1 |
TOMKINS M, LAWLESS S, MARTIN-GRACE J, et al. Diagnosis and management of central diabetes insipidus in adults[J]. J Clin Endocrinol Metab, 2022, 107(10):2701-2715. DOI: 10.1210/clinem/dgac381 .
|
2 |
ATILA C, LOUGHREY P B, GARRAHY A, et al. Central diabetes insipidus from a patient's perspective: management, psychological co-morbidities, and renaming of the condition: results from an international web-based survey[J]. Lancet Diabetes Endocrinol, 2022, 10(10):700-709. DOI: 10.1016/S2213-8587(22)00219-4 .
|
3 |
REUREAN-PINTILEI D, POTCOVARU C G, SALMEN T, et al. Assessment of cardiovascular risk categories and achievement of therapeutic targets in European patients with type 2 diabetes[J]. J Clin Med, 2024, 13(8):2196. DOI: 10.3390/jcm13082196 .
|
4 |
AL-AWAR A, KUPAI K, VESZELKA M, et al. Experimental diabetes mellitus in different animal models[J]. J Diabetes Res, 2016, 2016:9051426. DOI: 10.1155/2016/9051426 .
|
5 |
杜小燕, 李长龙, 王冬平, 等. 长爪沙鼠自发性糖尿病模型近交系培育及其生物学特性的研究进展[J]. 中国实验动物学报, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 .
|
|
DU X Y, LI C L, WANG D P, et al. Research progress in the establishment of a spontaneous diabetic inbred gerbil and its biological characteristics[J]. Acta Lab Animalis Sci Sin, 2018, 26(4):507-511. DOI: 10.3969/j.issn.1005-4847.2018.04.016 .
|
6 |
唐艺丹, 王鲜忠, 张姣姣. Ⅱ型糖尿病动物模型构建的研究进展[J]. 中国实验动物学报, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 .
|
|
TANG Y D, WANG X Z, ZHANG J J. Research progress in the construction of type Ⅱ diabetes animal models[J]. Acta Lab Animalis Sci Sin, 2020, 28(6):870-876. DOI: 10.3969/j.issn.1005-4847.2020.06.020 .
|
7 |
崔淼, 朱春江, 刘向荣. 糖尿病动物模型构建的研究进展[J]. 中国实验诊断学, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 .
|
|
CUI M, ZHU C J, LIU X R. Research progress on the construction of animal model of diabetes mellitus[J]. Chin J Lab Diagn, 2023, 27(2):227-230. DOI: 10.3969/j.issn.1007-4287.2023.02.026 .
|
8 |
LUTZ T A. Mammalian models of diabetes mellitus, with a focus on type 2 diabetes mellitus[J]. Nat Rev Endocrinol, 2023, 19(6):350-360. DOI: 10.1038/s41574-023-00818-3 .
|
9 |
MARTÍN-CARRO B, DONATE-CORREA J, FERNÁNDEZ-VILLABRILLE S, et al. Experimental models to study diabetes mellitus and its complications: limitations and new opportunities[J]. Int J Mol Sci, 2023, 24(12):10309. DOI: 10.3390/ijms241210309 .
|
10 |
REN G, BHATNAGAR S, HAHN D J, et al. Long-chain acyl-CoA synthetase-1 mediates the palmitic acid-induced inflammatory response in human aortic endothelial cells[J]. Am J Physiol Endocrinol Metab, 2020, 319(5): E893-E903. DOI: 10.1152/ajpendo.00117.2020 .
|
11 |
PRIOR A M, ZHANG M, BLAKEMAN N, et al. Inhibition of long chain fatty acyl-CoA synthetase (ACSL) and ischemia reperfusion injury[J]. Bioorg Med Chem Lett, 2014, 24(4):1057-1061. DOI: 10.1016/j.bmcl.2014.01.016 .
|
12 |
赵小娜, 王聪, 申程, 等. 反式脂肪酸摄取加重糖尿病小鼠脂代谢异常及初步机制研究[J]. 中国分子心脏病学杂志, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 .
