实验动物与比较医学 ›› 2024, Vol. 44 ›› Issue (2): 192-201.DOI: 10.12300/j.issn.1674-5817.2023.141
收稿日期:
2023-10-15
修回日期:
2024-02-06
出版日期:
2024-04-25
发布日期:
2024-05-09
通讯作者:
韩凌霞(1971—),女,博士,副研究员,专业方向:实验动物的生产与使用质量控制。E-mail: lingxia.han@criver.cn。ORCID: 0000-0002-0186-0032;作者简介:
张 莉(2000—),女,硕士研究生,专业方向:动物医学专业。E-mail: zhangli2_11@163.com。ORCID: 0009-0000-5365-7987
基金资助:
Li ZHANG1()(
), Yu KUANG1(
)(
), Lingxia HAN2(
)(
)
Received:
2023-10-15
Revised:
2024-02-06
Published:
2024-04-25
Online:
2024-05-09
Contact:
HAN Lingxia (ORCID: 0000-0002-0186-0032), E-mail: lingxia.han@criver.cn;摘要:
《2023年中国退行性脊柱健康报告》提到35岁以下患者的腰椎手术比例近年来显著增加,颈、腰椎病有年轻化的趋势。腰椎间盘突出症成为最困扰大众的疾病之一,研究椎间盘退变的发病机制和治疗方法有着重要的临床意义。目前人类椎间盘相关疾病多采用影像学诊断,由于脊柱的组织样本不易得到,实验动物以成本低、周期短、易获取的优点,成为替代性研究对象。人与其他动物的椎间盘有着结构和生理上的差异,比较人与其他动物的椎间盘结构和病理生理特点是研究的基础和关键。本文综述了不同动物椎间盘解剖与组织学结构相关研究文献并进行比较分析,分别从椎间盘的高度、椎间盘的几何形状、腰椎间盘软骨终板特征、椎间盘内细胞外基质组分4个角度比较了不同动物的椎间盘特点。分析结果表明:人类、袋鼠、绵羊、猪、大鼠在第六颈椎至第七颈椎处的椎间盘相对高度数值最接近;与人类腰部椎间盘几何形状最为相似的是小鼠腰椎间盘;与其他动物相比,人类的软骨终板最厚,细胞密度最小;猪纤维环内部的胶原蛋白与人类的差异最大,但猪、绵羊、兔、大鼠的髓核含水量与人类相比无差异性。在此基础上,本文还阐述了人与其他动物之间椎间盘退变的共性和差异表现,也对不同实验动物椎间盘退变的造模方法进行了总结,旨在为椎间盘退变研究选择合适的实验动物模型提供基础数据。
中图分类号:
张莉, 匡宇, 韩凌霞. 人与其他动物椎间盘解剖和组织学结构的比较医学研究进展[J]. 实验动物与比较医学, 2024, 44(2): 192-201.
Li ZHANG, Yu KUANG, Lingxia HAN. Advances in Comparative Medical Research on Anatomy and Histological Structure of Intervertebral Discs in Humans and Other Animals[J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 192-201.
部位 Level | 人[ Human | 袋鼠[ Kangaroo | 绵羊[ Sheep | 猪[ Pig | 大鼠[ (n=5~19) Rat |
---|---|---|---|---|---|
C2~C3 | 0.29 | - | 0.12 | - | - |
C3~C4 | 0.30 | - | 0.15 | 0.24 | 0.32 |
C4~C5 | 0.29 | 0.21 | 0.16 | 0.25 | 0.28 |
C5~C6 | 0.25 | 0.25 | 0.17 | 0.23 | 0.21 |
C6~C7 | 0.23 | 0.24 | 0.21 | 0.20 | 0.22 |
C7~T1 | 0.26 | 0.27 | 0.20 | 0.14 | 0.51 |
T1~T2 | 0.31 | 0.19 | 0.19 | 0.11 | - |
T2~T3 | 0.30 | 0.14 | 0.13 | 0.14 | - |
T3~T4 | 0.22 | 0.16 | 0.11 | 0.13 | - |
T4~T5 | 0.21 | 0.15 | 0.11 | 0.13 | - |
T5~T6 | 0.19 | 0.11 | 0.10 | 0.12 | - |
T6~T7 | 0.22 | 0.11 | 0.11 | 0.10 | - |
T7~T8 | 0.26 | 0.13 | 0.11 | 0.11 | - |
T8~T9 | 0.25 | 0.14 | 0.11 | 0.11 | - |
T9~T10 | 0.31 | 0.15 | 0.01 | 0.09 | - |
T10~T11 | 0.28 | 0.18 | 0.11 | 0.11 | - |
T11~T12 | 0.37 | 0.22 | 0.11 | 0.09 | - |
T12~T13 | 0.29 | 0.26 | 0.12 | 0.11 | - |
T13~T14/L1 | / | 0.28 | 0.13 | 0.10 | - |
T14~T15 | / | / | / | 0.12 | / |
T15~L1 | / | / | / | 0.12 | / |
L1~L2 | 0.41 | 0.27 | 0.13 | 0.11 | 0.17 |
L2~L3 | 0.43 | 0.25 | 0.12 | 0.12 | 0.17 |
L3~L4 | 0.49 | 0.23 | 0.12 | 0.11 | 0.17 |
L4~L5 | 0.60 | 0.24 | 0.11 | 0.11 | 0.19 |
L5~L6 | 0.61 | 0.26 | 0.11 | 0.12 | 0.16 |
L6~L7/S1 | / | 0.41 | 0.11 | 0.12 | / |
L7~S1 | / | / | - | / | / |
表1 人与其他动物颈胸腰各段的椎间盘相对高度值的比较
Table 1 Comparison of relative height values of intervertebral discs in the cervical, thoracic, and lumbar segments between humans and other animals
部位 Level | 人[ Human | 袋鼠[ Kangaroo | 绵羊[ Sheep | 猪[ Pig | 大鼠[ (n=5~19) Rat |
---|---|---|---|---|---|
C2~C3 | 0.29 | - | 0.12 | - | - |
C3~C4 | 0.30 | - | 0.15 | 0.24 | 0.32 |
C4~C5 | 0.29 | 0.21 | 0.16 | 0.25 | 0.28 |
C5~C6 | 0.25 | 0.25 | 0.17 | 0.23 | 0.21 |
C6~C7 | 0.23 | 0.24 | 0.21 | 0.20 | 0.22 |
C7~T1 | 0.26 | 0.27 | 0.20 | 0.14 | 0.51 |
T1~T2 | 0.31 | 0.19 | 0.19 | 0.11 | - |
T2~T3 | 0.30 | 0.14 | 0.13 | 0.14 | - |
T3~T4 | 0.22 | 0.16 | 0.11 | 0.13 | - |
T4~T5 | 0.21 | 0.15 | 0.11 | 0.13 | - |
T5~T6 | 0.19 | 0.11 | 0.10 | 0.12 | - |
T6~T7 | 0.22 | 0.11 | 0.11 | 0.10 | - |
T7~T8 | 0.26 | 0.13 | 0.11 | 0.11 | - |
T8~T9 | 0.25 | 0.14 | 0.11 | 0.11 | - |
T9~T10 | 0.31 | 0.15 | 0.01 | 0.09 | - |
