实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (4): 351-357.DOI: 10.12300/j.issn.1674-5817.2022.010
收稿日期:
2022-01-25
修回日期:
2022-04-01
出版日期:
2022-08-25
发布日期:
2022-09-01
通讯作者:
师长宏(1973—),男,博士研究生导师,教授,研究方向:肿瘤模型的制备与评价。E-mail:changhong@fmmu.edu.cn。ORCID: 0000-0001-7490-3593作者简介:
胡耀华(1997—),女,硕士研究生,研究方向:肿瘤分子病理与药物研究。E-mail:457495004@qq.com
基金资助:
Yaohua HU1,2(), Jumei ZHAO1(
)(
), Changhong SHI2(
)(
)
Received:
2022-01-25
Revised:
2022-04-01
Published:
2022-08-25
Online:
2022-09-01
Contact:
SHI Changhong (ORCID: 0000-0001-7490-3593), E-mail: changhong@fmmu.edu.cn摘要:
促红细胞生成素产生肝细胞激酶(erythropoietin-producing hepatocyte kinase,Eph)作为家族成员最多的受体酪氨酸激酶,与恶性肿瘤的发生、发展密切相关,具有广泛的临床应用价值。动物模型在探索Eph家族分子的生物学功能、分子机制以及筛选治疗靶点等方面发挥了重要作用。本文总结归纳了异种移植瘤模型、肿瘤免疫治疗模型以及基因修饰模型在Eph家族功能研究中的应用及最新研究进展,总结了各类模型的优缺点,以期为研究者开展Eph相关研究时选择合适的动物模型提供参考。
中图分类号:
胡耀华, 赵菊梅, 师长宏. 动物模型在Eph家族蛋白功能研究中的应用[J]. 实验动物与比较医学, 2022, 42(4): 351-357.
Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins[J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357.
1 | RUDNO-RUDZIŃSKA J, KIELAN W, FREJLICH E, et al. A review on Eph/ephrin, angiogenesis and lymphangiogenesis in gastric, colorectal and pancreatic cancers[J]. Chin J Cancer Res, 2017, 29(4):303-312. DOI:10.21147/j.issn.1000-9604.2017.04.03 . |
2 | O'LEARY D D, WILKINSON D G. Eph receptors and ephrins in neural development[J]. Curr Opin Neurobiol, 1999, 9(1):65-73. DOI:10.1016/s0959-4388(99)80008-7 . |
3 | ORICCHIO E, NANJANGUD G, WOLFE A L, et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma[J]. Cell, 2011, 147(3):554-564. DOI:10.1016/j.cell.2011.09.035 . |
4 | KUNG A L. Practices and pitfalls of mouse cancer models in drug discovery[J]. Adv Cancer Res, 2006, 96:191-212. DOI:10.1016/S0065-230X(06)96007-2 . |
5 | STERNER R M, SAKEMURA R, COX M J, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts[J]. Blood, 2019, 133(7):697-709. DOI:10.1182/blood-2018-10-881722 . |
6 | KOPETZ S, LEMOS R, POWIS G. The promise of patient-derived xenografts: the best laid plans of mice and men[J]. Clin Cancer Res, 2012, 18(19):5160-5162. DOI:10.1158/1078-0432.CCR-12-2408 . |
7 | LIN J H, ZENG C T, ZHANG J K, et al. EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular carcinoma through a PIK3R2/GSK3β/β-catenin positive feedback loop[J]. Mol Ther Nucleic Acids, 2021, 25:328-341. DOI:10.1016/j.omtn.2021.06.002 . |
8 | DOPESO H, MATEO-LOZANO S, MAZZOLINI R, et al. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis[J]. Cancer Res, 2009, 69(18):7430-7438. DOI:10.1158/0008-5472.CAN-09-0706 . |
9 | ASTIN J W, BATSON J, KADIR S, et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells[J]. Nat Cell Biol, 2010, 12(12):1194-1204. DOI:10.1038/ncb2122 . |
10 | MIAO H, LI D Q, MUKHERJEE A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt[J]. Cancer Cell, 2009, 16(1):9-20. DOI:10.1016/j.ccr.2009.04.009 . |
11 | QAZI M A, VORA P, VENUGOPAL C, et al. Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma[J]. Cancer Res, 2018, 78(17):5023-5037. DOI:10.1158/0008-5472.CAN-18-0267 . |
12 | 王洁. 基于肿瘤标本异种移植模型的胃癌转移相关基因研究[D]. 延安: 延安大学, 2020. DOI:10.27438/d.cnki.gyadu.2020.000548 . |
WANG J. Research of metastasis-related genes derived from gastric cancer patient-derived xenograft models[D].Yan'an :Yan'an University, 2020. DOI:10.27438/d.cnki.gyadu.2020.000548 . | |
13 | LV J H, XIA Q Y, WANG J J, et al. EphB4 promotes the proliferation, invasion, and angiogenesis of human colorectal cancer[J].Exp Mol Pathol, 2016, 100(3):402-408. DOI:10.1016/j.yexmp.2016.03.011 . |
