[1] Ogurtsova K, Linnenkamp U, Huang Y, et al.IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040[J]. Diabetes Res Clin Pract, 2017, 128(4):40-50. [2] Ito H, Omoto T, Abe M, et al.Relationships between the duration of illness and the current status of diabetes in elderly patients with type 2 diabetes mellitus[J]. Geriatr Gerontol Int, 2017, 17(1):20-30. [3] Wu Z, Jin T, Weng J.A thorough analysis of diabetes research in China from 1995 to 2015: current scenario and future scope[J]. Sci China Life Sci, 2019, 62(1):46-62. [4] 吉薇, 章超桦, 宋采, 等. 糖尿病斑马鱼模型的建立与南极磷虾酶解物降血糖活性评价[J]. 食品与机械, 2019, 35(6):24-29. [5] Heckler K, Kroll J.Zebrafish as a model for the study of microvascular complications of diabetes and their mechanisms[J]. Int J Mol Sci, 2017, 18(9):E2002-E2010. [6] 史文超. 斑马鱼胚胎期?细胞再生机制研究[D]. 重庆: 西南大学, 2017: 115-116. [7] 刘鲁豫, 刘爱霞. 1型糖尿病的发病机制与治疗的新进展[J]. 医学综述, 2019, 25(22):4504-4508 . [8] Herold KC, Bundy BN, Long SA, et al.An anti-CD3 antibody, teplizumab, in relatives at risk for type 1 diabetes[J]. N Engl J Med, 2019, 381(7):603-613. [9] Keck FS, Pfeiffer EF.The first experimental diabetes mellitus[J]. Acta diabetol lat, 1989, 26(1):79-81. [10] Delaspre F, Beer RL, Rovira M, et al.Centroacinar cells are progenitors that contribute to endocrine pancreas regeneration[J]. Diabetes, 2015, 64(10):3499-3509. [11] Hwang KL, Goessling W.Baiting for cancer: using the zebrafish as a model in liver and pancreatic cancer[J]. Adv Exp Med Biol, 2016, 916(4):391-410. [12] Menke AL, Spitsbergen JM, Wolterbeek AP, et al.Normal anatomy and histology of the adult zebrafish[J]. Toxicol Pathol, 2011, 39(5):759-775. [13] Moss JB, Koustubhan P, Greenman M, et al.Regeneration of the pancreas in adult zebrafish[J]. Diabetes, 2009, 58(8):1844-1851. [14] Nam YH, Hong BN, Rodriguez I, et al.Synergistic potentials of coffee on injured pancreatic islets and insulin actionvia KATP channel blocking in zebrafish[J]. J Agric Food Chem, 2015, 63(23):5612-5621. [15] Olsen AS, SarrasMJ, IntinRV. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus[J]. Wound Repair Regen, 2010, 18(5):532-542. [16] Intine RV, Olsen AS, Sarras MP.A Zebrafish model of diabetes mellitus and metabolic memory[J]. J Vis Exp, 2013, 28(72):e50232. [17] Prince VE, Anderson RM, Dalgin G.Zebrafish pancreas development and regeneration: fishing for diabetes therapies[J]. Curr Top Dev Biol, 2017, 12(4):235-276. [18] Gleeson M, Connaughton V, Arneso LS.Induction of hyperglycaemia in zebrafish (Danio rerio) leads to morphological changes in the retina[J]. Acta Diabetol, 2007, 44(3):157-163. [19] Sun Z, Sun X, Li J, et al.Using probiotics for type 2 diabetes mellitus intervention: advances, questions, and potential[J]. Crit Rev Food Sci Nutr, 2020, 60(4):670-683. [20] 陶雪, 车金营, 杨硕, 等. 五味子多糖对2型糖尿病大鼠肝脏的保护作用[J]. 北华大学学报(自然科学版), 2019, 20(1):43-46. [21] 张贤梅, 江波, 孙勤国. 糖尿病实验动物模型的研究进展[J]. 中西医结合研究, 2017, 9(2):101-104. [22] Capiotti KM, Antonioli RJ, Kist LW, et al.Persistent impaired glucose metabolism in a zebrafish hyperglycemia model[J]. Comp Biochem Physiol B Biochem Mol Biol, 2014, 171(1):58-65. [23] Tanvir Z, Nelson RF, DeCicco-Skinner K, et al. One month of hyperglycemia alters spectral responses of the zebrafish photopic electroretinograml[J]. Dis Model Mech, 2018, 11(10):1-13. [24] Kleinert M, Clemmensen C, Hofmann SM, et al.Animal models of obesity and diabetes mellitusl[J]. Nat Rev Endocrinol, 2018, 14(3):140-162. [25] Meng XH, Chen B, Zhang JP.Intracellular insulin and impaired autophagy in a zebrafish model and a cell model of type 2 diabetes[J]. Int J Biol Sci, 2017, 13(8):985-995. [26] Oka T, Nishiura Y, Zang L, et al.Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity[J]. BMC Physiol, 2010, 21(10):21-33. [27] Zang L, Shimada Y, Nishimura N.Development of a novel zebrafish model for type 2 diabetes mellitus[J]. Sci Rep, 2017, 7(1):1461-1471. [28] 高日丽, 林可意, 谭莺. 建立自发缓解2型糖尿病动物模型可行性探讨[J]. 新医学, 2018, 49(4):241-247. [29] Maddison LA, Joest KE, Kammeyer RM, et al.Skeletal muscle insulin resistance in zebrafish induces alterations in ?-cell number and glucose tolerance in an age- and diet-dependent manner[J]. Am J Physiol Endocrinol Metab, 2015, 308(8):E662-E670. [30] Yin L, Maddison LA, Li M, et al.Multiplex conditional mutagenesis using transgenic expression of Cas9 and sgRNAs[J]. Genetics, 2015, 200(2):431-441. [31] Gong Y, Zhai G, Su J, et al.Different roles of insulin receptor 〈 and ? in maintaining blood glucose homeostasis in zebrafish[J]. Gen Comp Endocrinol, 2018, 269(1):33-45. [32] Yang BY, Zhai G, Gong YL, et al.Depletion of insulin receptors leads to ?-cell hyperplasia in zebrafish[J]. Science Bulletin, 2017, 62(7):486-492. [33] 王雪, 韩利文, 何秋霞, 等. 斑马鱼模型在糖尿病研究中的应用[J]. 中国比较医学杂志, 2017, 27(8):1-5. [34] Tan SY, Mei WJ, Sim YJ, et al.Type 1 and 2 diabetes mellitus: A review on current treatment approach and gene therapy as potential intervention[J]. Diabetes Metab Syndr, 2019, 13(1):364-372. [35] Strain WD, Paldanius PM.Diabetes, cardiovascular disease and the microcirculation[J]. Cardiovasc Diabetol, 2018, 17(1):57-66. [36] Obara EA, Hannibal J, Heegaard S, et al.Loss of melanopsin-expressing retinal ganglion cells in patients with diabetic retinopathy[J]. Invest Ophthalmol Vis Sci, 2017, 58(4):2187-2192. [37] Jung SH, Kim YS, Lee YR, et al.High glucose-induced changes in hyaloid-retinal vessels during early ocular development of zebrafish: a short-term animal model of diabetic retinopathy[J]. Br J Pharmacol, 2016, 173(1):15-26. [38] Carnovali M, Luzi L, Banfi G, et al.Chronic hyperglycemia affects bone metabolism in adult zebrafish scale model[J]. Endocrine, 2016, 54(3):808-817. [39] Dai H, Liu Q, Liu B.Research progress on mechanism of podocyte depletion in diabetic nephropathy[J]. J Diabetes Res, 2017, 2017(3):286-295. [40] Sharma KR, Heckler K, Stoll SJ, et al.ELMO1 protects renal structure and ultrafiltration in kidney development and under diabetic conditions[J]. Sci Rep, 2016, 6(16):37172. [41] Lakstygal AM, Abreu MS, Lifanov DA, et al.Zebrafish models of diabetes-related CNS pathogenesis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2019, 92(8):48-58. [42] Wang J, Li Y, Lai K, et al.High-glucose/high-cholesterol diet in zebrafish evokes diabetic and affective pathogenesis: The role of peripheral and central inflammation, microglia and apoptosis[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2020, 96(10):109752. [43] Salguero MV, Al-Obaide M, Singh R, et al.Dysbiosis of gram-negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type 2 diabetic patients with chronic kidney disease[J]. Exp Ther Med, 2019, 18(5):3461-3469. [44] Hersoug LG, Moller P, Loft S.Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity[J]. Nutr Res Rev, 2018, 31(2):153-163. [45] Okazaki F, Zang L, Nakayama H, et al.Microbiome alteration in type 2 diabetes mellitus model of zebrafish[J]. Sci Rep, 2019, 9(1):867-876. [46] Emfinger CH, Lorincz R, Wang Y, et al.Beta-cell excitability and excitability-driven diabetes in adult zebrafish islets[J]. Physiol Rep, 2019, 7(11):e14101. |