T10~T11 | 0.28 | 0.18 | 0.11 | 0.11 | - |
T11~T12 | 0.37 | 0.22 | 0.11 | 0.09 | - |
T12~T13 | 0.29 | 0.26 | 0.12 | 0.11 | - |
T13~T14/L1 | / | 0.28 | 0.13 | 0.10 | - |
T14~T15 | / | / | / | 0.12 | / |
T15~L1 | / | / | / | 0.12 | / |
L1~L2 | 0.41 | 0.27 | 0.13 | 0.11 | 0.17 |
L2~L3 | 0.43 | 0.25 | 0.12 | 0.12 | 0.17 |
L3~L4 | 0.49 | 0.23 | 0.12 | 0.11 | 0.17 |
L4~L5 | 0.60 | 0.24 | 0.11 | 0.11 | 0.19 |
L5~L6 | 0.61 | 0.26 | 0.11 | 0.12 | 0.16 |
L6~L7/S1 | / | 0.41 | 0.11 | 0.12 | / |
L7~S1 | / | / | - | / | / |
物种 Species | 部位 Level | 高度/横向宽度 Height/ lateral width | 纵向宽度/横向宽度 Anteroposterior width/ lateral width | 髓核面积/椎间盘面积 Nucleus pulposus area/ disc area | 与人类参数的平均偏差/% Average deviation from human parameters/% |
---|---|---|---|---|---|
人类(n=3) Human | L4~L5 L4~L5 L4~L5 | 0.20 | 0.67 | 0.28 | - |
兔(n=3) Rabbit | 0.11 | 0.52 | 0.25 | 26.00 | |
大鼠(n=3) Rat | 0.16 | 0.75 | 0.25 | 15.00 | |
小鼠(n=3) Mouse | L3~L4 | 0.17 | 0.67 | 0.18 | 12.00 |
大鼠(n=3) Rat | CA10~CA11 | 0.29 | 1.07 | 0.37 | 46.00 |
小鼠(n=3) Mouse | CA9~CA10 | 0.20 | 1.08 | 0.30 | 18.00 |
表2 人与其他动物腰椎间盘几何形状对比
Table 2 Comparison of lumbar intervertebral disc morphology between humans and other animals
物种 Species | 部位 Level | 高度/横向宽度 Height/ lateral width | 纵向宽度/横向宽度 Anteroposterior width/ lateral width | 髓核面积/椎间盘面积 Nucleus pulposus area/ disc area | 与人类参数的平均偏差/% Average deviation from human parameters/% |
---|---|---|---|---|---|
人类(n=3) Human | L4~L5 L4~L5 L4~L5 | 0.20 | 0.67 | 0.28 | - |
兔(n=3) Rabbit | 0.11 | 0.52 | 0.25 | 26.00 | |
大鼠(n=3) Rat | 0.16 | 0.75 | 0.25 | 15.00 | |
小鼠(n=3) Mouse | L3~L4 | 0.17 | 0.67 | 0.18 | 12.00 |
大鼠(n=3) Rat | CA10~CA11 | 0.29 | 1.07 | 0.37 | 46.00 |
小鼠(n=3) Mouse | CA9~CA10 | 0.20 | 1.08 | 0.30 | 18.00 |
物种 Species | 部位 Level | 中心区 Central area | 边缘区 Edge area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
厚度/mm Thickness/ mm | 细胞密度/mm2 Cellular density/ mm2 | 胶原分布 特征 Collagen distribution feature | 胶原纤维直径/nm Collagen fiber diameter/ nm | 厚度/mm Thickness/ mm | 细胞密度/mm2 Cellular density/ mm2 | 胶原分布特征 Collagen distribution feature | 胶原纤维直径/nm Collagen fiber diameter/ nm | ||||
人类(n=5) Human | L1~L5 | 855.58±24.37** | 259.00±31.00** | 平行排列,间隙较小 | 57.18±17.11 | 938.31±108.44 | 203.00±36.00 | 平行排列,间隙较小 | 67.58±30.48 | ||
猪(n=8) Pig | L2~L6 | 304.80±17.47** | 605.00±132.00** | 相互缠绕,间隙较大 | 57.53±24.10* | 279.24±27.72 | 409.00±67.00 | 平行排列,间隙较大 | 63.46±19.05 | ||
兔(n=8) Rabbit | L3~L7 | 69.41±9.79 | 991.00±200.00 | 聚集成束并 发生交联 | 60.83±18.64** | 73.81±11.27 | 868.00±192.00 | 聚集成束并 发生交联 | 77.06±21.92 | ||
大鼠(n=8) Rat | L2~L5 | 288.96±49.00** | 603.00±93.00** | 网状交织 | 45.06±8.98** | 209.10±18.16 | 762.00±81.00 | 网状交织 | 107.25±42.74 |
表3 人与其他动物的部分腰椎间盘软骨终板特征比较 ()
Table 3 Comparison of characteristics of partial lumbar intervertebral disc cartilage endplates between humans and other animals
物种 Species | 部位 Level | 中心区 Central area | 边缘区 Edge area | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
厚度/mm Thickness/ mm | 细胞密度/mm2 Cellular density/ mm2 | 胶原分布 特征 Collagen distribution feature | 胶原纤维直径/nm Collagen fiber diameter/ nm | 厚度/mm Thickness/ mm | 细胞密度/mm2 Cellular density/ mm2 | 胶原分布特征 Collagen distribution feature | 胶原纤维直径/nm Collagen fiber diameter/ nm | ||||
人类(n=5) Human | L1~L5 | 855.58±24.37** | 259.00±31.00** | 平行排列,间隙较小 | 57.18±17.11 | 938.31±108.44 | 203.00±36.00 | 平行排列,间隙较小 | 67.58±30.48 | ||
猪(n=8) Pig | L2~L6 | 304.80±17.47** | 605.00±132.00** | 相互缠绕,间隙较大 | 57.53±24.10* | 279.24±27.72 | 409.00±67.00 | 平行排列,间隙较大 | 63.46±19.05 | ||
