实验动物与比较医学 ›› 2024, Vol. 44 ›› Issue (4): 405-418.DOI: 10.12300/j.issn.1674-5817.2024.012
郑艺清, 邓亚胜, 范燕萍, 梁天薇, 黄慧, 刘永辉, 倪召兵, 林江()(
)
收稿日期:
2024-01-22
修回日期:
2024-04-07
出版日期:
2024-09-06
发布日期:
2024-08-25
通讯作者:
林 江(1963—),女,博士,教授,博士生导师,研究方向:方剂组方原理、临床应用及实验研究。E-mail: 1713552545@qq.com。ORCID: 0009-0009-6182-2335作者简介:
郑艺清(1998—),女,硕士研究生,研究方向:特色方剂的配伍及成药化研究。E-mail: 13063001367@163.com
基金资助:
ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang()(
)
Received:
2024-01-22
Revised:
2024-04-07
Published:
2024-08-25
Online:
2024-09-06
Contact:
LIN Jiang (ORCID: 0009-0009-6182-2335), E-mail: 1713552545@qq.com摘要:
目的 探究盆腔炎性疾病(pelvic inflammatory disease,PID)动物模型的造模要素和评价指标,为改进PID动物模型的造模方法、完善PID动物模型的合理应用提供参考依据。 方法 以“盆腔炎”并且“动物模型”或“鼠”或“豚鼠”或“兔”或“犬”或“猪”为主题词,在中国知网数据库、万方数据库和PubMed中检索2013—2023年发表的PID动物模型相关文献,对文献中记载的实验动物种类、造模方法、造模周期、检测指标、阳性对照用药和给药时间等内容进行整理归纳,建立数据库并进行统计分析。 结果 检索筛选出214篇符合纳入标准的PID动物模型文献。其中,模型动物种类选用最多的是SD大鼠,其次为Wistar大鼠;最常用的造模方式是机械损伤联合细菌感染法,其次是苯酚胶浆法;急性盆腔炎(acute pelvic inflammatory disease,APID)和慢性盆腔炎(chronic pelvic inflammatory disease,CPID)/盆腔炎性疾病后遗症(sequelae of pelvic inflammatory disease,SPID)动物造模周期频次最高的是8~14 d,其他不明确分期PID造模周期频数最高的是7 d;高频检测指标包括用苏木精-伊红染色法观察组织病理、酶联免疫吸附法检测血清相关指标、肉眼观察组织外观变化、免疫组化法检测子宫组织中相关蛋白表达和病理评分等;阳性对照药物应用频次最高的是妇科千金片,其次是金刚藤胶囊;APID给药时间频数最高的是7 d,CPID/SPID动物模型给药时间频次最多的是15~21 d。 结论 目前SD大鼠和Wistar大鼠是制备PID模型常用的实验动物,采用机械损伤加混合细菌感染双重造模法与临床发病机制吻合度较高,可建立术后宫腔感染引起的PID模型;根据研究目的不同,可选取不同的阳性对照药物和检测指标进行整体评价。现有的PID动物模型研究大都以西医诊断为标准,对中医症候动物模型的研究较少,需结合中医理论病因病机,构建更符合中医临床病证的PID动物模型。
中图分类号:
郑艺清,邓亚胜,范燕萍,等. 基于数据挖掘的盆腔炎性疾病动物模型应用分析[J]. 实验动物与比较医学, 2024, 44(4): 405-418. DOI: 10.12300/j.issn.1674-5817.2024.012.
ZHENG Yiqing,DENG Yasheng,FAN Yanping,et al. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining[J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. DOI: 10.12300/j.issn.1674-5817.2024.012.
造模动物 Modeling animals | 频数(百分比/%) Frequency (percentage/%) | 体重/g Body weight/g |
---|---|---|
SD 大鼠 SD rats | 155 (71.76) | 以(200±20)g为主 |
Wistar 大鼠 Wistar rats | 43 (19.91) | 以(200±20)g为主 |
BALB/c 小鼠 BALB/c mice | 8 (3.70) | 以(20±1)g为主 |
新西兰白兔 New Zealand white rabbits | 3 (1.39) | 文献未提及 |
C57BL/6 小鼠 C57BL/6 mice | 4 (1.85) | 以(19±1)g为主 |
ICR 小鼠 ICR mice | 2 (0.93) | 以(21±1)g为主 |
FVB野生型小鼠 FVB wild-type mice | 1 (0.46) | 文献未提及 |
表1 盆腔炎性疾病动物种类频数分布
Table 1 Frequency distribution of animal species used in pelvic inflammatory disease (PID) models
造模动物 Modeling animals | 频数(百分比/%) Frequency (percentage/%) | 体重/g Body weight/g |
---|---|---|
SD 大鼠 SD rats | 155 (71.76) | 以(200±20)g为主 |
Wistar 大鼠 Wistar rats | 43 (19.91) | 以(200±20)g为主 |
BALB/c 小鼠 BALB/c mice | 8 (3.70) | 以(20±1)g为主 |
新西兰白兔 New Zealand white rabbits | 3 (1.39) | 文献未提及 |
C57BL/6 小鼠 C57BL/6 mice | 4 (1.85) | 以(19±1)g为主 |
ICR 小鼠 ICR mice | 2 (0.93) | 以(21±1)g为主 |
FVB野生型小鼠 FVB wild-type mice | 1 (0.46) | 文献未提及 |
造模因素 Modelling factors | 造模方法 Modelling methods | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|
化学因素造模 Chemical factor modelling | 苯酚胶浆法 | 59 (27.19) |
盐酸和脂多糖法 | 6 (2.77) | |
物理因素造模 Physical factor modelling | 宫腔无菌异物法 | 4 (1.84) |
生物因素造模 Biological factor modelling | 单一细菌或微生物法 | 9 (4.15) |
混合细菌感染法 | 42 (19.35) | |
双重因素造模 Dual-factor modelling | 机械损伤+混合细菌感 染法 | 80 (36.87) |
苯酚凝胶+机械损伤法 | 12 (5.53) | |
苯酚凝胶+异物法 | 1 (0.46) | |
苯酚凝胶+细菌感染法 | 1 (0.46) | |
多因素造模 Multi-factor modelling | 饥饿+疲劳干预联合细 菌感染法 | 3 (1.38) |
表2 盆腔炎性疾病动物造模方法分类及频次分布
Table 2 Classification and frequency distribution of animal modelling methods for pelvic inflammatory disease (PID)
造模因素 Modelling factors | 造模方法 Modelling methods | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|
化学因素造模 Chemical factor modelling | 苯酚胶浆法 | 59 (27.19) |
