1 |
LANGLOIS J A, RUTLAND-BROWN W, WALD M M. The epidemiology and impact of traumatic brain injury: a brief overview[J]. J Head Trauma Rehabil, 2006, 21(5):375-378. DOI: 10.1097/00001199-200609000-00001 .
|
2 |
KATZ D I, BERNICK C, DODICK D W, et al. National institute of neurological disorders and stroke consensus diagnostic criteria for traumatic encephalopathy syndrome[J]. Neurology, 2021, 96(18):848-863. DOI: 10.1212/WNL. 0000000000011850 .
|
3 |
SILVERBERG N D, IACCARINO M A, PANENKA W J, et al. Management of concussion and mild traumatic brain injury: a synthesis of practice guidelines[J]. Arch Phys Med Rehabil, 2020, 101(2):382-393. DOI: 10.1016/j.apmr.2019.10.179 .
|
4 |
GALGANO M, TOSHKEZI G, QIU X C, et al. Traumatic brain injury: current treatment strategies and future endeavors[J]. Cell Transplant, 2017, 26(7):1118-1130. DOI: 10.1177/0963689717714102 .
|
5 |
AHMED T, RAZA S H, MARYAM A, et al. Ginsenoside Rb1 as a neuroprotective agent: a review[J]. Brain Res Bull, 2016, 125:30-43. DOI: 10.1016/j.brainresbull.2016.04.002 .
|
6 |
GAO J, BAI H J, LI Q, et al. In vitro investigation of the mechanism underlying the effect of ginsenoside on the proliferation and differentiation of neural stem cells subjected to oxygen-glucose deprivation/reperfusion[J]. Int J Mol Med, 2018, 41(1):353-363. DOI: 10.3892/ijmm.2017.3253 .
|
7 |
WU Y X, WU H J, ZENG J X, et al. Mild traumatic brain injury induces microvascular injury and accelerates Alzheimer-like pathogenesis in mice[J]. Acta Neuropathol Commun, 2021, 9(1):74. DOI: 10.1186/s40478-021-01178-7 .
|
8 |
CUI W X, WU X, FENG D Y, et al. Acrolein induces systemic coagulopathy via autophagy-dependent secretion of von willebrand factor in mice after traumatic brain injury[J]. Neurosci Bull, 2021, 37(8):1160-1175. DOI: 10.1007/s12264-021-00681-0 .
|
9 |
CHEN Y F, LI J, MA B T, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat[J]. Aging (Albany NY), 2020, 12(18):18274-18296. DOI: 10.18632/aging.103692 .
|
10 |
LONG X B, YAO X L, JIANG Q, et al. Astrocyte-derived exosomes enriched with miR-873a-5p inhibit neuroinflammation via microglia phenotype modulation after traumatic brain injury[J]. J Neuroinflammation, 2020, 17(1):89. DOI: 10.1186/s12974-020-01761-0 .
|
11 |
ZHANG Y L, ZHANG Y, CHOPP M, et al. Mesenchymal stem cell-derived exosomes improve functional recovery in rats after traumatic brain injury: a dose-response and therapeutic window study[J]. Neurorehabil Neural Repair, 2020, 34(7):616-626. DOI: 10.1177/1545968320926164 .
|
12 |
ARAKI T, YOKOTA H, MORITA A. Pediatric traumatic brain injury: characteristic features, diagnosis, and management[J]. Neurol Med Chir (Tokyo), 2017, 57(2):82-93. DOI: 10.2176/nmc.ra.2016-0191 .
|
13 |
雷勋明. 人参皂苷Rg1对新生鼠缺氧缺血性脑损伤海马神经元凋亡及学习记忆能力的影响[J]. 中国中西医结合儿科学, 2018, 10(4): 277-279. DOI: 10.3969/j.issn.1674-3865.2018.04.001 .