兔(n=8) Rabbit | L3~L7 | 69.41±9.79 | 991.00±200.00 | 聚集成束并 发生交联 | 60.83±18.64** | 73.81±11.27 | 868.00±192.00 | 聚集成束并 发生交联 | 77.06±21.92 | ||
大鼠(n=8) Rat | L2~L5 | 288.96±49.00** | 603.00±93.00** | 网状交织 | 45.06±8.98** | 209.10±18.16 | 762.00±81.00 | 网状交织 | 107.25±42.74 |
物种 Species | 部位 Level | 胶原蛋白占比/(μg·mg-1) Collagen content /(μg·mg-1) | 蛋白聚糖占比/(μg·mg-1) GAG content/(μg·mg-1) | 含水量/% Water content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | 髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | 髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | ||||
人类(n=3) Human | L3~L4 | 15.6±4.0 | 47.9±3.0 | 102.6±18.9 | - | - | - | - | - | - | ||
L4~L5 | - | - | - | 466.0±205.0 | 377.0±185.0 | 161.0±31.9 | 81.0±3.0 | 80.0±2.0 | 72.0±3.0 | |||
猪(n=5) Pig | L1~L2 | 5.8±2.9 | 108.7±6.4*** | 122.4±22.8 | 379.0±160.0 | 150.0±19.7* | 71.8±13.5 | 83.0±2.0 | 69.0±3.0* | 59.0±2.0* | ||
山羊(n=5) Goat | L4~L5 | 18.5±5.8 | 26.4±15.7 | 52.7±13.9* | - | - | - | - | - | - | ||
绵羊(n=5) Sheep | L3~L4 | 19.2±10.6 | 66.8±11.1 | 106.9±18.4 | 547.0±69.5 | 260.0±55.5* | 122.0±32.6 | 75.0±3.0 | 66.0±3.0* | 57.0±3.0* | ||
兔(n=5) Rabbit | L4~L5 | - | 34.0±17.2 | 77.9±19.2 | 579.0±158.0 | 372.0±132.0 | 160.0±102.0 | 82.0±5.0 | 73.0±5.0 | 62.0±9.0* | ||
大鼠(n=5) Rat | L3~L4 | - | - | - | 384.0±108.0 | 165.0±27.9* | 47.1±10.9* | 82.0±9.0 | 71.0±9.0* | 65.0±3.0 |
表4 人与其他动物椎间盘中胶原蛋白、蛋白聚糖、水分含量的比较 ()
Table 4 Comparison of collagen, glycosaminoglycan, and water content in intervertebral discs between humans and other animals
物种 Species | 部位 Level | 胶原蛋白占比/(μg·mg-1) Collagen content /(μg·mg-1) | 蛋白聚糖占比/(μg·mg-1) GAG content/(μg·mg-1) | 含水量/% Water content/% | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | 髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | 髓核 Nucleus pulposus | 纤维环内部 Inner annulus fibrosus | 纤维环外部 Outer annulus fibrosus | ||||
人类(n=3) Human | L3~L4 | 15.6±4.0 | 47.9±3.0 | 102.6±18.9 | - | - | - | - | - | - | ||
L4~L5 | - | - | - | 466.0±205.0 | 377.0±185.0 | 161.0±31.9 | 81.0±3.0 | 80.0±2.0 | 72.0±3.0 | |||
猪(n=5) Pig | L1~L2 | 5.8±2.9 | 108.7±6.4*** | 122.4±22.8 | 379.0±160.0 | 150.0±19.7* | 71.8±13.5 | 83.0±2.0 | 69.0±3.0* | 59.0±2.0* | ||
山羊(n=5) Goat | L4~L5 | 18.5±5.8 | 26.4±15.7 | 52.7±13.9* | - | - | - | - | - | - | ||
绵羊(n=5) Sheep | L3~L4 | 19.2±10.6 | 66.8±11.1 | 106.9±18.4 | 547.0±69.5 | 260.0±55.5* | 122.0±32.6 | 75.0±3.0 | 66.0±3.0* | 57.0±3.0* | ||
兔(n=5) Rabbit | L4~L5 | - | 34.0±17.2 | 77.9±19.2 | 579.0±158.0 | 372.0±132.0 | 160.0±102.0 | 82.0±5.0 | 73.0±5.0 | 62.0±9.0* | ||
大鼠(n=5) Rat | L3~L4 | - | - | - | 384.0±108.0 | 165.0±27.9* | 47.1±10.9* | 82.0±9.0 | 71.0±9.0* | 65.0±3.0 |
1 | XIN J G, WANG Y J, ZHENG Z, et al. Treatment of intervertebral disc degeneration[J]. Orthop Surg, 2022, 14(7):1271-1280. DOI: 10.1111/os.13254 . |
2 | HOFFELD K, LENZ M, EGENOLF P, et al. Patient-related risk factors and lifestyle factors for lumbar degenerative disc disease: a systematic review[J]. Neuro-Chirurgie, 2023, 69(5):101482. DOI: 10.1016/j.neuchi.2023.101482 . |
3 | 宋继鹏, 林万程, 姚思远, 等. 2型糖尿病与腰椎间盘退变的相关性分析[J]. 中日友好医院学报, 2023, 37(3):144-148. DOI: 10.3969/j.issn.1001-0025.2023.03.004 . |
SONG J P, LIN W C, YAO S Y, et al. Study on the relationship between type 2 diabetes and degeneration of single segmental lumbar inter-vertebral disc[J]. J China Jpn Friendsh Hosp, 2023, 37(3):144-148. DOI: 10.3969/j.issn.1001-0025.2023.03.004 . | |
4 | ALINI M, DIWAN A D, ERWIN W M, et al. An update on animal models of intervertebral disc degeneration and low back pain: exploring the potential of artificial intelligence to improve research analysis and development of prospective therapeutics[J]. JOR Spine, 2023, 6(1): e1230. DOI: 10.1002/jsp2.1230 . |
