实验动物与比较医学 ›› 2023, Vol. 43 ›› Issue (5): 566-573.DOI: 10.12300/j.issn.1674-5817.2023.022
收稿日期:
2023-02-20
修回日期:
2023-05-30
出版日期:
2023-10-25
发布日期:
2023-11-01
通讯作者:
魏晓锋(1980—),男,硕士,副研究员,主要从事实验动物质量控制研究。E-mail: wei.xf@outlook.com。ORCID:0009-0009-5089-8342作者简介:
于灵芝(1980—),女,博士,助理研究员,主要从事病原体核酸检测方法研究。E-mail: yulingzhi@slarc.org.cn
基金资助:
Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI()()
Received:
2023-02-20
Revised:
2023-05-30
Published:
2023-10-25
Online:
2023-11-01
Contact:
WEI Xiaofeng (0009-0009-5089-8342), E-mail: wei.xf@outlook.com摘要:
目的 建立一种快速灵敏的金黄色葡萄球菌(Staphylococcus aureus)检测方法。 方法 选择金黄色葡萄球菌特异性基因nuc作为靶基因,设计并合成一对特异性引物和一条TaqMan探针,利用荧光定量PCR技术建立nuc基因的核酸检测方法,并在大鼠、小鼠粪便样本检测中进行应用。 结果 对金黄色葡萄球菌和其他非金黄色葡萄球菌菌株中提取的DNA进行荧光定量PCR检测,结果显示金黄色葡萄球菌出现特异性扩增曲线,而其他非金黄色葡萄球菌未出现,表明设计的引物和探针对金黄色葡萄球菌检测具有特异性。将提取的金黄色葡萄球菌DNA进行10倍梯度稀释后测定其灵敏度,结果显示最低检出限是10 fg的DNA量,比普通PCR方法高2个数量级。本研究共检测91份样品,有4份来自同一设施的大鼠样品,扩增曲线为典型的S曲线;将该PCR产物测序并进行BLAST比对,该样本的基因序列与金黄色葡萄球菌的基因序列相似度为100%,表明该样本为金黄色葡萄球菌nuc基因核酸阳性,阳性率为4.40%,与细菌培养法的检测结果一致。核酸提取采用全自动核酸纯化仪,从核酸提取到检测结果判定快速,所需时间小于1.5 h。 结论 建立的以nuc为靶基因鉴定金黄色葡萄球菌的qPCR方法,具有快速、灵敏度高和特异性强的优点,可用于实验动物大鼠、小鼠粪便中金黄色葡萄球菌的检测。
中图分类号:
于灵芝, 谢建芸, 冯丽萍, 魏晓锋. 金黄色葡萄球菌荧光定量PCR检测方法的建立及其在大鼠、小鼠粪便检测中的应用[J]. 实验动物与比较医学, 2023, 43(5): 566-573.
Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice[J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573.
图1 金黄色葡萄球菌实时荧光定量PCR特异性检测结果注:红色S型曲线代表阳性对照。RFU是相对荧光单位。
Figure 1 Specificity for Staphylococcus aureus detected by real-time fluorescent quantitative PCRNote:Red S-type curve represents the positive control.RFU, Relative fluorescence unit.
图2 金黄色葡萄球菌进行实时荧光定量PCR的标准曲线(A)和灵敏度检测结果(B)注:从左向右的曲线依次代表的核酸量为1 ng、100 pg、10 pg、1 pg、100 fg、10 fg和1 fg。
Figure 2 Standard curve (A) and sensitivity (B) for Staphylococcus aureus detected by real-time fluorescent quantitative PCRNote:The amounts of nucleic acid represented by the curves from left to right is 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, 10 fg and 1 fg, respectively.