|
|
ZHAO X N, WANG C, SHEN C, et al. Trans fatty acids aggravate lipid metabolism dysfunction in STZ-induced diabetic mice and its possible mechanism[J]. Mol Cardiol China, 2016, 16(2):1659-1663. DOI: 10.16563/j.cnki.1671-6272.2016.10.026 .
|
13 |
MA Y J, ZHA J Y, YANG X K, et al. Long-chain fatty acyl-CoA synthetase 1 promotes prostate cancer progression by elevation of lipogenesis and fatty acid beta-oxidation[J]. Oncogene, 2021, 40(10):1806-1820. DOI: 10.1038/s41388-021-01667-y .
|
14 |
WANG C H, SURBHI, GORAYA S, et al. Fatty acids and inflammatory stimuli induce expression of long-chain acyl-CoA synthetase 1 to promote lipid remodeling in diabetic kidney disease[J]. J Biol Chem, 2024, 300(1):105502. DOI: 10.1016/j.jbc.2023.105502 .
|
15 |
SANTORO A, KAHN B B. Adipocyte regulation of insulin sensitivity and the risk of type 2 diabetes[J]. N Engl J Med, 2023, 388(22):2071-2085. DOI: 10.1056/NEJMra2216691 .
|
16 |
KOTZBECK P, GIORDANO A, MONDINI E, et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation[J]. J Lipid Res, 2018, 59(5):784-794. DOI: 10.1194/jlr.M079665 .
|
17 |
LIN J R, DING L L, XU L, et al. Brown adipocyte ADRB3 mediates cardioprotection via suppressing exosomal iNOS[J]. Circ Res, 2022, 131(2):133-147. DOI: 10.1161/CIRCRESAHA. 121.320470 .
|
18 |
TANG X F, MIAO Y F, LUO Y J, et al. Suppression of endothelial AGO1 promotes adipose tissue browning and improves metabolic dysfunction[J]. Circulation, 2020, 142(4):365-379. DOI: 10.1161/CIRCULATIONAHA.119.041231 .
|
19 |
WANG H D, SHEN L, SUN X T, et al. Adipose group 1 innate lymphoid cells promote adipose tissue fibrosis and diabetes in obesity[J]. Nat Commun, 2019, 10(1):3254. DOI: 10.1038/s41467-019-11270-1 .
|
20 |
ADACHI Y, UEDA K, NOMURA S, et al. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling[J]. Nat Commun, 2022, 13(1):5117. DOI: 10.1038/s41467-022-32658-6 .
|
21 |
YIN T T, CHEN S, ZENG G H, et al. Angiogenesis-browning interplay mediated by asprosin-knockout contributes to weight loss in mice with obesity[J]. Int J Mol Sci, 2022, 23(24):16166. DOI: 10.3390/ijms232416166 .
|
22 |
CHOUCHANI E T, KAZAK L, JEDRYCHOWSKI M P, et al. Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1[J]. Nature, 2016, 532(7597):112-116. DOI: 10.1038/nature17399 .
|
23 |
YANG Y, BEIGNEUX A P, SONG W X, et al. Hypertriglyceridemia in Apoa5-/ - mice results from reduced amounts of lipoprotein lipase in the capillary lumen[J]. J Clin Invest, 2023, 133(23): e172600. DOI: 10.1172/JCI172600 .
|
24 |
CHENG L, ZHANG S F, SHANG F, et al. Emodin improves glucose and lipid metabolism disorders in obese mice via activating brown adipose tissue and inducing browning of white adipose tissue[J]. Front Endocrinol, 2021, 12:618037. DOI: 10.3389/fendo.2021.618037 .
|
25 |
TANAKA Y, NAGOSHI T, TAKAHASHI H, et al. URAT1-selective inhibition ameliorates insulin resistance by attenuating diet-induced hepatic steatosis and brown adipose tissue whitening in mice[J]. Mol Metab, 2022, 55:101411. DOI: 10.1016/j.molmet.2021.101411 .
|