5 | LAKSTINS K, ARNOLD L, GUNSCH G, et al. Characterization of the human intervertebral disc cartilage endplate at the molecular, cell, and tissue levels[J]. J Orthop Res, 2021, 39(9):1898-1907. DOI: 10.1002/jor.24854 . |
6 | FU B, JIANG H Y, CHE Y J, et al. Microanatomy of the lumbar vertebral bony endplate of rats using scanning electron microscopy[J]. Orthop Traumatol Surg Res, 2020, 106(4):731-734. DOI: 10.1016/j.otsr.2019.12.026 . |
7 | MCALINDEN A, HUDSON D M, FERNANDES A A, et al. Biochemical and immuno-histochemical localization of type IIA procollagen in annulus fibrosus of mature bovine intervertebral disc[J]. Matrix Biol Plus, 2021, 12:100077. DOI: 10.1016/j.mbplus.2021.100077 . |
8 | TAVAKOLI J, ELLIOTT D M, COSTI J J. Structure and mechanical function of the inter-lamellar matrix of the annulus fibrosus in the disc[J]. J Orthop Res, 2016, 34(8):1307-1315. DOI: 10.1002/jor.23306 . |
9 | SUN Z W, MI C W. On the identification of the ultra-structural organization of elastic fibers and their effects on the integrity of annulus fibrosus[J]. J Biomech, 2023, 157:111728. DOI: 10.1016/j.jbiomech.2023.111728 . |
10 | TAMOUD A, ZAÏRI F, MESBAH A, et al. Modeling multiaxial damage regional variation in human annulus fibrosus[J]. Acta Biomater, 2021, 136:375-388. DOI: 10.1016/j.actbio.2021.09.017 . |
11 | VIRK S, MEYERS K N, LAFAGE V, et al. Analysis of the influence of species, intervertebral disc height and Pfirrmann classification on failure load of an injured disc using a novel disc herniation model[J]. Spine J, 2021, 21(4):698-707. DOI: 10.1016/j.spinee.2020.10.030 . |
12 | LU J, EBRAHEIM N A, YANG H, et al. Anatomic bases for anterior spinal surgery: surgical anatomy of the cervical vertebral body and disc space[J]. Surg Radiol Anat, 1999, 21(4):235-239. DOI: 10.1007/BF01631392 . |
13 | KUNKEL M E, HERKOMMER A, REINEHR M, et al. Morphometric analysis of the relationships between intervertebral disc and vertebral body heights: an anatomical and radiographic study of the human thoracic spine[J]. J Anat, 2011, 219(3):375-387. DOI: 10.1111/j.1469-7580. 2011. 01397.x . |
14 | AMONOO-KUOFI H S. Morphometric changes in the heights and anteroposterior diameters of the lumbar intervertebral discs with age[J]. J Anat, 1991, 175:159-168. |
15 | WILKE H J, BETZ V M, KIENLE A. Morphometry of the kangaroo spine and its comparison with human spinal data[J]. J Anat, 2021, 238(3):626-642. DOI: 10.1111/joa.13323 . |
16 | WILKE H J, KETTLER A, WENGER K H, et al. Anatomy of the sheep spine and its comparison to the human spine[J]. Anat Rec, 1997, 247(4):542-555. DOI: 10.1002/(SICI)1097-0185(199704)247:4<542: AID-AR13>3.0.CO;2-P . |
17 | BOZKUS H, CRAWFORD N R, CHAMBERLAIN R H, et al. Comparative anatomy of the porcine and human thoracic spines with reference to thoracoscopic surgical techniques[J]. Surg Endosc, 2005, 19(12):1652-1665. DOI: 10.1007/s00464-005-0159-9 . |
18 | BUSSCHER I, PLOEGMAKERS J J W, VERKERKE G J, et al. Comparative anatomical dimensions of the complete human and porcine spine[J]. Eur Spine J, 2010, 19(7):1104-1114. DOI: 10.1007/s00586-010-1326-9 . |
19 | FLYNN J R, BOLTON P S. Measurement of the vertebral canal dimensions of the neck of the rat with a comparison to the human[J]. Anat Rec, 2007, 290(7):893-899. DOI: 10.1002/ar.20523 . |
20 | JAUMARD N V, LEUNG J, GOKHALE A J, et al. Relevant anatomic and morphological measurements of the rat spine: considerations for rodent models of human spine trauma[J]. Spine, 2015, 40(20): E1084-E1092. DOI: 10.1097/BRS. 0000000000001021 . |