14 | SATO S, VASAIKAR S, ESKAROS A, et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling[J]. JCI Insight, 2019, 4(23): e132447. DOI:10.1172/jci.insight.132447 . |
15 | LI S, MA Y, XIE C, et al. EphA6 promotes angiogenesis and prostate cancer metastasis and is associated with human prostate cancer progression[J]. Oncotarget, 2015, 6(26): 22587-97. DOI:10.18632/oncotarget.4088 . |
16 | NEUBER C, BELTER B, MEISTER S, et al. Overexpression of receptor tyrosine kinase EphB4 triggers tumor growth and hypoxia in A375 melanoma xenografts: Insights from multitracer small animal imaging experiments[J]. Molecules, 2018, 23(2). DOI:10.3390/molecules23020444 . |
17 | FESTUCCIA C, GRAVINA G L, GIORGIO C, et al. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice[J]. Oncotarget, 2018, 9(36):24347-24363. DOI:10.18632/oncotarget.25272 . |
18 | MIAO B C, JI Z Y, TAN L, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma[J]. Cancer Discov, 2015, 5(3):274-287. DOI:10.1158/2159-8290.CD-14-0295 . |
19 | YANG X K, YANG Y D, TANG S Q, et al. EphB4 inhibitor overcome the acquired resistance to cisplatin in melanomas xenograft model[J]. J Pharmacol Sci, 2015, 129(1):65-71. DOI:10.1016/j.jphs.2015.08.009 . |
20 | LEUNG H W, LEUNG C O N, LAU E Y, et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma[J]. Cancer Res, 2021, 81(12):3229-3240. DOI:10.1158/0008-5472.can-21-0184 . |
21 | TOOSI B M, ZAWILY A EL, TRUITT L, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours[J]. Oncogene, 2018, 37(30):4073-4093. DOI:10.1038/s41388-018-0228-x . |
22 | ZHANG J L, DU Z Q, PAN S, et al. Overcoming multidrug resistance by codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive lipoplexes: in vitro and in vivo evaluation[J]. ACS Appl Mater Interfaces, 2018, 10(25):21590-21600. DOI:10.1021/acsami.8b01806 . |
23 | ZHANG J L, YANG C R, PAN S, et al. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo [J]. Drug Deliv, 2018, 25(1):723-737. DOI:10.1080/10717544.2018.1446475 . |
24 | MORILLON Y M 2nd, SABZEVARI A, SCHLOM J, et al. The development of next-generation PBMC humanized mice for preclinical investigation of cancer immunotherapeutic agents[J]. Anticancer Res, 2020, 40(10):5329-5341. DOI:10.21873/anticanres.14540 . |
25 | ZUMWALDE N A, GUMPERZ J E. Modeling human antitumor responses in vivo using umbilical cord blood-engrafted mice[J]. Front Immunol, 2018, 9:54. DOI:10.3389/fimmu.2018.00054 . |
26 | SANMAMED M F, RODRIGUEZ I, SCHALPER K A, et al. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice[J]. Cancer Res, 2015, 75(17):3466-3478. DOI:10.1158/0008-5472.CAN-14-3510 . |
27 | PREVOST N, WOULFE D, TANAKA T, et al. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred[J]. Proc Natl Acad Sci USA, 2002, 99(14):9219-9224. DOI:10.1073/pnas.142053899 . |
28 | BERROU E, SOUKASEUM C, FAVIER R, et al. A mutation of the human EPHB2 gene leads to a major platelet functional defect[J]. Blood, 2018, 132(19):2067-2077. DOI:10.1182/blood-2018-04-845644 . |
29 | BRAUN J, HOFFMANN S C, FELDNER A, et al. Endothelial cell ephrinB2-dependent activation of monocytes in arteriosclerosis[J]. Arterioscler Thromb Vasc Biol, 2011, 31(2):297-305. DOI:10.1161/ATVBAHA.110.217646 . |
30 | ZHOU Q, FACCIPONTE J, JIN M, et al. Humanized NOD-SCID IL2rg–/– mice as a preclinical model for cancer research and its potential use for individualized cancer therapies[J]. Cancer Lett, 2014, 344(1):13-19. DOI: 10.1016/j.canlet. 2013.10.015 . |
31 | ZHANG L, MEISSNER E, CHEN J, et al. Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis[J]. Sci China Life Sci, 2010, 53(2): 195-203. |