DNA量 DNA quantities | 10次检测结果(Ct值) 10 test results (Ct value) | CV值/% CV value/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
10 pg | 25.23 | 25.17 | 24.99 | 25.23 | 25.16 | 25.04 | 25.2 | 25.15 | 25.16 | 25.21 | 0.33 | |
10 fg | 33.32 | 33.93 | 34.33 | 34.72 | 33.77 | 33.68 | 33.56 | 33.93 | 33.84 | 34.18 | 1.18 |
表1 组内重复性实验数据(Ct值)及变异系数(CV)
Table 1 Intragroup repeatability data (Ct) and coefficient of variation (CV)
DNA量 DNA quantities | 10次检测结果(Ct值) 10 test results (Ct value) | CV值/% CV value/% | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
10 pg | 25.23 | 25.17 | 24.99 | 25.23 | 25.16 | 25.04 | 25.2 | 25.15 | 25.16 | 25.21 | 0.33 | |
10 fg | 33.32 | 33.93 | 34.33 | 34.72 | 33.77 | 33.68 | 33.56 | 33.93 | 33.84 | 34.18 | 1.18 |
DNA量 DNA quantities | 5次检测结果(Ct值) 5 test results(Ct value) | DNA量 DNA quantities | 5次检测结果(Ct值) 5 test results(Ct value) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
10 pg | 33.13 | 34.08 | 36.00 | 34.19 | 33.02 | 10 fg | 26.04 | 26.10 | 26.20 | 26.12 | 26.08 |
34.44 | 32.27 | 33.47 | 34.04 | 34.56 | 25.80 | 25.89 | 25.83 | 26.15 | 26.10 | ||
32.72 | 32.60 | 32.35 | 31.90 | 32.56 | 26.17 | 25.39 | 25.86 | 25.76 | 25.91 | ||
32.13 | 32.88 | 34.21 | 33.14 | 32.90 | 25.87 | 25.96 | 25.86 | 25.90 | 25.66 | ||
33.83 | 35.05 | 32.60 | 33.99 | 33.41 | 25.86 | 25.78 | 26.10 | 26.12 | 25.69 | ||
平均数1 Mean 1 | 33.25 | 33.38 | 33.73 | 33.45 | 33.29 | 25.95 | 25.82 | 25.97 | 26.01 | 25.89 | |
平均数2 Mean 2 | 33.42 | 25.93 | |||||||||
标准差SD | 0.19 | 0.19 | |||||||||
CV/% | 0.56 | 0.75 |
表2 组间重复性实验数据(Ct值)及变异系数(CV)
Table 2 Intergroup repeatability data (Ct) and coefficient of variation(CV)
DNA量 DNA quantities | 5次检测结果(Ct值) 5 test results(Ct value) | DNA量 DNA quantities | 5次检测结果(Ct值) 5 test results(Ct value) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 1 | 2 | 3 | 4 | 5 | ||
10 pg | 33.13 | 34.08 | 36.00 | 34.19 | 33.02 | 10 fg | 26.04 | 26.10 | 26.20 | 26.12 | 26.08 |
34.44 | 32.27 | 33.47 | 34.04 | 34.56 | 25.80 | 25.89 | 25.83 | 26.15 | 26.10 | ||
32.72 | 32.60 | 32.35 | 31.90 | 32.56 | 26.17 | 25.39 | 25.86 | 25.76 | 25.91 | ||
32.13 | 32.88 | 34.21 | 33.14 | 32.90 | 25.87 | 25.96 | 25.86 | 25.90 | 25.66 | ||
33.83 | 35.05 | 32.60 | 33.99 | 33.41 | 25.86 | 25.78 | 26.10 | 26.12 | 25.69 | ||
平均数1 Mean 1 | 33.25 | 33.38 | 33.73 | 33.45 | 33.29 | 25.95 | 25.82 | 25.97 | 26.01 | 25.89 | |
平均数2 Mean 2 | 33.42 | 25.93 | |||||||||
标准差SD | 0.19 | 0.19 | |||||||||
CV/% | 0.56 | 0.75 |
图3 金黄色葡萄球菌实时荧光定量PCR的临床检测结果注:红色S型曲线代表扩增阳性对照,黑色S型曲线代表核酸提取阳性对照,蓝色S型曲线代表阳性样本。
Figure 3 Clinical detection results for Staphylococcus aureus by real-time fluorescent quantitative PCR detectionNote:The red S curve represents the positive control for amplification, the black S curve represents the positive control for nucleic acid extraction, and the four blue S curves represent the positive samples.