21 | 刘伟强, 蒲婷, 顾洪生, 等. 中国人颈椎间盘尺寸分析[J]. 清华大学学报(自然科学版), 2014, 54(2):172-177. DOI: 10.16511/j.cnki.qhdxxb.2014.02.018 . |
LIU W Q, PU T, GU H S, et al. Geometric parameter analysis of Chinese cervical discs[J]. J Tsinghua Univ Sci Technol, 2014, 54(2):172-177. DOI: 10.16511/j.cnki.qhdxxb.2014.02.018 . | |
22 | SULLIVAN T B, BASTROM T P, REIGHARD F, et al. Changes in peri-apical vertebral body and intervertebral disc shape in both the sagittal and coronal planes correlate with scoliosis severity: a 3D study of 397 patients[J]. Spine Deform, 2021, 9(4):959-967. DOI: 10.1007/s43390-021-00293-8 . |
23 | O'CONNELL G D, VRESILOVIC E J, ELLIOTT D M. Comparison of animals used in disc research to human lumbar disc geometry[J]. Spine, 2007, 32(3):328-333. DOI: 10.1097/01.brs.0000253961.40910.c1 . |
24 | LI Y H, WU H L, LI Z, et al. Species variation in the cartilaginous endplate of the lumbar intervertebral disc[J]. JOR Spine, 2022, 5(3): e1218. DOI: 10.1002/jsp2.1218 . |
25 | ZHANG Y J, LENART B A, LEE J K, et al. Histological features of endplates of the mammalian spine: from mice to men[J]. Spine, 2014, 39(5): E312-E317. DOI: 10.1097/BRS. 0000000000000174 . |
26 | BEZCI S E, ELESWARAPU A, KLINEBERG E O, et al. Contribution of facet joints, axial compression, and composition to human lumbar disc torsion mechanics[J]. J Orthop Res, 2018,36(8): 2065-2312. DOI: 10.1002/jor.23870 . |
27 | GHEZELBASH F, SHIRAZI-ADL A, BAGHANI M, et al. On the modeling of human intervertebral disc annulus fibrosus: elastic, permanent deformation and failure responses[J]. J Biomech, 2020, 102:109463. DOI: 10.1016/j.jbiomech. 2019. 109463 . |
28 | BECKSTEIN J C, SEN S, SCHAER T P, et al. Comparison of animal discs used in disc research to human lumbar disc: axial compression mechanics and glycosaminoglycan content[J]. Spine, 2008, 33(6): E166-E173. DOI: 10.1097/BRS.0b013e318166e001 . |
29 | SHOWALTER B L, BECKSTEIN J C, MARTIN J T, et al. Comparison of animal discs used in disc research to human lumbar disc: torsion mechanics and collagen content[J]. Spine, 2012, 37(15): E900-E907. DOI: 10.1097/BRS.0b013e31824d911c . |
30 | COURT C, MANSOUR E, BOUTHORS C. Thoracic disc herniation: surgical treatment[J]. Orthop Traumatol Surg Res, 2018, 104(1S): S31-S40. DOI: 10.1016/j.otsr.2017.04.022 . |
31 | 马琳珊, 周程远, 吴礼平, 等. 147例犬椎间盘疝出疾病回顾性分析[J]. 畜牧与兽医, 2022, 54(8):120-124. |
MA L S, ZHOU C Y, WU L P, et al. Retrospective analysis of 147 cases of canine intervertebral disc herniation[J]. Anim Husb Vet Med, 2022, 54(8):120-124. | |
32 | BAILEY J F, FIELDS A J, LIEBENBERG E, et al. Comparison of vertebral and intervertebral disc lesions in aging humans and rhesus monkeys[J]. Osteoarthritis Cartilage, 2014, 22(7):980-985. DOI: 10.1016/j.joca.2014.04.027 . |
33 | DELUCCA J F, PELOQUIN J M, SMITH L J, et al. MRI quantification of human spine cartilage endplate geometry: comparison with age, degeneration, level, and disc geometry[J]. J Orthop Res, 2016, 34(8):1410-1417. DOI: 10.1002/jor.23315 . |
34 | ARIPAKA S S, BECH-AZEDDINE R, JØRGENSEN L M, et al. The expression of metalloproteinases in the lumbar disc correlates strongly with Pfirrmann MRI grades in lumbar spinal fusion patients[J]. Brain Spine, 2022, 2:100872. DOI: 10.1016/j.bas.2022.100872 . |
35 | FIELDS A J, SAHLI F, RODRIGUEZ A G, et al. Seeing double: a comparison of microstructure, biomechanical function, and adjacent disc health between double- and single-layer vertebral endplates[J]. Spine, 2012, 37(21): E1310-E1317. DOI: 10.1097/BRS.0b013e318267bcfc . |