盐酸和脂多糖法 | 6 (2.77) | |
物理因素造模 Physical factor modelling | 宫腔无菌异物法 | 4 (1.84) |
生物因素造模 Biological factor modelling | 单一细菌或微生物法 | 9 (4.15) |
混合细菌感染法 | 42 (19.35) | |
双重因素造模 Dual-factor modelling | 机械损伤+混合细菌感 染法 | 80 (36.87) |
苯酚凝胶+机械损伤法 | 12 (5.53) | |
苯酚凝胶+异物法 | 1 (0.46) | |
苯酚凝胶+细菌感染法 | 1 (0.46) | |
多因素造模 Multi-factor modelling | 饥饿+疲劳干预联合细 菌感染法 | 3 (1.38) |
疾病模型类型 Disease model type | 造模周期/d Modelling cycle/d | 频数(百分比/%) Frequency (percentage/%) | 给药时间/d Administration time/d | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|---|---|
急性盆腔炎 Acute pelvic inflammatory disease(APID) | ≤7 | 9 (4.09) | ≤7 | 11 (4.89) |
8~14 | 10 (4.55) | 8~14 | 4 (1.78) | |
15~21 | 2 (0.91) | 15~21 | 7 (3.11) | |
>28 | 2 (0.91) | 22~28 | 1 (0.45) | |
慢性盆腔炎/盆腔炎性疾病后遗症 Chronic pelvic inflammatory disease (CPID)/ sequelae of pelvic inflammatory disease(SPID) | ≤7 | 45 (20.46) | ≤7 | 17 (7.56) |
8~14 | 47 (21.36) | 8~14 | 45 (20.00) | |
15~21 | 24 (10.45) | 15~21 | 74 (32.89) | |
22~28 | 4 (1.82) | 22~28 | 20 (8.89) | |
>28 | 27 (12.27) | >28 | 10 (4.44) | |
不明确分期的盆腔炎 Pelvic inflammatory disease with unclear staging | ≤7 | 26 (11.81) | ≤7 | 4 (1.78) |
8~14 | 10 (4.55) | 8~14 | 10 (4.44) | |
15~21 | 10 (4.55) | 15~21 | 16 (7.11) | |
22~28 | 1 (0.45) | 22~28 | 3 (1.33) | |
>28 | 4 (1.82) | >28 | 3 (1.33) |
表3 盆腔炎性疾病动物造模周期频数和给药时间频数分布
Table 3 Frequency distribution of modelling cycles and administration duration for pelvic inflammatory disease (PID) animal modelling
疾病模型类型 Disease model type | 造模周期/d Modelling cycle/d | 频数(百分比/%) Frequency (percentage/%) | 给药时间/d Administration time/d | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|---|---|
急性盆腔炎 Acute pelvic inflammatory disease(APID) | ≤7 | 9 (4.09) | ≤7 | 11 (4.89) |
8~14 | 10 (4.55) | 8~14 | 4 (1.78) | |
15~21 | 2 (0.91) | 15~21 | 7 (3.11) | |
>28 | 2 (0.91) | 22~28 | 1 (0.45) | |
慢性盆腔炎/盆腔炎性疾病后遗症 Chronic pelvic inflammatory disease (CPID)/ sequelae of pelvic inflammatory disease(SPID) | ≤7 | 45 (20.46) | ≤7 | 17 (7.56) |
8~14 | 47 (21.36) | 8~14 | 45 (20.00) | |
15~21 | 24 (10.45) | 15~21 | 74 (32.89) | |
22~28 | 4 (1.82) | 22~28 | 20 (8.89) | |
>28 | 27 (12.27) | >28 | 10 (4.44) | |
不明确分期的盆腔炎 Pelvic inflammatory disease with unclear staging | ≤7 | 26 (11.81) | ≤7 | 4 (1.78) |
8~14 | 10 (4.55) | 8~14 | 10 (4.44) | |
15~21 | 10 (4.55) | 15~21 | 16 (7.11) | |
22~28 | 1 (0.45) | 22~28 | 3 (1.33) | |
>28 | 4 (1.82) | >28 | 3 (1.33) |
检测指标 Detection indicator | 频数(百分比/%) Frequency (percentage/%) |
---|---|
HE染色观察组织病理变化 Histopathological changes using HE staining | |
子宫Uterus | 132 (14.49) |
输卵管Oviduct | 19 (2.09) |
卵巢Ovary | 7 (0.77) |
阴道Vagina | 3 (0.33) |
盆腔Pelvic cavity | 2 (0.22) |
脾脏Spleen | 1 (0.11) |
ELISA检测血清相关指标ELISA detection of serum⁃related indicators | 130 (14.27) |
肉眼观察组织外观变化Changes in tissue morphology observed with the naked eye | 94 (10.32) |
蛋白质印迹法检测组织中相关蛋白表达Western blot detection of related protein expression in tissues | 65 (7.14) |
免疫组织化学法检测组织中相关蛋白表达、病理评分/分级Immunohistochemical detection of related protein expression, pathological scoring/grading in tissues | 57 (6.26) |
脏器指数/系数 Organ index/coefficient | |
子宫 Uterus | 26(2.85) |
卵巢 Ovary | 4(0.44) |
脾脏 Spleen | 6(0.66) |
胸腺 Thymus | 4(0.44) |
肝脏 Liver | 1(0.11) |
聚合酶链式反应检测组织相关指标的mRNA含量Polymerase chain reaction (PCR) for the detection of mRNA content of tissue-related indicators | |
逆转录PCR Reverse transcription PCR | 18 (1.98) |
实时荧光定量PCR Real-time fluorescence quantitative PCR | 15 (1.65) |
实时荧光定量逆转录PCR Real-time fluorescence quantitative reverse transcription PCR | 6 (0.66) |
肿胀度/肿胀率/抑制率 Swelling degree/Swelling rate/Inhibition rate | 32 (3.51) |
