1 |
HASSANEIN M, AFANDI B, AHMEDANI M Y, et al. Diabetes and Ramadan: practical guidelines 2021[J]. Diabetes Res Clin Pract, 2022, 185:109185. DOI: 10.1016/j.diabres.2021.109185 .
|
2 |
RADENKOVIĆ M, STOJANOVIĆ M, PROSTRAN M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art[J]. J Pharmacol Toxicol Methods, 2016, 78:13-31. DOI: 10.1016/j.vascn. 2015. 11.004 .
|
3 |
易承学, 闫曼, 钱欣. 链脲佐菌素联合高脂饮食制备糖尿病小鼠模型研究[J]. 镇江高专学报, 2021, 34(4):67-69. DOI: 10.3969/j.issn.1008-8148.2021.04.016 .
|
|
YI C X, YAN M, QIAN X. A study on the preparation of diabetic mouse model with streptozotocin and high fat diet[J]. J Zhenjiang Coll, 2021, 34(4):67-69. DOI: 10.3969/j.issn.1008-8148.2021.04.016 .
|
4 |
FURMAN B L. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc, 2021, 1(4): e78. DOI: 10.1002/cpz1.78 .
|
5 |
DIENER J L, MOWBRAY S, HUANG W J, et al. FGF21 normalizes plasma glucose in mouse models of type 1 diabetes and insulin receptor dysfunction[J]. Endocrinology, 2021, 162(9): bqab092. DOI: 10.1210/endocr/bqab092 .
|
6 |
LIU S, MA L L, REN X Y, et al. A new mouse model of type 2 diabetes mellitus established through combination of high-fat diet, streptozotocin and glucocorticoid[J]. Life Sci, 2021, 286:120062. DOI: 10.1016/j.lfs.2021.120062 .
|
7 |
LAFFERTY R A, MCSHANE L M, FRANKLIN Z J, et al. Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice[J]. J Endocrinol, 2022, 255(2):91-101. DOI: 10.1530/JOE-22-0106 .
|
8 |
HAYASHI K, KOJIMA R, ITO M. Strain differences in the diabetogenic activity of streptozotocin in mice[J]. Biol Pharm Bull, 2006, 29(6):1110-1119. DOI: 10.1248/bpb.29.1110 .
|
9 |
DEEDS M C, ANDERSON J M, ARMSTRONG A S, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models[J]. Lab Anim, 2011, 45(3):131-140. DOI: 10.1258/la.2010.010090 .
|
10 |
ANDERSON M S, BLUESTONE J A. THE NOD MOUSE: a model of immune dysregulation[J]. Annu Rev Immunol, 2005, 23:447-485. DOI: 10.1146/annurev.immunol.23.021704.115643 .
|
11 |
YU F, ZHOU X, JIN X, et al. Rational construction of controllable autoimmune diabetes model depicting clinical features[J]. PLoS One, 2022, 17(1): e0260100. DOI: 10.1371/journal.pone.0260100 .
|
12 |
MCNEILLY A D, MCCRIMMON R J. Impaired hypoglycaemia awareness in type 1 diabetes: lessons from the lab[J]. Diabetologia, 2018, 61(4):743-750. DOI: 10.1007/s00125-018-4548-8 .
|
13 |
AUBIN A M, LOMBARD-VADNAIS F, COLLIN R, et al. The NOD mouse beyond autoimmune diabetes[J]. Front Immunol, 2022, 13:874769. DOI: 10.3389/fimmu.2022.874769 .
|
14 |
VELD P I. Insulitis in human type 1 diabetes: a comparison between patients and animal models[J]. Semin Immunopathol, 2014, 36(5):569-579. DOI: 10.1007/s00281-014-0438-4 .
|
15 |
HARRISON L C. The dark side of insulin: a primary autoantigen and instrument of self-destruction in type 1 diabetes[J]. Mol Metab, 2021, 52:101288. DOI: 10.1016/j.molmet.2021.101288 .
|
16 |
TOKUDA K, IKEMOTO T, YAMASHITA S, et al. Syngeneically transplanted insulin producing cells differentiated from adipose derived stem cells undergo delayed damage by autoimmune responses in NOD mice[J]. Sci Rep, 2022, 12(1):5852. DOI: 10.1038/s41598-022-09838-x .
|
17 |
ALDRICH V R, HERNANDEZ-ROVIRA B B, CHANDWANI A, et al. NOD mice-good model for T1D but not without limitations[J]. Cell Transplant, 2020, 29:963689720939127. DOI: 10.1177/0963689720939127 .
|
18 |
GENCHI V A, D'ORIA R, PALMA G, et al. Impaired leptin signalling in obesity: is leptin a new thermolipokine?[J]. Int J Mol Sci, 2021, 22(12):6445. DOI: 10.3390/ijms22126445 .
|
19 |
GAULT V A, KERR B D, HARRIOTT P, et al. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity[J]. Clin Sci (Lond), 2011, 121(3):107-117. DOI: 10.1042/CS20110006 .
|
20 |
DUONG M, UNO K, NANKIVELL V, et al. Induction of obesity impairs reverse cholesterol transport in ob/ob mice[J]. PLoS One, 2018, 13(9): e0202102. DOI: 10.1371/journal.pone.0202102 .
|
21 |
MARCHETTI P. Islet inflammation in type 2 diabetes[J]. Diabetologia, 2016, 59(4):668-672. DOI: 10.1007/s00125-016-3875-x .
|
22 |
WANG F, ZHANG C, DAI L N, et al. Bafilomycin A1 accelerates chronic refractory wound healing in db/db mice[J]. Biomed Res Int, 2020, 2020:6265701. DOI: 10.1155/2020/6265701 .