|
|
LEI X M. Effects of ginseng Rg1 on hippocampal neuronal apoptosis and learning ability of neonatal rats with hypoxic-ischemic brain damage[J]. Chin Pediatr Integr Tradit West Med, 2018, 10(4): 277-279. DOI: 10.3969/j.issn.1674-3865.2018.04.001 .
|
14 |
SONG X Y, HU J F, CHU S F, et al. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the GSK3β/tau signaling pathway and the Aβ formation prevention in rats[J]. Eur J Pharmacol, 2013, 710(1-3):29-38. DOI: 10.1016/j.ejphar.2013.03.051 .
|
15 |
ZOU S F, CHEN W, DING H, et al. Involvement of autophagy in the protective effects of ginsenoside Rb1 in a rat model of traumatic brain injury[J]. Eur J Drug Metab Pharmacokinet, 2022, 47(6):869-877. DOI: 10.1007/s13318-022-00799-0 .
|
16 |
ZHANG Z R, SONG Z J, SHEN F M, et al. Ginsenoside Rg1 prevents PTSD-like behaviors in mice through promoting synaptic proteins, reducing Kir4.1 and TNF-α in the Hippocampus[J]. Mol Neurobiol, 2021, 58(4):1550-1563. DOI: 10.1007/s12035-020-02213-9 .
|
17 |
HU B Y, LIU X J, QIANG R, et al. Treatment with ginseng total saponins improves the neurorestoration of rat after traumatic brain injury[J]. J Ethnopharmacol, 2014, 155(2):1243-1255. DOI: 10.1016/j.jep.2014.07.009 .
|
18 |
ZHAI K F, DUAN H, WANG W, et al. Ginsenoside Rg1 ameliorates blood-brain barrier disruption and traumatic brain injury via attenuating macrophages derived exosomes miR-21 release[J]. Acta Pharm Sin B, 2021, 11(11):3493-3507. DOI: 10.1016/j.apsb.2021.03.032 .
|
19 |
DHANDA S, SANDHIR R. Blood-brain barrier permeability is exacerbated in experimental model of hepatic encephalopathy via MMP-9 activation and downregulation of tight junction proteins[J]. Mol Neurobiol, 2018, 55(5):3642-3659. DOI: 10.1007/s12035-017-0521-7 .
|
20 |
REMPE R G, HARTZ A M S, BAUER B. Matrix metallo-proteinases in the brain and blood-brain barrier: versatile breakers and makers[J]. J Cereb Blood Flow Metab, 2016, 36(9):1481-1507. DOI: 10.1177/0271678X16655551 .
|
21 |
LI Y H, MENG Q, YANG M B, et al. Current trends in drug metabolism and pharmacokinetics[J]. Acta Pharm Sin B, 2019, 9(6):1113-1144. DOI: 10.1016/j.apsb.2019.10.001 .
|
22 |
XIONG Y, MAHMOOD A, CHOPP M. Animal models of traumatic brain injury[J]. Nat Rev Neurosci, 2013, 14(2):128-142. DOI: 10.1038/nrn3407 .
|
23 |
KARVE I P, TAYLOR J M, CRACK P J. The contribution of astrocytes and microglia to traumatic brain injury[J]. Br J Pharmacol, 2016, 173(4):692-702. DOI: 10.1111/bph.13125 .
|
24 |
SOFRONIEW M V, VINTERS H V. Astrocytes: biology and pathology[J]. Acta Neuropathol, 2010, 119(1):7-35. DOI: 10.1007/s00401-009-0619-8 .
|
25 |
VILLAPOL S, BYRNES K R, SYMES A J. Temporal dynamics of cerebral blood flow, cortical damage, apoptosis, astrocyte-vasculature interaction and astrogliosis in the pericontusional region after traumatic brain injury[J]. Front Neurol, 2014, 5:82. DOI: 10.3389/fneur.2014.00082 .
|
26 |
KOLIATSOS V E, RAO V. The behavioral neuroscience of traumatic brain injury[J]. Psychiatr Clin North Am, 2020, 43(2):305-330. DOI: 10.1016/j.psc.2020.02.009 .
|