ELISA检测组织相关指标 ELISA detection of tissue-related indicators | 29 (3.18) |
血液流变学指标、氧化应激指标 Blood rheology indices, oxidative stress indices | 24 (2.63) |
一般状况 General condition | 18 (1.98) |
体重 Body weight | 16 (1.76) |
血常规 Complete blood count | 15 (1.65) |
流式细胞仪 Flow cytometry | 14 (1.54) |
阴道涂片 Vaginal smear | 10 (1.10) |
免疫荧光、小鼠疼痛评分Immunofluorescence, mouse grimace scale | 6 (0.66) |
马松染色法、NO含量测定 Masson staining method, measurement of NO content | 5 (0.55) |
表4 盆腔炎性疾病动物模型高频检测指标分类及频数分布
Table 4 Classification and frequency distribution of high-frequency detection indicators in pelvic inflammatory disease (PID) animal models
检测指标 Detection indicator | 频数(百分比/%) Frequency (percentage/%) |
---|---|
HE染色观察组织病理变化 Histopathological changes using HE staining | |
子宫Uterus | 132 (14.49) |
输卵管Oviduct | 19 (2.09) |
卵巢Ovary | 7 (0.77) |
阴道Vagina | 3 (0.33) |
盆腔Pelvic cavity | 2 (0.22) |
脾脏Spleen | 1 (0.11) |
ELISA检测血清相关指标ELISA detection of serum⁃related indicators | 130 (14.27) |
肉眼观察组织外观变化Changes in tissue morphology observed with the naked eye | 94 (10.32) |
蛋白质印迹法检测组织中相关蛋白表达Western blot detection of related protein expression in tissues | 65 (7.14) |
免疫组织化学法检测组织中相关蛋白表达、病理评分/分级Immunohistochemical detection of related protein expression, pathological scoring/grading in tissues | 57 (6.26) |
脏器指数/系数 Organ index/coefficient | |
子宫 Uterus | 26(2.85) |
卵巢 Ovary | 4(0.44) |
脾脏 Spleen | 6(0.66) |
胸腺 Thymus | 4(0.44) |
肝脏 Liver | 1(0.11) |
聚合酶链式反应检测组织相关指标的mRNA含量Polymerase chain reaction (PCR) for the detection of mRNA content of tissue-related indicators | |
逆转录PCR Reverse transcription PCR | 18 (1.98) |
实时荧光定量PCR Real-time fluorescence quantitative PCR | 15 (1.65) |
实时荧光定量逆转录PCR Real-time fluorescence quantitative reverse transcription PCR | 6 (0.66) |
肿胀度/肿胀率/抑制率 Swelling degree/Swelling rate/Inhibition rate | 32 (3.51) |
ELISA检测组织相关指标 ELISA detection of tissue-related indicators | 29 (3.18) |
血液流变学指标、氧化应激指标 Blood rheology indices, oxidative stress indices | 24 (2.63) |
一般状况 General condition | 18 (1.98) |
体重 Body weight | 16 (1.76) |
血常规 Complete blood count | 15 (1.65) |
流式细胞仪 Flow cytometry | 14 (1.54) |
阴道涂片 Vaginal smear | 10 (1.10) |
免疫荧光、小鼠疼痛评分Immunofluorescence, mouse grimace scale | 6 (0.66) |
马松染色法、NO含量测定 Masson staining method, measurement of NO content | 5 (0.55) |
阳性对照药 Positive control drug | 剂量范围/(g·kg-1) Dose range/ (g·kg-1) | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|
妇科千金片Fuke Qianjin Tablets | 0.15~3.6 | 44 (23.15) |
金刚藤胶囊Jingangteng Capsules | 0.067~16.2 | 17 (8.94) |
妇炎康片Fuyankang Tablets | 0.042~5.2 | 16 (8.42) |
康妇炎胶囊、左氧氟沙星Kangfuyan Capsules, Levofloxacin | 0.025~9.3; 0.03~0.08 | 13 (6.84) |
醋酸地塞米松Dexamethasone acetate | 1.35×10-4~1.82 | 10 (5.26) |
阿司匹林Aspirin | 2×10-4~20 | 9 (4.73) |
妇乐片Fule Tablets | 0.65~2.5 | 8 (4.21) |
桂枝茯苓胶囊、罗红霉素Guizhi Fuling Capsules, Roxithromycin | 0.12~3; 82.74×10-3 | 5 (2.63) |
阿奇霉素、甲硝唑Azithromycin, Metronidazole | 1.7×10-3~6; 0.02~0.04 | 4 (2.10) |
花红颗粒、蒲苓盆炎康颗粒、人胎盘组织液、少腹逐瘀颗粒、康妇消炎栓、金鸡颗粒 Huahong Granules, Puling Penyankang Granules, Human Placenta Tissue Hydrolysate, Shaofu Zhuyu Granules, Kangfu Xiaoyan Suppository, Jinji Granules | 2.7~8.4; 3.15×10-3~3; 1; 0.364~1.5; 5.04; 1.02~27.4 | 3 (1.58) |
头孢克肟胶囊、妇炎消胶囊、克林霉素、庆大霉素、盆炎净胶囊 Cefixime Capsules, Fuyanxiao Capsules, Clindamycin, Gentamicin, Penyanjing Capsules | 0.067 5; 0.95; 0.01~0.04; 1.44×10-4; 0.54~3.24 | 2 (1.05) |