36 | BRENDLER J, WINTER K, LOCHHEAD P, et al. Histological differences between lumbar and tail intervertebral discs in mice[J]. J Anat, 2022, 240(1):84-93. DOI: 10.1111/joa.13540 . |
37 | REN P L, CHEN P, REEVES R A, et al. Diffusivity of human cartilage endplates in healthy and degenerated intervertebral disks[J]. J Biomech Eng, 2023, 145(7):071006. DOI: 10.1115/1.4056871 . |
38 | RODRIGUEZ A G, RODRIGUEZ-SOTO A E, BURGHARDT A J, et al. Morphology of the human vertebral endplate[J]. J Orthop Res, 2012, 30(2):280-287. DOI: 10.1002/jor.21513 . |
39 | BONNHEIM N B, WANG L, LAZAR A A, et al. The contributions of cartilage endplate composition and vertebral bone marrow fat to intervertebral disc degeneration in patients with chronic low back pain[J]. Eur Spine J, 2022, 31(7):1866-1872. DOI: 10.1007/s00586-022-07206-x . |
40 | GAO B, JIANG B, XING W H, et al. Discovery and application of postnatal nucleus pulposus progenitors essential for intervertebral disc homeostasis and degeneration[J]. Adv Sci, 2022, 9(13): e2104888. DOI: 10.1002/advs.202104888 . |
41 | MIYAZAKI T, KOBAYASHI S, TAKENO K, et al. A phenotypic comparison of proteoglycan production of intervertebral disc cells isolated from rats, rabbits, and bovine tails; which animal model is most suitable to study tissue engineering and biological repair of human disc disorders?[J]. Tissue Eng Part A, 2009, 15(12):3835-3846. DOI: 10.1089/ten.tea.2009.0250 . |
42 | ZELDIN L, MOSLEY G E, LAUDIER D, et al. Spatial mapping of collagen content and structure in human intervertebral disk degeneration[J]. JOR Spine, 2020, 3(4): e1129. DOI: 10.1002/jsp2.1129 . |
43 | HANSEN T, SMOLDERS L A, TRYFONIDOU M A, et al. The myth of fibroid degeneration in the canine intervertebral disc: a histopathological comparison of intervertebral disc degeneration in chondrodystrophic and nonchondrody-strophic dogs[J]. Vet Pathol, 2017, 54(6):945-952. DOI: 10.1177/0300985817726834 . |
44 | LAMA P, LE MAITRE C L, HARDING I J, et al. Nerves and blood vessels in degenerated intervertebral discs are confined to physically disrupted tissue[J]. J Anat, 2018, 233(1):86-97. DOI: 10.1111/joa.12817 . |
45 | SUN Z, ZHAO H, LIU B, et al. AF cell derived exosomes regulate endothelial cell migration and inflammation: implications for vascularization in intervertebral disc degeneration[J]. Life Sci, 2021, 265:118778. DOI: 10.1016/j.lfs.2020.118778 . |
46 | ASHINSKY B G, GULLBRAND S E, WANG C, et al. Degeneration alters structure-function relationships at multiple length-scales and across interfaces in human intervertebral discs[J]. J Anat, 2021, 238(4):986-998. DOI: 10.1111/joa.13349 . |
47 | GHELANI R N, ZWAMBAG D P, GREGORY D E. Rapid increase in intradiscal pressure in porcine cervical spine units negatively impacts annulus fibrosus strength[J]. J Biomech, 2020, 108:109888. DOI: 10.1016/j.jbiomech.2020.109888 . |
48 | CS-SZABO G, JUAN D R S, TURUMELLA V, et al. Changes in mRNA and protein levels of proteoglycans of the anulus fibrosus and nucleus pulposus during intervertebral disc degeneration[J]. Spine, 2002, 27(20):2212-2219. DOI: 10.1097/00007632-200210150-00006 . |
49 | VINCENT K F, BUNDOCK J, DONA C P G, et al. Loss of lumbar disc height with age and its impact on pain and sensitivity associated behaviors in mice[J]. Eur Spine J, 2023, 32(3):848-858. DOI: 10.1007/s00586-023-07545-3 . |
