1 |
AKHTAR A. The flaws and human harms of animal experimentation[J]. Cambridge quarterly of healthcare ethics: CQ: the international journal of healthcare ethics committees, 2015, 24(4): 407-419. DOI: 10.1017/S0963180115000079 .
|
2 |
BALCOMBE JP. Laboratory environments and rodents' behavioural needs: A review[J]. Laboratory Animals, 2006, 40(3): 217-235. DOI: 10.1258/002367706777611488 .
|
3 |
TEBON PJ, WANG B, MARKOWITZ AL, et al. Drug screening at single-organoid resolution via bioprinting and interferometry[J]. Nature Communications, 2023, 14(1): 3168. DOI: 10.1038/s41467-023-38832-8 .
|
4 |
LEVATO R, DUDARYEVA O, GARCIAMENDEZ-MIJARES CE, et al. Light-based vat-polymerization bioprinting[J]. Nature Reviews Methods Primers, 2023, 3(1): 1-19. DOI: 10.1038/s43586-023-00231-0 .
|
5 |
Kang HW, Lee SJ, Ko IK, et al. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity[J]. Nat Biotechnol. 2016;34(3):312-319. DOI: 10.1038/nbt.3413
|
6 |
JI S and GUVENDIREN M. Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Frontiers in Bioengineering and Biotechnology, 2017, 5. DOI: 10.3389/fbioe.2017.00023 .
|
7 |
WANG T, HAN Y, WU Z, et al. Tissue-specific hydrogels for three-dimensional printing and potential application in peripheral nerve regeneration[J]. Tissue Engineering. Part A, 2022, 28(3-4): 161-174. DOI: 10.1089/ten.TEA.2021.0093 .
|
8 |
XIANG Y, MILLER K, GUAN J, et al. 3D bioprinting of complex tissues in vitro: State-of-the-art and future perspectives[J]. Archives of Toxicology, 2022, 96(3): 691-710. DOI: 10.1007/s00204-021-03212-y .
|
9 |
TANG M, RICH JN, CHEN S. Biomaterials and 3D bioprinting strategies to model glioblastoma and the blood-brain barrier [J]. Adv Mater, 2021, 33(5): e2004776. DOI: 10.1002/adma.202004776
|
10 |
ZHOU L, FU J and HE Y. A review of 3D printing technologies for soft polymer materials[J]. Advanced Functional Materials, 2020, 30(28): 2000187. DOI: 10.1002/adfm.202000187 .
|
11 |
RESEARCH C FOR DE AND. Novel drug approvals for 2024[J]. FDA, 2024. .
|
12 |
VAN NORMAN GA. Limitations of animal studies for predicting toxicity in clinical trials: Is it time to rethink our current approach?[J]. JACC. Basic to translational science, 2019, 4(7): 845-854. DOI: 10.1016/j.jacbts.2019.10.008 .
|
13 |
SCHUSTER B, JUNKIN M, KASHAF SS, et al. Automated microfluidic platform for dynamic and combinatorial drug screening of tumor organoids[J]. Nature Communications, 2020, 11(1): 5271. DOI: 10.1038/s41467-020-19058-4 .
|
14 |
TUNG YT, CHEN YC, DERR K, et al. A 3D bioprinted human neurovascular unit model of glioblastoma tumor growth[J]. Advanced Healthcare Materials, 2024, 13(15): e2302831. DOI: 10.1002/adhm.202302831 .
|
15 |
DESIGAUX T, COMPERAT L, DUSSERRE N, et al. 3D bioprinted breast cancer model reveals stroma-mediated modulation of extracellular matrix and radiosensitivity[J]. Bioactive Materials, 2024, 42: 316-327. DOI: 10.1016/j.bioactmat.2024.08.037 .
|
16 |
TANG M, XIE Q, GIMPLE RC, et al. Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions[J]. Cell Research, 2020, 30(10): 833-853. DOI: 10.1038/s41422-020-0338-1 .
|
17 |
TANG M, QU Y, HE P, et al. Heat-inducible CAR-T overcomes adverse mechanical tumor microenvironment in a 3D bioprinted glioblastoma model[J]. Materials Today. Bio, 2024, 26: 101077. DOI: 10.1016/j.mtbio.2024.101077 .
|
18 |
TANG M, TIWARI SK, AGRAWAL K, et al. Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity[J]. Small (Weinheim an Der Bergstrasse, Germany), 2021, 17(15): e2006050. DOI: 10.1002/smll.202006050 .
|
19 |
JOHNSON BN, LANCASTER KZ, HOGUE IB, et al. 3D printed nervous system on a chip[J]. Lab on a Chip, 2016, 16(8): 1393-1400. DOI: 10.1039/c5lc01270h .
|
20 |
BANERJEE D, IVANOVA MM, CELIK N, et al. Biofabrication of anin-vitrobone model for gaucher disease[J]. Biofabrication, 2023, 15(4): 045023. DOI: 10.1088/1758-5090/acf95a .