布洛芬、阿莫西林、TLR4抑制剂、坤复康片、依帕司他、泼尼松龙、羧甲基纤维素钠、妇科白带片、妇炎净 颗粒、抑菌方、抗炎方、补益方、蒙药赤瓟子、徐长卿 Ibuprofen, Amoxicillin, TLR4 inhibitors, Kunfukang Tablets, Epalrestat, Prednisolone, Sodium Carboxymethyl Cellulose, Fuke Baidai Tablets, Fuyanjing Granulas, Yijun Formula, Kangyan Formula, Buyi Formula, Mongolian Medicine Chipaozi, Cynanchum paniculatum | 0.07; 0.2; 1×10-3; 0.65; 0.02; 1.7×10-3; 20; 0.225; 1.2; 2.7; 2.7; 2.7; 1.04; 0.15 | 1 (0.53) |
表5 盆腔炎性疾病动物模型阳性对照药物
Table 5 Positive control drugs for pelvic inflammatory disease (PID) animal models
阳性对照药 Positive control drug | 剂量范围/(g·kg-1) Dose range/ (g·kg-1) | 频数(百分比/%) Frequency (percentage/%) |
---|---|---|
妇科千金片Fuke Qianjin Tablets | 0.15~3.6 | 44 (23.15) |
金刚藤胶囊Jingangteng Capsules | 0.067~16.2 | 17 (8.94) |
妇炎康片Fuyankang Tablets | 0.042~5.2 | 16 (8.42) |
康妇炎胶囊、左氧氟沙星Kangfuyan Capsules, Levofloxacin | 0.025~9.3; 0.03~0.08 | 13 (6.84) |
醋酸地塞米松Dexamethasone acetate | 1.35×10-4~1.82 | 10 (5.26) |
阿司匹林Aspirin | 2×10-4~20 | 9 (4.73) |
妇乐片Fule Tablets | 0.65~2.5 | 8 (4.21) |
桂枝茯苓胶囊、罗红霉素Guizhi Fuling Capsules, Roxithromycin | 0.12~3; 82.74×10-3 | 5 (2.63) |
阿奇霉素、甲硝唑Azithromycin, Metronidazole | 1.7×10-3~6; 0.02~0.04 | 4 (2.10) |
花红颗粒、蒲苓盆炎康颗粒、人胎盘组织液、少腹逐瘀颗粒、康妇消炎栓、金鸡颗粒 Huahong Granules, Puling Penyankang Granules, Human Placenta Tissue Hydrolysate, Shaofu Zhuyu Granules, Kangfu Xiaoyan Suppository, Jinji Granules | 2.7~8.4; 3.15×10-3~3; 1; 0.364~1.5; 5.04; 1.02~27.4 | 3 (1.58) |
头孢克肟胶囊、妇炎消胶囊、克林霉素、庆大霉素、盆炎净胶囊 Cefixime Capsules, Fuyanxiao Capsules, Clindamycin, Gentamicin, Penyanjing Capsules | 0.067 5; 0.95; 0.01~0.04; 1.44×10-4; 0.54~3.24 | 2 (1.05) |
布洛芬、阿莫西林、TLR4抑制剂、坤复康片、依帕司他、泼尼松龙、羧甲基纤维素钠、妇科白带片、妇炎净 颗粒、抑菌方、抗炎方、补益方、蒙药赤瓟子、徐长卿 Ibuprofen, Amoxicillin, TLR4 inhibitors, Kunfukang Tablets, Epalrestat, Prednisolone, Sodium Carboxymethyl Cellulose, Fuke Baidai Tablets, Fuyanjing Granulas, Yijun Formula, Kangyan Formula, Buyi Formula, Mongolian Medicine Chipaozi, Cynanchum paniculatum | 0.07; 0.2; 1×10-3; 0.65; 0.02; 1.7×10-3; 20; 0.225; 1.2; 2.7; 2.7; 2.7; 1.04; 0.15 | 1 (0.53) |
模型病变机制 Model lesion mechanism | 相关指标变化 Changes in relevant indicators |
---|---|
炎性反应 Inflammatory reaction | (1)促炎因子:肿瘤坏死因子(TNF)↑,白细胞介素(IL)-1β↑,IL-2↑,IL-6↑,IL-8↑,IL-17A↑,IL-17F↑,IL-18↑; (2)抑炎因子:IL-4↓,IL-10↓,IL-12↓,IL-13↓; (3)炎症细胞:白细胞↑,单核细胞↑,嗜酸性粒细胞↑,中性粒细胞↑,淋巴细胞↑; (4)其他炎症相关:单核细胞趋化蛋白-1(MCP-1)↑,趋化因子1(CXCL1)↑,巨噬细胞炎症蛋白-2(MIP-2)↑,一氧化氮(NO)↑,γ干扰素(IFN-γ)↓,环氧化酶-2(COX-2)↑,前列腺素E2(PGE2)↑,组胺↑,血栓素B2(TXB2)↑,6-酮-前列腺素F1α/TXB2↑,血管生成素-2(Ang-2)↑,骨桥蛋白(OPN)↑,调节激活正常T细胞表达分泌因子(RANTES)↑,髓过氧化物酶(MPO)↑,血管细胞间黏附分子1(VCAM-1)↑,内皮素-1(ET-1)↑,可溶性尿激酶型纤溶酶原激活物受体(suPAR)↑,磷脂酰肌醇-3激酶(PI3K)↑,丝苏氨酸激酶(AKT)↑,C反应蛋白(CRP)↑,超敏(hs)-CRP↑;核转录因子-κB(NF-κB)↑,IκB激酶α(IκKα)↑,IKβ激酶(IκKβ)↑,磷酸化NF-κB抑制蛋白α(p-IκBα)↑,NF-κB p50↑,NF-κB p65↑,磷酸化NF-κB-p65↑,c-Jun氨基末端激酶(JNK)↑,磷酸化JNK↑, p38丝裂原活化蛋白激酶(p38MAPK)↑,Smad2↑、Smad 3↑,Smad 7↓;Toll样受体(TLR)2↑,TLR4↑,髓样分化因子88(MyD88)↑,自噬效应蛋白1(Beclin-1)↑,微管相关蛋白轻链3Ⅱ(LC3-Ⅱ)↑,核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)↑,磷酸化酪氨酸激酶2(p-JAK2)↑,信号转导与转录激活因子1(STAT1)↑,磷酸化STAT3↑,细胞因子信号转导抑制因子1(SOCS1)↑,活化STAT蛋白质抑制因子3(PIAS3)↑;磷酸化AKT↑, 磷酸化κB抑制蛋白激酶α/β(p-IKKα/β)↑,磷脂酶Cβ(PLCβ)、磷脂酶C-γ1(PLC-γ1)和蛋白激酶C(PKC)↑,细胞外调节蛋白激酶(ERK)↑; (5)炎症、粘连等相关信号通路:①TLR4/髓样分化因子88(MyD88)/NF-κB信号通路中,TLR4↑、MyD88↑;②成纤维细胞生长因子(FGF)-2/激活FGF-2的受体1(FGFR1)信号通路中,PGE2↑、组胺↑,FGFR1↑,FGF-2↑;③NF-κB/TGF-β1/Smads信号通路中,NF-κB p65↑,TGF-β1↑,Smad 2↑,Smad 3↑,Smad7↓;④TLRs的信号转导途径之一PI3K/AKT信号通路中PI3K↑,AKT↑;⑤MAPK信号通路之JNK、p38信号通路中JNK↑,p38↑,p-JNK↑,p-p38↑;⑥JAK2/STAT3信号通路中,p-JAK2↑,p-STAT3↑,SOCS1↑,PIAS3↑;⑦JAK2/STAT1信号通路中,p-JAK2↑,p-STAT1↑,SOCS1↑,PIAS3↑;⑧ PLC/PKC信号通路中,PLC-β3↑,PLC-γ1和PKC的磷酸化↑;⑨ TLR4/NFκB/COX2信号通路中,TLR4↑,NF-κB↑,COX2↑[ |
氧化应激损伤Oxidative stress damage | 丙二醛↑,总抗氧化能力↓,超氧化物歧化酶↓,一氧化氮合酶(NOS)↑[ |