|
23 |
GOOSSENS G H, BLAAK E E. Unraveling the pathophysiology of obesity-related insulin resistance-a perspective on adipose tissue inflammation is directly linked to obesity-induced insulin resistance, while gut dysbiosis and mitochondrial dysfunction are not required[J]. Function (Oxf), 2020, 1(2): zqaa021. DOI: 10.1093/function/zqaa021 .
|
24 |
CHAKRABORTY G, THUMPAYIL S, LAFONTANT D E, et al. Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus[J]. Lab Anim (NY), 2009, 38(11):364-368. DOI: 10.1038/laban1109-364 .
|
25 |
OHTOMO T, INO K, MIYASHITA R, et al. Chronic high-fat feeding impairs adaptive induction of mitochondrial fatty acid combustion-associated proteins in brown adipose tissue of mice[J]. Biochem Biophys Rep, 2017, 10:32-38. DOI: 10.1016/j.bbrep.2017.02.002 .
|
26 |
DENVIR J, BOSKOVIC G, FAN J, et al. Whole genome sequence analysis of the TALLYHO/Jng mouse[J].BMC Genom, 2016, 17(1):1-15. DOI: 10.1186/s12864-016-3245-6 .
|
27 |
PARKMAN J K, SKLIOUTOVSKAYA-LOPEZ K, MENIKDIWELA K R, et al. Effects of high fat diets and supplemental tart cherry and fish oil on obesity and type 2 diabetes in male and female C57BL/6J and TALLYHO/Jng mice[J]. J Nutr Biochem, 2021, 94:108644. DOI: 10.1016/j.jnutbio.2021.108644 .
|
28 |
SHAO W H, JARGALSAIKHAN O, ICHIMURA-SHIMIZU M, et al. Spontaneous occurrence of various types of hepatocellular adenoma in the livers of metabolic syndrome-associated steatohepatitis model TSOD mice[J]. Int J Mol Sci, 2022, 23(19):11923. DOI: 10.3390/ijms231911923 .
|
29 |
ISHIBASHI K, TAKEDA Y, NAKATANI E, et al. Activation of PPARγ at an early stage of differentiation enhances adipocyte differentiation of MEFs derived from type II diabetic TSOD mice and alters lipid droplet morphology[J]. Biol Pharm Bull, 2017, 40(6):852-859. DOI: 10.1248/bpb.b17-00030 .
|
30 |
NAGY C, EINWALLNER E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT)[J]. J Vis Exp, 2018(131):56672. DOI: 10.3791/56672 .
|
31 |
INGVORSEN C, KARP N A, LELLIOTT C J. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice[J]. Nutr Diabetes, 2017, 7(4): e261. DOI: 10.1038/nutd.2017.6 .
|
32 |
GUERRA-CANTERA S, FRAGO L M, COLLADO-PÉREZ R, et al. Sex differences in metabolic recuperation after weight loss in high fat diet-induced obese mice[J]. Front Endocrinol (Lausanne), 2021, 12:796661. DOI: 10.3389/fendo.2021.796661 .
|
33 |
DROZ B A, SNEED B L, JACKSON C V, et al. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse[J]. PLoS One, 2017, 12(6): e0179808. DOI: 10.1371/journal.pone.0179808 .
|
34 |
SPEAKMAN J R. Use of high-fat diets to study rodent obesity as a model of human obesity[J]. Int J Obes, 2019, 43(8):1491-1492. DOI: 10.1038/s41366-019-0363-7 .
|
35 |
CHAIX A, DEOTA S, BHARDWAJ R, et al. Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice[J]. Cell Rep, 2021, 36(7):109543. DOI: 10.1016/j.celrep.2021.109543 .
|
36 |
ROHAM P H, SAVE S N, SHARMA S. Human islet amyloid polypeptide: a therapeutic target for the management of type 2 diabetes mellitus[J]. J Pharm Anal, 2022, 12(4):556-569. DOI: 10.1016/j.jpha.2022.04.001 .
|
37 |
KING M, PEARSON T, SHULTZ L D, et al. Development of new-generation HU-PBMC-NOD/SCID mice to study human islet alloreactivity[J]. Ann N Y Acad Sci, 2007, 1103:90-93. DOI: 10.1196/annals.1394.011 .
|
38 |
RIGOLLI M, WHALLEY G A. Heart failure with preserved ejection fraction[J]. J Geriatr Cardiol, 2013, 10(4):369-376. DOI: 10.3969/j.issn.1671-5411.2013.04.011 .
|
39 |
MIYACHI Y, MIYAZAWA T, OGAWA Y. HNF1A mutations and beta cell dysfunction in diabetes[J]. Int J Mol Sci, 2022, 23(6):3222. DOI: 10.3390/ijms23063222 .
|
40 |
SMITH L I F, HILL T G, BOWE J E. Generating beta-cell-specific transgenic mice using the cre-lox system[J]. Methods Mol Biol, 2020, 2128:181-205. DOI: 10.1007/978-1-0716-0385-7_13 .
|
41 |
MILLERSHIP S J, TUNSTER S J, VAN DE PETTE M, et al. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice[J]. Mol Metab, 2018, 18:97-106. DOI: 10.1016/j.molmet.2018.09.001 .
|
42 |
SINGHA A, PALAVICINI J P, PAN M X, et al. Leptin receptors in RIP-Cre25Mgn neurons mediate anti-dyslipidemia effects of leptin in insulin-deficient mice[J]. Front Endocrinol (Lausanne), 2020, 11:588447. DOI: 10.3389/fendo.2020.588447 .
|
43 |
FEX M, WIERUP N, NITERT M D, et al. Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance[J]. J Endocrinol, 2007, 194(3):551-555. DOI: 10.1677/JOE-07-0161 .
|