LELKOVA K, VETESKOVA J, et al. Riociguat normalizes altered lung expression of serotonin-related genes and renal damage markers in experimental pulmonary hypertension[J]. Eur Heart J, 2022, 43():ehac544.1922. DOI: 10.1093/eurheartj/ehac544.1922 . |
95 | XU X, LI H L, WEI Q X, et al. Novel targets in a high-altitude pulmonary hypertension rat model based on RNA-seq and proteomics[J]. Front Med (Lausanne), 2021, 8:742436. DOI: 10.3389/fmed.2021.742436 . |
96 | SILVA M M C D, ALENCAR A K N, SILVA J S D, et al. Therapeutic benefit of the association of lodenafil with mesenchymal stem cells on hypoxia-induced pulmonary hypertension in rats[J]. Cells, 2020, 9(9):2120. DOI: 10.3390/cells9092120 . |
97 | CHAUDHARY K R, DENG Y P, SUEN C M, et al. Efficacy of treprostinil in the SU5416-hypoxia model of severe pulmonary arterial hypertension: haemodynamic benefits are not associated with improvements in arterial remodelling[J]. Br J Pharmacol, 2018, 175(20):3976-3989. DOI: 10.1111/bph.14472 . |
98 | VANDERPOOL R R, GORELOVA A, MA Y R, et al. Reversal of right ventricular hypertrophy and dysfunction by prostacyclin in a rat model of severe pulmonary arterial hypertension[J]. Int J Mol Sci, 2022, 23(10):5426. DOI: 10.3390/ijms23105426 . |
99 | MORRISON K, HAAG F, ERNST R, et al. Selective prostacyclin receptor agonist selexipag, in contrast to prostacyclin analogs, does not evoke paradoxical vasoconstriction of the rat femoral artery[J]. J Pharmacol Exp Ther, 2018, 365(3):727-733. DOI: 10.1124/jpet.117.246058 . |
100 | HONDA Y, KOSUGI K, FUCHIKAMI C, et al. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats[J]. PLoS One, 2020, 15(10):e0240692. DOI: 10.1371/journal.pone.0240692 . |
101 | CORBOZ M R, PLAUNT A J, MALININ V S, et al. Assessment of inhaled treprostinil palmitil, inhaled and intravenous treprostinil, and oral selexipag in a sugen/hypoxia rat model of pulmonary arterial hypertension[J]. J Pharmacol Exp Ther, 2022, 383(1):103-116. DOI: 10.1124/jpet.122.001174 . |
102 | RAI N, SHIHAN M, SEEGER W, et al. Genetic delivery and gene therapy in pulmonary hypertension[J]. Int J Mol Sci, 2021, 22(3):1179. DOI: 10.3390/ijms22031179 . |
103 | BISSERIER M, PRADHAN N, HADRI L. Current and emerging therapeutic approaches to pulmonary hypertension[J]. Rev Cardiovasc Med, 2020, 21(2):163-179. DOI: 10.31083/j.rcm.2020.02.597 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[10] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[11] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[12] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[13] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[14] | 赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172. |
[15] | 胡玲, 胡志斌, 胡筠卿, 丁玉强. 精神分裂症动物模型的研究概述[J]. 实验动物与比较医学, 2023, 43(2): 145-155. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||