细胞凋亡 Apoptosis | 含半胱氨酸的天冬氨酸蛋白水解酶(caspase)-3↑,caspase-8↑,切割型caspase-3↑,切割型caspase-8↑,caspase-1↑;凋亡相关斑点样蛋白(ASC)↑,前B细胞克隆增强因子(PBEF)↑,Bcl-xl↑,Bcl-2关联的X蛋白(BAX)↑,B淋巴细胞瘤-2(BCL-2)↓,自杀相关因子↑,自杀相关因子配体(FasL)↑,肿瘤抑制基因(p53)↑,程序性死亡受体-1(PD-1)↓,程序性死亡受体配体-1(PD-L1)↓,TNF受体1(TNFR-1)↑,葡萄糖调节反应蛋白78(GRP78)↑,CCAAT增强子结合蛋白同源蛋白(CHOP)↑,TUNEL细胞凋亡率↑[ |
组织增生、粘连及纤维化 Tissue proliferation, adhesion,and fibrosis | 转化生长因子-β1↑,细胞间黏附分子-1↑,FGF2↑,胰岛素样生长因子-1(IGF-1)↑,Ⅰ型胶原蛋白↑,结缔组织生长因子↑,纤溶酶原激活剂抑制因子-1↑,组织型纤溶酶原激活剂(t PA)↓, 血管内皮生长因子(VEGF)↑,表皮生长因子(EGF)↓,黏蛋白-1(MUC-1)↓,基质血小板衍化生长因子(PDGF)↑,基质金属蛋白酶(MMP)2↑,MMP-9↑,金属蛋白酶抑制因子↑,磷酸化细胞外调节蛋白激酶(p-Erk1/2)↑,整合素αVβ3↓,同源框基因A10(HOXA10)↓,Ⅱ型TGF-β受体(TβRⅡ)↑[ |
免疫系统平衡失调 Imbalance of immune system | (1)免疫球蛋白:免疫球蛋白(Ig)A、IgG、IgM↓,分泌型IgA↓; (2)红细胞免疫指标检测:红细胞C3b受体花环率↓,红细胞免疫复合物花环率↑,细胞免疫黏附促进率(RFER)↓,红细胞免疫黏附抑制(RFIR)↑; (3)免疫细胞功能:CD4+CD25+调节性T细胞↑,CD4+↑,CD8+↓,自然杀伤性T细胞↓, CD3+↓,CD4+/CD8+↓, T细胞百分率、淋转率↓,自然杀伤(NK)细胞↓,调节性T细胞↓,辅助性T细胞17↑,辅助性T淋巴细胞(Th)、细胞毒性T淋巴细胞(Tc)、CD8细胞↑;巨噬细胞吞噬能力↓,血清总补体↓[ |
血液流变异常 Hemorheological abnormalities | 全血黏度低中高切↑,血浆黏度↑、红细胞聚集指数↑、全血高切相对指数↑、全血低切相对指数↑,还原黏度低中高切↑,红细胞压积↑,红细胞刚性指数↑、变形指数↑、电泳时间↑,全血卡松黏度和血小板聚集率↑,血沉和血沉方程K值↑[ |
肝肾功能障碍 Liver and kidney dysfunction | 促肾上腺皮质激素释放激素↑,促肾上腺皮质激素↑,肾上腺皮质酮↑,丙氨酸转氨酶↑,白蛋白↑,天冬氨酸转氨酶↑,碱性磷酸酶↑,肌酐↑,葡萄糖↑[ |
表6 盆腔炎性疾病动物模型制备实验室相关检查指标
Table 6 Laboratory-related examination indicators for preparation of pelvic inflammatory disease (PID) animal models
模型病变机制 Model lesion mechanism | 相关指标变化 Changes in relevant indicators |
---|---|
炎性反应 Inflammatory reaction | (1)促炎因子:肿瘤坏死因子(TNF)↑,白细胞介素(IL)-1β↑,IL-2↑,IL-6↑,IL-8↑,IL-17A↑,IL-17F↑,IL-18↑; (2)抑炎因子:IL-4↓,IL-10↓,IL-12↓,IL-13↓; (3)炎症细胞:白细胞↑,单核细胞↑,嗜酸性粒细胞↑,中性粒细胞↑,淋巴细胞↑; (4)其他炎症相关:单核细胞趋化蛋白-1(MCP-1)↑,趋化因子1(CXCL1)↑,巨噬细胞炎症蛋白-2(MIP-2)↑,一氧化氮(NO)↑,γ干扰素(IFN-γ)↓,环氧化酶-2(COX-2)↑,前列腺素E2(PGE2)↑,组胺↑,血栓素B2(TXB2)↑,6-酮-前列腺素F1α/TXB2↑,血管生成素-2(Ang-2)↑,骨桥蛋白(OPN)↑,调节激活正常T细胞表达分泌因子(RANTES)↑,髓过氧化物酶(MPO)↑,血管细胞间黏附分子1(VCAM-1)↑,内皮素-1(ET-1)↑,可溶性尿激酶型纤溶酶原激活物受体(suPAR)↑,磷脂酰肌醇-3激酶(PI3K)↑,丝苏氨酸激酶(AKT)↑,C反应蛋白(CRP)↑,超敏(hs)-CRP↑;核转录因子-κB(NF-κB)↑,IκB激酶α(IκKα)↑,IKβ激酶(IκKβ)↑,磷酸化NF-κB抑制蛋白α(p-IκBα)↑,NF-κB p50↑,NF-κB p65↑,磷酸化NF-κB-p65↑,c-Jun氨基末端激酶(JNK)↑,磷酸化JNK↑, p38丝裂原活化蛋白激酶(p38MAPK)↑,Smad2↑、Smad 3↑,Smad 7↓;Toll样受体(TLR)2↑,TLR4↑,髓样分化因子88(MyD88)↑,自噬效应蛋白1(Beclin-1)↑,微管相关蛋白轻链3Ⅱ(LC3-Ⅱ)↑,核苷酸结合寡聚化结构域样受体蛋白3(NLRP3)↑,磷酸化酪氨酸激酶2(p-JAK2)↑,信号转导与转录激活因子1(STAT1)↑,磷酸化STAT3↑,细胞因子信号转导抑制因子1(SOCS1)↑,活化STAT蛋白质抑制因子3(PIAS3)↑;磷酸化AKT↑, 磷酸化κB抑制蛋白激酶α/β(p-IKKα/β)↑,磷脂酶Cβ(PLCβ)、磷脂酶C-γ1(PLC-γ1)和蛋白激酶C(PKC)↑,细胞外调节蛋白激酶(ERK)↑; (5)炎症、粘连等相关信号通路:①TLR4/髓样分化因子88(MyD88)/NF-κB信号通路中,TLR4↑、MyD88↑;②成纤维细胞生长因子(FGF)-2/激活FGF-2的受体1(FGFR1)信号通路中,PGE2↑、组胺↑,FGFR1↑,FGF-2↑;③NF-κB/TGF-β1/Smads信号通路中,NF-κB p65↑,TGF-β1↑,Smad 2↑,Smad 3↑,Smad7↓;④TLRs的信号转导途径之一PI3K/AKT信号通路中PI3K↑,AKT↑;⑤MAPK信号通路之JNK、p38信号通路中JNK↑,p38↑,p-JNK↑,p-p38↑;⑥JAK2/STAT3信号通路中,p-JAK2↑,p-STAT3↑,SOCS1↑,PIAS3↑;⑦JAK2/STAT1信号通路中,p-JAK2↑,p-STAT1↑,SOCS1↑,PIAS3↑;⑧ PLC/PKC信号通路中,PLC-β3↑,PLC-γ1和PKC的磷酸化↑;⑨ TLR4/NFκB/COX2信号通路中,TLR4↑,NF-κB↑,COX2↑[ |
氧化应激损伤Oxidative stress damage | 丙二醛↑,总抗氧化能力↓,超氧化物歧化酶↓,一氧化氮合酶(NOS)↑[ |
细胞凋亡 Apoptosis | 含半胱氨酸的天冬氨酸蛋白水解酶(caspase)-3↑,caspase-8↑,切割型caspase-3↑,切割型caspase-8↑,caspase-1↑;凋亡相关斑点样蛋白(ASC)↑,前B细胞克隆增强因子(PBEF)↑,Bcl-xl↑,Bcl-2关联的X蛋白(BAX)↑,B淋巴细胞瘤-2(BCL-2)↓,自杀相关因子↑,自杀相关因子配体(FasL)↑,肿瘤抑制基因(p53)↑,程序性死亡受体-1(PD-1)↓,程序性死亡受体配体-1(PD-L1)↓,TNF受体1(TNFR-1)↑,葡萄糖调节反应蛋白78(GRP78)↑,CCAAT增强子结合蛋白同源蛋白(CHOP)↑,TUNEL细胞凋亡率↑[ |
组织增生、粘连及纤维化 Tissue proliferation, adhesion,and fibrosis | 转化生长因子-β1↑,细胞间黏附分子-1↑,FGF2↑,胰岛素样生长因子-1(IGF-1)↑,Ⅰ型胶原蛋白↑,结缔组织生长因子↑,纤溶酶原激活剂抑制因子-1↑,组织型纤溶酶原激活剂(t PA)↓, 血管内皮生长因子(VEGF)↑,表皮生长因子(EGF)↓,黏蛋白-1(MUC-1)↓,基质血小板衍化生长因子(PDGF)↑,基质金属蛋白酶(MMP)2↑,MMP-9↑,金属蛋白酶抑制因子↑,磷酸化细胞外调节蛋白激酶(p-Erk1/2)↑,整合素αVβ3↓,同源框基因A10(HOXA10)↓,Ⅱ型TGF-β受体(TβRⅡ)↑[ |