1 | AHMAD-MANSOUR N, LOUBET P, POUGET C, et al. Staphylococcus aureus toxins: an update on their pathogenic properties and potential treatments[J]. Toxins, 2021, 13(10):677. DOI: 10.3390/toxins13100677 . |
2 | HOWDEN B P, GIULIERI S G, WONG FOK LUNG T, et al. Staphylococcus aureus host interactions and adaptation[J]. Nat Rev Microbiol, 2023, 21(6):380-395. DOI: 10.1038/s41579-023-00852-y . |
3 | TUON F F, SUSS P H, TELLES J P, et al. Antimicrobial treatment of Staphylococcus aureus biofilms[J]. Antibiotics (Basel), 2023, 12(1):87. DOI: 10.3390/antibiotics12010087 . |
4 | 国家市场监督管理总局, 中国国家标准化管理委员会. 实验动物 微生物、寄生虫学等级及监测: GB 14922—2022[S]. 北京: 中国标准出版社, 2022. |
State Administration for Market Regulation; Standardization Administration of the People's Republic of China. Laboratory animals—Microbiological and parasitical standards and monitoring: GB 14922-2022[S]. Beijing: Standards Press of China, 2022. | |
5 | 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会.实验动物微生物学检测方法: GB/T 14926—2001[S]. 北京: 中国标准出版社, 2022. |
General Administration of Quality Supervision, Inspection and Quarantine; Standardization Administration of the People's Republic of China. Laboratory animals—Microbiological examination methods: GB/T 14926-2001[S]. Beijing: Standards Press of China, 2001. | |
6 | 翟俊辉, 宋亚军, 杜宗敏, 等. 通用基因芯片检测感染性细菌方法的研究[J]. 中国公共卫生, 2003, 19(4): 430-431. DOI: 10.3321/j.issn: 1001-0580.2003.04.021 . |
ZHAI J H, SONG Y J, DU Z M, et al. Study on universal microarray system for detection of common clinical infectious bacteria[J]. China J Public Health, 2003, 19(4): 430-431.DOI: 10.3321/j.issn: 1001-0580.2003.04.021 . | |
7 | STRAUB J A, HERTEL C, HAMMES W P. A 23S rDNA-targeted polymerase chain reaction-based system for detection of Staphylococcus aureus in meat starter cultures and dairy products[J]. J Food Prot, 1999, 62(10):1150-1156. DOI: 10.4315/0362-028x-62.10.1150 . |
8 | ONO H K, HIROSE S, NAITO I, et al. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew[J]. Microbiol Immunol, 2017, 61(1):12-16. DOI: 10.1111/1348-0421.12460 . |
9 | KRONING I S, IGLESIAS M A, MENDONÇA K S, et al. Presence of classical enterotoxin genes, agr typing, antimicrobial resistance, and genetic diversity of Staphylococcus aureus from milk of cows with mastitis in southern Brazil[J]. J Food Prot, 2018, 81(5):738-742. DOI: 10.4315/0362-028X.JFP-17-436 . |
10 | MATSUDA K, TSUJI H, ASAHARA T, et al. Sensitive quantitative detection of commensal bacteria by rRNA-targeted reverse transcription-PCR[J]. Appl Environ Microbiol, 2007, 73(1):32-39. DOI: 10.1128/aem.01224-06 . |