32 | CHIARI R, HAMES G, STROOBANT V, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class Ⅱ molecules[J]. Cancer Res, 2000, 60(17):4855-4863. |
33 | TATSUMI T, HERREM C J, OLSON W C, et al. Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma[J]. Cancer Res, 2003, 63(15):4481-4489. |
34 | ALVES P M S, FAURE O, GRAFF-DUBOIS S, et al. EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes[J]. Cancer Res, 2003, 63(23):8476-8480. |
35 | HART D N. Dendritic cells: unique leukocyte populations which control the primary immune response[J]. Blood, 1997, 90(9):3245-3287. |
36 | YAMAGUCHI S, TATSUMI T, TAKEHARA T, et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines[J]. Cancer, 2007, 110(7):1469-1477. DOI:10.1002/cncr.22958 . |
37 | YAMAGUCHI S, TATSUMI T, TAKEHARA T, et al. Dendritic cell-based vaccines suppress metastatic liver tumor via activation of local innate and acquired immunity[J]. Cancer Immunol Immunother, 2008, 57(12):1861-1869. DOI:10.1007/s00262-008-0514-5 . |
38 | DOTTI G, GOTTSCHALK S, SAVOLDO B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev, 2014, 257(1):107-126. DOI:10.1111/imr.12131 . |
39 | CHOW K K H, NAIK S, KAKARLA S, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma[J]. Mol Ther, 2013, 21(3):629-637. DOI:10.1038/mt.2012.210 . |
40 | LI N, LIU S H, SUN M J, et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer[J]. Transl Oncol, 2018, 11(1):11-17. DOI:10.1016/j.tranon.2017.10.009 . |
41 | SHI H, YU F, MAO Y T, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma[J]. J Thorac Dis, 2018, 10(5):2779-2788. DOI:10.21037/jtd.2018.04.91 . |
42 | WANG E N, CESANO A, BUTTERFIELD L H, et al. Improving the therapeutic index in adoptive cell therapy: key factors that impact efficacy[J]. J Immunother Cancer, 2020, 8(2): e001619. DOI:10.1136/jitc-2020-001619 . |
43 | AN Z J, HU Y, BAI Y, et al. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1[J]. Oncoimmunology, 2021, 10(1):1960728. DOI:10.1080/2162402X. 2021.1960728 . |
44 | KAMOUN W S, DUGAST A S, SUCHY J J, et al. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 inhibitors in preclinical tumor models[J]. Mol Cancer Ther, 2020, 19(1):270-281. DOI:10.1158/1535-7163.MCT-19-0414 . |
45 | YANG W H, CHA J H, XIA W Y, et al. Juxtacrine signaling inhibits antitumor immunity by upregulating PD-L1 expression[J]. Cancer Res, 2018, 78(14):3761-3768. DOI:10.1158/0008-5472.CAN-18-0040 . |
46 | FAWAL M A, JUNGAS T, DAVY A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells[J]. Cancer Lett, 2021, 503:129-137. DOI:10.1016/j.canlet.2021.01.026 . |
47 | MATEO-LOZANO S, BAZZOCCO S, RODRIGUES P, et al. Loss of the EPH receptor B6 contributes to colorectal cancer metastasis[J]. Sci Rep, 2017, 7:43702. DOI:10.1038/srep43702 . |
48 | BHATIA S, HIRSCH K, BAIG N A, et al. Effects of altered ephrin-A5 and EphA4/EphA7 expression on tumor growth in a medulloblastoma mouse model[J]. J Hematol Oncol, 2015, 8:105. DOI:10.1186/s13045-015-0202-9 . |
49 | MOHD-ZIN S W, ABDULLAH N L, ABDULLAH A, et al. Identification of the genomic mutation in Epha4(rb-2J/rb-2J) mice[J]. Genome, 2016, 59(7):439-448. DOI:10.1139/gen-2015-0142 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[10] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[11] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[12] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[13] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[14] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[15] | 赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||