免疫系统平衡失调 Imbalance of immune system | (1)免疫球蛋白:免疫球蛋白(Ig)A、IgG、IgM↓,分泌型IgA↓; (2)红细胞免疫指标检测:红细胞C3b受体花环率↓,红细胞免疫复合物花环率↑,细胞免疫黏附促进率(RFER)↓,红细胞免疫黏附抑制(RFIR)↑; (3)免疫细胞功能:CD4+CD25+调节性T细胞↑,CD4+↑,CD8+↓,自然杀伤性T细胞↓, CD3+↓,CD4+/CD8+↓, T细胞百分率、淋转率↓,自然杀伤(NK)细胞↓,调节性T细胞↓,辅助性T细胞17↑,辅助性T淋巴细胞(Th)、细胞毒性T淋巴细胞(Tc)、CD8细胞↑;巨噬细胞吞噬能力↓,血清总补体↓[ |
血液流变异常 Hemorheological abnormalities | 全血黏度低中高切↑,血浆黏度↑、红细胞聚集指数↑、全血高切相对指数↑、全血低切相对指数↑,还原黏度低中高切↑,红细胞压积↑,红细胞刚性指数↑、变形指数↑、电泳时间↑,全血卡松黏度和血小板聚集率↑,血沉和血沉方程K值↑[ |
肝肾功能障碍 Liver and kidney dysfunction | 促肾上腺皮质激素释放激素↑,促肾上腺皮质激素↑,肾上腺皮质酮↑,丙氨酸转氨酶↑,白蛋白↑,天冬氨酸转氨酶↑,碱性磷酸酶↑,肌酐↑,葡萄糖↑[ |
1 | 谢幸, 孔北华, 段涛. 妇产科学[M]. 9版. 北京: 人民卫生出版社, 2018: 251-257. |
XIE X, KONG B H, DUAN T. Obstetrics and gynaecology[M]. 9th ed. Beijing: People's Health Press, 2018:251-257. | |
2 | SAVARIS R F, FUHRICH D G, MAISSIAT J, et al. Antibiotic therapy for pelvic inflammatory disease[J]. Cochrane Database Syst Rev, 2020, 8(8):CD010285. DOI: 10.1002/14651858.CD010285.pub3 . |
3 | 魏绍斌. 中医药防治盆腔炎性疾病及其后遗症的思路、方法及长期管理策略[J]. 北京中医药大学学报, 2023, 46(9):1204-1212. DOI: 10.3969/j.issn.1006-2157.2023.09.003 . |
WEI S B. Thoughts, methods, and long-term management strategies of traditional Chinese medicine in preventing and treating pelvic inflammatory diseases and their sequelae[J]. J Beijing Univ Tradit Chin Med, 2023, 46(9):1204-1212. DOI: 10.3969/j.issn.1006-2157.2023.09.003 . | |
4 | 周瑶瑶, 白明华, 李竹青, 等. 从中医体质学理论探讨女性盆腔炎性疾病的三级预防方案[J]. 中华中医药杂志, 2023, 38(1):243-246. |
ZHOU Y Y, BAI M H, LI Z Q, et al. Discussion on the three-level prevention scheme of female pelvic inflammatory disease from the theory of TCM constitution[J]. China J Tradit Chin Med Pharm, 2023, 38(1):243-246. | |
5 | 苗明三. 实验动物和动物实验技术[M]. 北京: 中国中医药出版社, 1997. |
MIAO M S. Laboratory animals and animal experimental techniques[M]. Beijing: China Press of Traditional Chinese Medicine, 1997. | |
6 | 黄慧, 邓亚胜, 梁天薇, 等. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4):422-428. DOI: 10.12300/j.issn.1674-5817.2023.032 . |
HUANG H, DENG Y S, LIANG T W, et al. Evaluation and analysis of modeling methods for animal models with diminished ovarian reserve[J]. Lab Anim Comp Med, 2023, 43(4):422-428. DOI: 10.12300/j.issn.1674-5817.2023.032 . | |
7 | 张岩雪, 李红艳, 孙军华, 等. 化瘀固本中药方对慢性盆腔炎大鼠盆腔粘连及TGF-β1/Smads信号通路的影响[J]. 中国优生与遗传杂志, 2022, 30(7):1162-1167. DOI: 10.13404/j.cnki.cjbhh.2022.07.030 . |
ZHANG Y X, LI H Y, SUN J H, et al. Effects of Huayu Guben Chinese herbal formula on pelvic adhesion and TGF-β1/Smads signaling pathway in rats with chronic pelvic inflammation[J]. Chin J Birth Health Hered, 2022, 30(7):1162-1167. DOI: 10.13404/j.cnki.cjbhh.2022.07.030 . | |
8 | 乔文艳, 邓克红, 张娟, 等. 基于TGF-β/Smads通路研究芍药苷对慢性盆腔炎大鼠的抗纤维化和抗炎作用[J]. 中医药信息, 2022, 39(5):45-50. DOI: 10.19656/j.cnki.1002-2406.20220508 . |
QIAO W Y, DENG K H, ZHANG J, et al. Anti-fibrosis and anti-inflammation of paeoniflorin in treating CPID rats based on TGF-β/smads pathway[J]. Inf Tradit Chin Med, 2022, 39(5):45-50. DOI: 10.19656/j.cnki.1002-2406.20220508 . | |
9 | FAN L Y, LIU Z H, ZHANG Z, et al. Identifying the clinical presentations, progression, and sequela of pelvic inflammatory disease through physiological, histological and ultrastructural evaluation of a rat animal model[J]. Ann Transl Med, 2021, 9(23):1710. DOI: 10.21037/atm-21-3345 . |
10 | 刘小月, 黄海涛, 卜晓玲. 参芪扶正汤对盆腔炎性疾病后遗症小鼠上生殖道炎症的影响[J]. 中医学报, 2021, 36(12):2615-2619. DOI: 10.16368/j.issn.1674-8999.2021.12.542 . |
LIU X Y, HUANG H T, BU X L. Effect of Shenqi fuzheng decoction on inflammatory of upper reproductive tract in mice with sequelae of pelvic inflammatory disease[J]. Acta Chin Med, 2021, 36(12):2615-2619. DOI: 10.16368/j.issn.1674-8999.2021.12.542 . | |
11 | 黄凤珍, 田贵华, 刘敏, 等. 细菌和激素共暴露建立大鼠盆腔炎模型的方法[J]. 绿色科技, 2018(8):222-226. DOI: 10.16663/j.cnki.lskj.2018.08.080 . |