50 | BERGMANN W, DE LEST C V, PLOMP S, et al. Intervertebral disc degeneration in warmblood horses: Histological and biochemical characterization[J]. Vet Pathol, 2022, 59(2):284-298. DOI: 10.1177/03009858211067463 . |
51 | LOGAN A A, NIELSEN B D, MANFREDI J M, et al. Sprint exercise of juvenile animals does not impact cartilage glycosaminoglycan or synovial fluid neopeptide collagenase cleavage of type I and II collagen content[J]. J Equine Vet Sci, 2021, 101:103405. DOI: 10.1016/j.jevs.2021.103405 . |
52 | GRUBER H E, HANLEY E N JR. Morphologic features of spontaneous annular tears and disc degeneration in the aging sand rat (Psammomys obesus obesus)[J]. Biotech Histochem, 2017, 92(6):402-410. DOI: 10.1080/10520295. 2017.1337227 . |
53 | HEY H W D, LAM W M R, CHAN C X, et al. Paraspinal myopathy-induced intervertebral disc degeneration and thoracolumbar kyphosis in TSC1mKO mice model-a preliminary study[J]. Spine J, 2022, 22(3):483-494. DOI: 10.1016/j.spinee.2021.09.003 . |
54 | LI Z Y, ZHOU A F, LI G, et al. Chronic spinal cord compression associated with intervertebral disc degeneration in SPARC-null mice[J]. Neural Regen Res, 2023, 18(3):634-642. DOI: 10.4103/1673-5374.350210 . |
55 | CHOI H, TESSIER S, SILAGI E S, et al. A novel mouse model of intervertebral disc degeneration shows altered cell fate and matrix homeostasis[J]. Matrix Biol, 2018, 70:102-122. DOI: 10.1016/j.matbio.2018.03.019 . |
56 | LI B, ZHENG X F, NI B B, et al. Reduced expression of insulin-like growth factor 1 receptor leads to accelerated intervertebral disc degeneration in mice[J]. Int J Immunopathol Pharmacol, 2013, 26(2):337-347. DOI: 10.1177/039463201302600207 . |
57 | LIU S F, SUN Y L, DONG J C, et al. A mouse model of lumbar spine instability[J/OL]. J Vis Exp, 2021(2021-04-23)[2023-10-10]. . |
58 | ZHU D C, MIAO Z M, DONG M W, et al. Development of a novel rat intervertebral disc degeneration model by surgical multifidus resection-induced instability[J]. World Neurosurg, 2022, 165: e357-e364. DOI: 10.1016/j.wneu.2022.06.051 . |
59 | AO X, WANG L, SHAO Y, et al. Development and characterization of a novel bipedal standing mouse model of intervertebral disc and facet joint degeneration[J]. Clin Orthop Relat Res, 2019, 477(6):1492-1504. DOI: 10.1097/CORR.0000000000000712 . |
60 | 孙孝先, 白雪, 刘孟敏, 等. 双上肢去势联合椎间盘刺破诱导建立大鼠椎间盘退变模型[J]. 中国组织工程研究, 2023, 27(35):5616-5621. DOI:10.12307/2023.845 . |
SUN X X, BAI X, LIU M M, et al. Establishing a rat model of intervertebral disc degeneration by castration of both upper limbs combined with intervertebral disc puncture[J]. Chin J Tissue Eng Res, 2023, 27(35):5616-5621. DOI:10.12307/ 2023.845 . | |
61 | REITMAIER S, SCHMIDT H. Review article on spine kinematics of quadrupeds and bipeds during walking[J]. J Biomech, 2020, 102:109631. DOI: 10.1016/j.jbiomech. 2020. 109631 . |
62 | LIANG X, SHEN H, SHI W D, et al. Effect of axial vertical vibration on degeneration of lumbar intervertebral discs in modified bipedal rats: an in-vivo study[J]. Asian Pac J Trop Med, 2017, 10(7):714-717. DOI: 10.1016/j.apjtm.2017.07.014 . |
63 | JI Y C, ZHU P F, ZHANG L L, et al. A novel rat tail disc degeneration model induced by static bending and compression[J]. Animal Model Exp Med, 2021, 4(3):261-267. DOI: 10.1002/ame2.12178 . |
64 | LIU Z C, ZHOU Q, ZHENG J C, et al. A novel in vivo mouse intervertebral disc degeneration model induced by compressive suture[J]. Exp Cell Res, 2021, 398(1):112359. DOI: 10.1016/j.yexcr.2020.112359 . |
65 | TIAN T, WANG H D, LI Z H, et al. Intervertebral disc degeneration induced by needle puncture and ovariectomy: a rat coccygeal model[J]. Biomed Res Int, 2021, 2021:5510124. DOI: 10.1155/2021/5510124 . |