11 | 王敏, 范婧, 李先平. PCR扩增法检测耐甲氧西林金黄色葡萄球菌的mecA基因[J]. 广东医学, 2008, 29(4):566-568. DOI: 10.3969/j.issn.1001-9448.2008.04.015 . |
WANG M, FAN J, LI X P. Detection of mecA gene in methicillin-resistant Staphylococcus aureus by PCR amplification[J]. Guangdong Medical Journal, 2008, 29(4):566-568. DOI: 10.3969/j.issn.1001-9448.2008.04.015 . | |
12 | 杨波. MecA基因聚合酶链反应扩增法与细菌鉴定仪法对耐甲氧西林金黄色葡萄球菌的鉴定比较及药敏分析[J]. 实用医技杂志, 2017, 24(2):141-142. DOI: 10.19522/j.cnki.1671-5098.2017.02.007 . |
YANG B. Comparison and drug sensitivity analysis of methicillin-resistant Staphylococcus aureus by MecA gene polymerase chain reaction amplification method and bacterial identification instrument method[J]. Journal of Practical Medical Techniques, 2017, 24(2):141-142. DOI: 10.19522/j.cnki.1671-5098.2017.02.007 . | |
13 | FAOUZI, BEKKAOUI, . Rapid detection of the mecA gene in methicillin resistant staphylococci using a colorimetric cycling probe technology[J]. Diagn Microbiol Infect Dis, 1999, 34(2):83-90. DOI: 10.1016/S0732-8893(99)00012-7 . |
14 | KOBAYASHI N, WU H, KOJIMA K, et al. Detection of mecA, femA, and femB genes in clinical strains of staphylococci using polymerase chain reaction[J]. Epidemiol Infect, 1994, 113(2):259-266. DOI: 10.1017/s0950268800051682 . |
15 | OU A F, WANG K, MAO Y X, et al. First report on the rapid detection and identification of methicillin-resistant Staphylococcus aureus (MRSA) in viable but non-culturable (VBNC) under food storage conditions[J]. Front Microbiol, 2021, 11:615875. DOI: 10.3389/fmicb.2020.615875 . |
16 | SHOAIB M, AQIB A I, ALI M M, et al. Tracking infection and genetic divergence of methicillin-resistant Staphylococcus aureus at pets, pet owners, and environment interface[J]. Front Vet Sci, 2022, 9:900480. DOI: 10.3389/fvets.2022.900480 . |
17 | HENNEKINNE J A, DE BUYSER M L, DRAGACCI S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation[J]. FEMS Microbiol Rev, 2012, 36(4):815-836. DOI: 10.1111/j.1574-6976.2011.00311.x . |
18 | NADIYA S, KOLLA H B, REDDY P N. Optimization and evaluation of a multiplex PCR assay for detection of Staphylococcus aureus and its major virulence genes for assessing food safety[J]. Publ Braz Soc Microbiol, 2023, 54(1):311-321. DOI: 10.1007/s42770-023-00906-6 . |
19 | GONET M, KROWARSCH D, SCHUBERT J, et al. Stability and resistance to proteolysis of enterotoxins SEC and SEL produced by Staphylococcus epidermidis and Staphylococcus aureus [J]. Foodborne Pathog Dis, 2023, 20(1):32-37. DOI: 10.1089/fpd.2022.0059 . |
20 | MORADIKIAN M, KOMIJANI M, SHAYESTEHFAR A. Detection of Staphylococcus aureus and their toxin genes inhabit on the scorpions surface[J]. Arch Microbiol, 2022, 204(9):576. DOI: 10.1007/s00203-022-03176-2 . |