HUANG F Z, TIAN G H, LIU M, et al. Simple establishment method of rat models of acute and chronic pelvic inflammation diseases[J]. J Green Sci Technol, 2018(8):222-226. DOI: 10.16663/j.cnki.lskj.2018.08.080 . | |
12 | 邓蒂斯, 黄叶芳, 龚道银. 银甲片对盆腔炎性疾病大鼠模型炎性因子及输卵管纤毛形态的影响研究[J]. 成都中医药大学学报, 2022, 45(2):69-74. DOI: 10.13593/j.cnki.51-1501/r.2022.02.069 . |
DENG D S, HUANG Y F, GONG D Y. Study of Yinjia Tablet regulating inflammatory factors and oviductal Cilia morphology in rats with pelvic inflammatory disease[J]. J Chengdu Univ Tradit Chin Med, 2022, 45(2):69-74. DOI: 10.13593/j.cnki.51-1501/r.2022.02.069 . | |
13 | 刘薇, 黄精俸, 江振洲, 等. 宁泌泰胶囊对大鼠大肠杆菌感染性盆腔炎的改善作用研究[J]. 药物评价研究, 2015, 38(6):612-616. DOI: 10.7501/j.issn.1674-6376.2015.06.006 . |
LIU W, HUANG J F, JIANG Z Z, et al. Experiment research on therapeutic effect of Ningmitai Capsule for pelvic inflammation[J]. Drug Eval Res, 2015, 38(6):612-616. DOI: 10.7501/j.issn.1674-6376.2015.06.006 . | |
14 | 刘莉, 李宗云, 刘志荣, 等. 黄芪甲苷对慢性盆腔炎大鼠子宫的保护作用及机制[J]. 中药药理与临床, 2023, 39(9):38-43. DOI: 10.13412/j.cnki.zyyl.20230404.003 . |
LIU L, LI Z Y, LIU Z R, et al. Protective effect and mechanism of astragaloside IV on uteri of rats with chronic pelvic inflammatory disease[J]. Pharmacol Clin Chin Mater Med, 2023, 39(9):38-43. DOI: 10.13412/j.cnki.zyyl.20230404.003 . | |
15 | 王英军, 孙英莲. 金丹平炎胶囊对慢性盆腔炎模型大鼠输卵管通畅率及炎性因子表达的影响[J]. 特产研究, 2021, 43(4):49-52. DOI: 10.16720/j.cnki.tcyj.2021.044 . |
WANG Y J, SUN Y L. The effect of jindanpingyan capsule on tubal patency and expression of inflammatory factors in chronic pelvic inflammatory disease model rats[J]. Spec Wild Econ Anim Plant Res, 2021, 43(4):49-52. DOI: 10.16720/j.cnki.tcyj.2021.044 . | |
16 | 肖萍, 林彩霞, 盘冰洁, 等. 岩黄连栓治疗慢性盆腔炎大鼠的药效学研究[J]. 中南药学, 2019, 17(12):2052-2058. DOI: 10.7539/j.issn.1672-2981.2019.12.008 . |
XIAO P, LIN C X, PAN B J, et al. Pharmacodynamics of Yanhuanglian suppository for rats with chronic pelvic inflammatory diseases[J]. Cent South Pharm, 2019, 17(12):2052-2058. DOI: 10.7539/j.issn.1672-2981.2019.12.008 . | |
17 | 徐阳美, 宋洋洋, 任弋, 等. 妇平胶囊对小鼠慢性盆腔炎模型的治疗作用研究[J]. 临床合理用药杂志, 2017, 10(5):15-18. DOI: 10.15887/j.cnki.13-1389/r.2017.05.008 . |
XU Y M, SONG Y Y, REN Y, et al. Study of the treatment effect of Fuping capsule on chronic pelvic inflammatory disease mice[J]. Chin J Clin Ration Drug Use, 2017, 10(5):15-18. DOI: 10.15887/j.cnki.13-1389/r.2017.05.008 . | |
18 | 马慧敏, 杨丽红, 金瑞林, 等. 慢性盆腔炎模型大鼠中miR-29及炎症信号通路分子的表达水平及其作用机制研究[J]. 现代检验医学杂志, 2022, 37(6):14-18, 109. DOI: 10.3969/j.issn.1671-7414.2022.06.003 . |
MA H M, YANG L H, JIN R L, et al. Study on the expression level and mechanism of miR-29 and inflammatory signal pathway molecules in chronic pelvic inflammatory disease model rats[J]. J Mod Lab Med, 2022, 37(6):14-18, 109. DOI: 10.3969/j.issn.1671-7414.2022.06.003 . | |
19 | 孙兰, 李家春, 王燕, 等. 18 F-FDG MicroPET技术评价桂枝茯苓胶囊对大鼠盆腔炎的抗炎作用[J]. 中成药, 2022, 44(11):3482-3488. DOI: 10.3969/j.issn.1001-1528.2022.11.013 . |
SUN L, LI J C, WANG Y, et al. Evaluation of anti-inflammatory effects of Guizhi Fuling Capsules on pelvic inflammatory disease in rats using 18 F-FDG MicroPET imaging system[J]. Chin Tradit Pat Med, 2022, 44(11):3482-3488. DOI: 10.3969/j.issn.1001-1528.2022.11.013 . | |
20 | 张锁, 贾瑞林, 陈晶. 薏苡附子败酱散加味对盆腔炎性疾病后遗症模型大鼠JNK/p38信号通路表达影响[J]. 中华中医药杂志, 2022, 37(6):3584-3589. |
ZHANG S, JIA R L, CHEN J. Effects of modified Yiyi Fuzi Baijiang Powder on JNK/p38 signaling pathway expression in rats with pelvic inflammatory disease sequelae[J]. China J Tradit Chin Med Pharm, 2022, 37(6):3584-3589. | |
21 | 肖志葵, 谭知浩, 罗弘杉, 等. 基于转录组学探讨夏枯草茎叶总多酚对慢性盆腔炎大鼠的药效学作用及机制[J]. 特产研究, 2023, 45(2):81-89. DOI: 10.16720/j.cnki.tcyj.2023.044 . |