66 | 陈莎, 王诗忠, 邓德万. 大鼠腰椎间盘退变模型的建立及其形态学观察[J]. 福建中医药, 2021, 52(9):39-40. DOI: 10.3969/j.issn.1000-338X.2021.09.011 . |
CHEN S, WANG S Z, DENG D W. Establishment of rat lumbar intervertebral disc degeneration model and its morphological observation[J]. Fujian J Tradit Chin Med, 2021, 52(9):39-40. DOI: 10.3969/j.issn.1000-338X.2021.09.011 . | |
67 | CHEN S, SUO S Q, XIE Z T, et al. Establishment of an animal model of adjacent segment degeneration after interbody fusion and related experimental studies[J]. J Orthop Surg Res, 2023, 18(1):666. DOI: 10.1186/s13018-023-04072-1 . |
68 | 白雪东, 王德利, 侯黎升, 等. 直立体位下无创轴向加载建立兔椎间盘退变动物模型[J]. 中国脊柱脊髓杂志, 2017, 27(6):545-552. DOI: 10.3969/j.issn.1004-406X.2017.06.12 . |
BAI X D, WANG D L, HOU L S, et al. Upright posture combined with noninvasive axial loading-induced rabbit intervertebral disc degeneration[J]. Chin J Spine Spinal Cord, 2017, 27(6):545-552. DOI: 10.3969/j.issn.1004-406X.2017.06.12 . | |
69 | 夏冬冬, 林胜磊, 赵浩增, 等. 建立剪切应力导致椎间盘退变模型[J]. 医用生物力学, 2013, 28(5):490-495. DOI: 10.16156/j.1004-7220.2013.05.014 . |
XIA D D, LIN S L, ZHAO H Z, et al. Development of shear force-induced intervertebral disc degeneration model[J]. J Med Biomech, 2013, 28(5):490-495. DOI: 10.16156/j.1004-7220. 2013.05.014 . | |
70 | CHEN P B, SHI G X, LIU T, et al. Oxidative stress aggravates apoptosis of nucleus pulposus cells through m6A modification of MAT2A pre-mRNA by METTL16[J]. Oxid Med Cell Longev, 2022, 2022:4036274. DOI: 10.1155/2022/4036274 . |
71 | 白荣飞, 张震, 林一峰, 等. 三种方法建立大鼠腰椎间盘退变模型[J]. 中国组织工程研究, 2018, 22(16):2514-2519. DOI: 10.3969/j.issn.2095-4344.0221 . |
BAI R F, ZHANG Z, LIN Y F, et al. Establishing a rat model of intervertebral disc degeneration using three methods[J]. Chin J Tissue Eng Res, 2018, 22(16):2514-2519. DOI: 10.3969/j.issn.2095-4344.0221 . | |
72 | SUH H R, CHO H Y, HAN H C. Development of a novel model of intervertebral disc degeneration by the intradiscal application of monosodium iodoacetate (MIA) in rat[J]. Spine J, 2022, 22(1):183-192. DOI: 10.1016/j.spinee.2021.06.008 . |
73 | 王娜, 吴成爱, 赵丹慧, 等. 应用纤连蛋白片段建立椎间盘退变动物模型[J]. 中国脊柱脊髓杂志, 2013, 23(1):47-53. DOI: 10.3969/j.issn.1004-406X.2013.01.11 . |
WANG N, WU C A, ZHAO D H, et al. Experimental intervertebral disc degeneration induced by fibronection fragment in rabbit[J]. Chin J Spine Spinal Cord, 2013, 23(1):47-53. DOI: 10.3969/j.issn.1004-406X.2013.01.11 . | |
74 | BALDIA M, MANI S, WALTER N, et al. Development of a unique mouse intervertebral disc degeneration model using a simple novel tool[J]. Asian Spine J, 2021, 15(4):415-423. DOI: 10.31616/asj.2020.0366 . |
[1] | 包方奇, 屠海烨, 方明笋, 张倩, 陈民利. 基于动物模型的高尿酸肾病病理及分子机制研究进展[J]. 实验动物与比较医学, 2024, 44(2): 180-191. |
[2] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[3] | . 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[4] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[5] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[6] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[7] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[8] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[9] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[10] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[11] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[12] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[13] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[14] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[15] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||