|
21 |
SCARIAN E, BORDONI M, FANTINI V, et al. Patients' stem cells differentiation in a 3D environment as a promising experimental tool for the study of amyotrophic lateral sclerosis[J]. International journal of molecular sciences, 2022, 23(10): 5344. DOI: 10.3390/ijms23105344 .
|
22 |
ROUSSEL R, STEG PG, MOHAMMEDI K, et al. Prevention of cardiovascular disease through reduction of glycaemic exposure in type 2 diabetes: A perspective on glucose-lowering interventions[J]. Diabetes, Obesity & Metabolism, 2018, 20(2): 238-244. DOI: 10.1111/dom.13033 .
|
23 |
ALI ASM, WU D, BANNACH-BROWN A, et al. 3D bioprinting of liver models: A systematic scoping review of methods, bioinks, and reporting quality[J]. Materials Today. Bio, 2024, 26: 100991. DOI: 10.1016/j.mtbio.2024.100991 .
|
24 |
NGUYEN DG, FUNK J, ROBBINS JB, et al. Bioprinted 3D primary liver tissues allow assessment of organ-level response to clinical drug induced toxicity In vitro[J]. PLOS One, 2016, 11(7): e0158674. DOI: 10.1371/journal.pone.0158674 .
|
25 |
JANANI G, PRIYA S, DEY S, et al. Mimicking native liver lobule microarchitecture In vitro with parenchymal and non-parenchymal cells using 3D bioprinting for drug toxicity and drug screening applications[J]. ACS Applied Materials & Interfaces, 2022, 14(8): 10167-10186. DOI: 10.1021/acsami.2c00312 .
|
26 |
HE J, WANG J, PANG Y, et al. Bioprinting of a hepatic tissue model using human-induced pluripotent stem cell-derived hepatocytes for drug-induced hepatotoxicity evaluation [J]. Int J Bioprint, 2022, 8(3): 581. Published 2022 Jun 14. DOI: 10.18063/ijb.v8i3.581
|
27 |
DEY S, BHAT A, JANANI G, et al. Microfluidic human physiomimetic liver model as a screening platform for drug induced liver injury[J]. Biomaterials, 2024, 310: 122627. DOI: 10.1016/j.biomaterials.2024.122627 .
|
28 |
FERRI N, SIEGL P, CORSINI A, et al. Drug attrition during pre-clinical and clinical development: understanding and managing drug-induced cardiotoxicity[J]. Pharmacology & Therapeutics, 2013, 138(3): 470-484. DOI: 10.1016/j.pharmthera.2013.03.005 .
|
29 |
YANG K, WANG L, VIJAYAVENKATARAMAN S, et al. Recent applications of three-dimensional bioprinting in drug discovery and development[J]. Advanced Drug Delivery Reviews, 2024, 214: 115456. DOI: 10.1016/j.addr.2024.115456 .
|
30 |
ARAI K, MURATA D, TAKAO S, et al. Drug response analysis for scaffold-free cardiac constructs fabricated using bio-3D printer[J]. Scientific Reports, 2020, 10(1): 8972. DOI: 10.1038/s41598-020-65681-y .
|
31 |
IWANAGA S, HAMADA Y, TSUKAMOTO Y, et al. Design and fabrication of mature engineered pre-cardiac tissue utilizing 3D bioprinting technology and enzymatically crosslinking hydrogel[J]. Materials (Basel, Switzerland), 2022, 15(22): 7928. DOI: 10.3390/ma15227928 .
|
32 |
LIU S, WANG Z, CHEN X, et al. Multiscale anisotropic scaffold integrating 3D printing and electrospinning techniques as a heart-on-a-chip platform for evaluating drug-induced cardiotoxicity[J]. Advanced Healthcare Materials, 2023, 12(24): e2300719. DOI: 10.1002/adhm.202300719 .
|
33 |
王梓霏, 丁雅卉, 李彦, 等. 生物3D打印在肿瘤研究及组织工程中的应用[J]. 中国癌症杂志, 2024, 34(9): 814-826. DOI: 10.19401/j.cnki.1007-3639.2024.09.002 .
|
|
WANG Z. F., DING Y. H., LI Y., et al. Application of bio-3D printing in cancer research and tissue engineering[J]. Chinese Journal of Cancer, 2024, 34(9): 814-826. DOI: 10.19401/j.cnki.1007-3639.2024.09.002
|
34 |
BAI Y, WANG Z, HE X, et al. Application of bioactive materials for osteogenic function in bone tissue engineering [J]. Small Methods, 2024, 8(8): e2301283. DOI: 10.1002/smtd.202301283 .
|
35 |
YAN Y, CHEN H, ZHANG H, et al. Vascularized 3D printed scaffolds for promoting bone regeneration[J]. Biomaterials, 2019, 190-191: 97-110. DOI: 10.1016/j.biomaterials.2018.10.033 .
|
36 |
DEPARTMENT OF BIOENGINEERING, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PA, 19104, USA, VEGA S, KWON M, et al. Recent advances in hydrogels for cartilage tissue engineering[J]. European Cells and Materials, 2017, 33: 59-75. DOI: 10.22203/eCM.v033a05 .
|