21 | SU Y C, WONG A C. Identification and purification of a new staphylococcal enterotoxin, H[J]. Appl Environ Microbiol, 1995, 61(4):1438-1443. DOI: 10.1128/aem.61.4.1438-1443.1995 . |
22 | MUNSON S H, TREMAINE M T, BETLEY M J, et al. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus [J]. Infect Immun, 1998, 66(7):3337-3348. DOI: 10.1128/IAI.66. 7.3337-3348.1998 . |
23 | GERGOVA R, TSITOU V M, DIMOV S G, et al. Molecular epidemiology, virulence and antimicrobial resistance of Bulgarian methicillin resistant Staphylococcus aureus isolates[J]. AMicr, 2022, 69(3):193-200. DOI: 10.1556/030.2022. 01766 . |
24 | TUCKER P W, HAZEN E E Jr, COTTON F A. Staphylococcal nuclease reviewed: a prototypic study in contemporary enzymology. I. Isolation; physical and enzymatic properties[J]. Mol Cell Biochem, 1978, 22(2-3):67-77. DOI: 10.1007/BF00496235 . |
25 | BRAKSTAD O G, MÆLAND J A. Generation and characterization of monoclonal antibodies against Staphylococcus aureus thermonuclease[J]. APMIS, 1989, 97(1-6):166-174. DOI: 10.1111/j.1699-0463.1989.tb00772.x . |
26 | KOVACEVIC S, VEAL L E, HSIUNG H M, et al. Secretion of staphylococcal nuclease by Bacillus subtilis [J]. J Bacteriol, 1985, 162(2):521-528. DOI: 10.1128/jb.162.2.521-528.1985 . |
27 | CHESNEAU O, ALLIGNET J, SOLH N EL. Thermonuclease gene as a target nucleotide sequence for specific recognition of Staphylococcus aureus [J]. Mol Cell Probes, 1993, 7(4):301-310. DOI: 10.1006/mcpr.1993.1044 . |
28 | MADISON B M, BASELSKI V S. Rapid identification of Staphylococcus aureus in blood cultures by thermonuclease testing[J]. J Clin Microbiol, 1983, 18(3):722-724. DOI: 10.1128/jcm.18.3.722-724.1983 . |
29 | CANNING B, MOHAMED I, WICKRAMASINGHE N, et al. Thermonuclease test accuracy is preserved in methicillin-resistant Staphylococcus aureus isolates[J]. J Med Microbiol, 2020, 69(4):548-551. DOI: 10.1099/jmm.0.001166 . |
30 | 王纯, 张若鸿, 王晓芳, 等. 乳制品中金黄色葡萄球菌PCR快速检测方法的建立[J]. 核农学报, 2022, 36(6): 1193-1203. DOI: 10.11869/j.issn.100-8551.2022.06.1193 . |
WANG C, ZHANG R H, WANG X F, et al. Development of PCR rapid detection method for Staphylococcus aureus in dairy products[J]. J Nucl Agric Sci, 2022, 36(6): 1193-1203. DOI: 10.11869/j.issn.100-8551.2022.06.1193 . | |
31 | DONG Q S, WANG Q, ZHANG Y, et al. Prevalence, antimicrobial resistance, and staphylococcal toxin genes of blaTEM-1a-producing Staphylococcus aureus isolated from animals in Chongqing, China[J]. Vet Med Sci, 2023, 9(1):513-522. DOI: 10.1002/vms3.1028 . |
