实验动物与比较医学

• •    

生物3D打印研究及非临床模型交叉应用展望

胡敏1()(), 董乐轩2, 高怡2, 奚子芪2, 沈子皓2, 唐瑞阳2, 栾鑫2, 汤忞2()(), 张卫东1,2,3   

  1. 1.上海理工大学健康科学与工程学院, 上海 200093
    2.上海中医药大学交叉科学研究院, 上海 201203
    3.中国人民解放军海军军医大学药学院, 上海 200433
  • 发布日期:2025-03-19
  • 通讯作者: 汤忞(1992-),女,博士,青年研究员,硕士生导师,研究方向:生物3D打印在组织工程及肿瘤研究中的应用。E-mail: mit012@shutcm.edu.cn。ORCID:0000-0002-6084-1827
  • 作者简介:胡敏(2000-),女,硕士,研究方向:生物3D打印。E-mail:213332692@st.usst.edu.cn。ORCID:0009-0008-4332-8555
  • 基金资助:
    上海市中医药管理局/上海市卫生健康委员会项目“三年行动计划-智慧中药交叉创新团队”(ZY(2021-2023)0401)

Prospects for 3D Bioprinting and transdisciplinary application of Non-clinical Models

Hu Min1()(), Dong Lexuan2, Gao Yi2, Xi Ziqi2, Shen Zihao2, Tang Ruiyang2, Zhang Luan Xin2, Tang Min2()(), Zhang Weidong1,2,3   

  1. 1.School of Health Sciences &Engineering, University of Shanghai for Science & Technology, Shanghai 200093, China
    2.Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
    3.School of Pharmacy, Naval Medical University, Shanghai 200433, China
  • Published:2025-03-19
  • Contact: TANG Min (ORCID: 0000-0002-6084-1827), E-mail: mit012@shutcm.edu.cn,

摘要:

动物实验是生物医药研究中不可或缺的一部分,在药物安全性、毒性、疗效评估以及机制研究中发挥着重要作用,然而近年来,动物实验面临的挑战越来越多,为了应对这些挑战,2022年9月,美国参议院通过了《S.5002 - FDA Modernization Act 2.0(FDA现代化法案2.0)》,取消了自1938年以来实施的FDA批准新药进入人体临床试验前必须经过动物实验的联邦强制要求,并正式提出了将非动物性模型应用于临床前试验中。生物3D打印模型由于具有高仿生、高异质性和高通量特征使其成为替代方法中的典例。本综述简要介绍了3D生物打印的技术方法,以及其在药物研发、组织工程以及和动物模型的交叉应用,旨在探讨当下生物3D打印模型在生物医药领域的进展与未来,以及其与动物模型的相互关系,以期为生物医学领域的相关研究提供有价值的参考。

关键词: 生物3D打印, 药物研发, 组织工程, 再生医学, 非临床模型, 动物模型

Abstract:

Animal experimentation plays an indispensable role in the development of biomedicine, significantly contributing to drug safety, toxicity, efficacy assessment, and mechanism research. However, in recent years, the challenges for animal experimentation have been increasing. In response to these challenges, in September 2022, the U.S. Senate passed the "FDA Modernization Act 2.0 (S.5002)," which removes the federal mandate requiring animal testing for FDA approval of new drugs before human clinical trials, a requirement in place since 1938. This act formally promotes the use of non-animal models in preclinical trials. 3D bioprinting models, characterized by their high biomimicry, heterogeneity, and high-throughput capabilities, have emerged as a prime example of these alternative methods. This review briefly introduces the technical methods of 3D bioprinting and its applications in drug development, tissue engineering, and its intersection with animal models. The aim is to explore the current progress and future prospects of bio-3D printing models in the biomedical field and their relationship with animal models, providing valuable insights for professionals in the biomedical community.

Key words: 3D Bioprinting, Drug development, Tissue engineering, Regenerative medicine, Non-clinical Models, Animal model