32 | BRAKSTAD O G, AASBAKK K, MAELAND J A. Detection of Staphylococcus aureus by polymerase chain reaction amplification of the nuc gene[J]. J Clin Microbiol, 1992, 30(7):1654-1660. DOI: 10.1128/jcm.30.7.1654-1660.1992 . |
33 | 高正琴, 邢华, 李厚达. PCR技术在鼠金黄色葡萄球菌检测中的初步研究[J]. 畜牧与兽医, 2002, 34(8):5-7. DOI: 10.3969/j.issn.0529-5130.2002.08.003 . |
GAO Z Q, XING H, LI H D. The pilot study of polymerase chain reaction for detecting Staphylococcus aureus in rats and mice[J]. Animal Husb Vet Med, 2002, 34(8):5-7. DOI: 10.3969/j.issn.0529-5130.2002.08.003 . | |
34 | 王鹏飞. 实验动物金黄色葡萄球菌、绿脓杆菌和肺支原体多重PCR检测方法的建立与初步应用[D]. 石家庄:河北医科大学,2016. |
WANG P F. The Establishment and preliminary applications of Multiple PCR for detecting Staphylococcus aureus,Pseudomonas aeruginosa and Mycoplasma pulmonis in Laboratory Animals[D]. SHIJIAZHUANG: Hebei Medical University, 2016. | |
35 | 陆文俊. 金黄色葡萄球菌特异性靶点的筛选与PCR快速检测方法的建立[D]. 南京:南京农业大学, 2017. |
LU W J. The screening of specific target for Staphylococcus aureus and establishment of rapid PCR detection method[D]. Nanjing: Nanjing Agriculture University. 2017. |
[1] | 钟瑞华, 李国停, 杨文捷, 郭湘洁, 周洁芸, 胡颖怡, 倪其承, 杨野, 张敏, 朱焰. 同种异体子宫内膜异位症大鼠模型用于GnRH激动剂类药物的药效评价研究[J]. 实验动物与比较医学, 2024, 44(2): 127-138. |
[2] | 胡锦华, 韩菁婕, 金旻, 胡滨, 娄月芬. 葛根素对大鼠和小鼠骨密度影响的Meta分析[J]. 实验动物与比较医学, 2024, 44(2): 149-161. |
[3] | 梁敏, 郭洋, 王津津, 朱梦妍, 池骏, 陈艳娟, 王成稷, 喻智澜, 沈如凌. Dmd基因突变小鼠构建及在肌肉及免疫系统的表型验证[J]. 实验动物与比较医学, 2024, 44(1): 42-51. |
[4] | 郑建华, 法云智, 董巧燕, 邱业峰, 陈菁青. 高原急性缺氧肠道应激损伤小鼠模型的构建与评价[J]. 实验动物与比较医学, 2024, 44(1): 31-41. |
[5] | 唐倩倩, 张秀莉, 常在. 清华大学实验动物中心小鼠自动饮水系统漏水情况统计分析[J]. 实验动物与比较医学, 2024, 44(1): 85-91. |
[6] | 侯敏博, 崔甜甜, 苏娜瑛, 张苗苗, 焦永敏, 严建燕, 汪溪洁, 大平东子. 一例Han-Wistar大鼠垂体细胞瘤的病理学分析[J]. 实验动物与比较医学, 2023, 43(6): 654-658. |
[7] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[8] | 王丹, 张晓璐, 王妍, 傅博, 王文栋, 刘京, 张甦寅, 武怡荷, 吴德国, 杜小燕, 战大伟, 章秀林, 李长龙. Big-BALB/c小鼠亚系选育前后的抗体制备效率比较研究[J]. 实验动物与比较医学, 2023, 43(6): 612-618. |
[9] | 聂永强, 王朝霞. 濒危基因编辑小鼠品系拯救技术及其应用探讨[J]. 实验动物与比较医学, 2023, 43(6): 636-640. |
[10] | 赵丽亚, 倪丽菊, 张彩勤, 汤建平, 姚养正, 聂艳艳, 顾晓雪, 赵莹. 基于多重PCR-LDR技术建立近交系大鼠单核苷酸多态性遗传检测方案[J]. 实验动物与比较医学, 2023, 43(5): 548-558. |
[11] | 王成稷, 王珏, 王海杰, 陆炜晟, 史岩, 顾正页, 万鸣秋, 沈如凌. 乳胶血管灌注技术制作小鼠头面部静脉血管模型方法初探[J]. 实验动物与比较医学, 2023, 43(5): 574-578. |
[12] | 翟珊珊, 梁亮, 曹颖颖, 李竹欣, 王青, 陶俊宇, 运晨霞, 冷静, 唐海波. 一例树鼩毛发上皮瘤的诊断及细胞生物学特性观察[J]. 实验动物与比较医学, 2023, 43(4): 440-445. |
[13] | 黄缨, 韦思羽, 蔡莉, 强苏静, 李冬婷, 丁玉强. 供应商来源的实验大鼠和小鼠微生物监测结果分析:以复旦大学实验动物科学部为例[J]. 实验动物与比较医学, 2023, 43(4): 347-354. |
[14] | 谈小倩, 杨颢, 唐慧青, 瞿伟, 李亮, 钱珍, 顾坚忠, 徐平, 肖君华. BALB/cA.Cg.SHJH hr 小鼠的培育及其相关遗传学特性分析[J]. 实验动物与比较医学, 2023, 43(4): 363-370. |
[15] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||