XIAO Z K, TAN Z H, LUO H S, et al. Pharmacodynamic effect and mechanism of Prunella vulgaris stem and leaf total polyphenols on chronic pelvic inflammatory disease in rats based on transcriptomics[J]. Spec Wild Econ Anim Plant Res, 2023, 45(2):81-89. DOI: 10.16720/j.cnki.tcyj.2023.044 . | |
22 | 梁照, 鲁秋丹, 金哲. 丹枝饮对盆腔炎性疾病后遗症小鼠体内炎性因子的影响[J]. 天津中医药大学学报, 2017, 36(1):33-37. DOI: 10.11656/j.issn.1673-9043.2017.01.09 . |
LIANG Z, LU Q D, JIN Z. Effect of Danzhi Decoction on serum levels of inflammatory factors in murine model with sequelae of pelvic inflammatory disease[J]. J Tianjin Univ Tradit Chin Med, 2017, 36(1):33-37. DOI: 10.11656/j.issn.1673-9043.2017.01.09 . | |
23 | 蒲茜, 余蕾. 脐带间充质干细胞对于盆腔炎性后遗症大鼠的治疗作用及机制初探[J]. 中国计划生育和妇产科, 2022, 14(8):85-90. DOI: 10.3969/j.issn.1674-4020.2022.08.21 . |
PU Q, YU L. Therapeutic effect and mechanism of umbilical cord mesenchymal stem cells in rats with pelvic inflammatory sequelae[J]. Chin J Fam Plan Gynecotokology, 2022, 14(8):85-90. DOI: 10.3969/j.issn.1674-4020.2022.08.21 . | |
24 | 赵杰, 刘芳. 千金片对慢性盆腔炎大鼠Th1/2型细胞因子表达的影响[J]. 中国老年学杂志, 2017, 37(1):32-34. DOI: 10.3969/j.issn.1005-9202.2017.01.013 . |
ZHAO J, LIU F. Effect of Qianjin Tablet on expression of Th1/2 cytokines in rats with chronic pelvic inflammatory disease[J]. Chin J Gerontol, 2017, 37(1):32-34. DOI: 10.3969/j.issn.1005-9202.2017.01.013 . | |
25 | 刘俊宇, 曾元莲, 秦旭华, 等. 肿节风抗炎镇痛及对盆腔炎模型大鼠的影响[J]. 中药药理与临床, 2022, 38(3):135-140. DOI: 10.13412/j.cnki.zyyl.2022.03.024 . |
LIU J Y, ZENG Y L, QIN X H, et al. Anti-inflammatory and analgesic effect of SARCANDRAE HERBA and its influence on rat model of pelvic inflammation[J]. Pharmacol Clin Chin Mater Med, 2022, 38(3):135-140. DOI: 10.13412/j.cnki.zyyl.2022.03.024 . | |
26 | 张忠, 苏红宁, 刘姣, 等. 坤舒康颗粒抗大鼠棉球肉芽肿形成及其作用机制[J]. 中国医药导报, 2017, 14(2):12-15. |
ZHANG Z, SU H N, LIU J, et al. Inhibitive effect and mechanism of Kunshukang Granules on the formation of cotton ball granuloma in rats[J]. China Med Her, 2017, 14(2):12-15. | |
27 | 木则帕尔·太来提, 阿尼克孜·阿不都艾尼, 赛米热·艾斯拉. 当归芍药散对慢性盆腔炎模型大鼠免疫状态及NF-κB信号通路的影响[J]. 中国计划生育学杂志, 2022, 30(3):505-508. DOI: 10.3969/j.issn.1004-8189.2022.03.003 . |
MUZEPAL. T, ANANIZ. A, SEMIGE. I.Effects of Danggui Shaoyao San on immune status and NF-κB signal pathway of model rats with chronic pelvic inflammato-ry disease[J]. Chin J Fam Plan, 2022, 30(3):505-508. DOI: 10.3969/j.issn.1004-8189.2022.03.003 . | |
28 | 谷风, 沈祖泓, 谷周蓉, 等. 利湿化瘀法对湿瘀型慢性盆腔炎大鼠子宫组织NF-κBp65、IκKα蛋白表达影响的研究[J]. 中国中医药科技, 2018, 25(4):481-484. |
GU F, SHEN Z H, GU Z R, et al. Effects of removing dampness and blood stasis method on NF-κBp65 and IκKα protein expressions in uterine tissue of chronic pelvic inflammatory rats[J]. Chin J Tradit Med Sci Technol, 2018, 25(4):481-484. | |
29 | 杨静, 易刚, 王磊, 等. 甲连盆腔胶囊对盆腔炎性疾病后遗症大鼠的 保护作用及机制探讨[J]. 现代中西医结合杂志, 2020, 29(20):2167-2173. DOI: 10.3969/j.issn.1008-8849.2020.20.001 . |
YANG J, YI G, WANG L, et al. Protective effect and mechanism of Jialian pelvic capsule on sequelae of pelvic inflammatory disease in rats[J]. Mod J Integr Tradit Chin West Med, 2020, 29(20):2167-2173. DOI: 10.3969/j.issn.1008-8849.2020.20.001 . | |
30 | 谷风, 曾远强, 谷周蓉, 等. 利湿化瘀法对湿瘀型慢性盆腔炎大鼠子宫组织Ⅰ型胶原纤维及IkKβ影响的研究[J]. 中国中医药科技, 2018, 25(6):808-811. DOI:CNKI:SUN:TJYY.0.2018-06-011 . |
GU F, ZENG Y Q, GU Z R, et al. Effects of removing dampness and stasis method on collagen type Ⅰ fibers and IκKβ expressions in uterus of rats with chronic pelvic inflammatory[J]. Chin J Tradit Med Sci Technol, 2018, 25(6):808-811. DOI: CNKI:SUN:TJYY.0.2018-06-011 . | |
31 | 王阳, 刘小月, 卜晓玲. 参芪扶正汤对盆腔炎性疾病后遗症小鼠上生殖道细胞自噬水平的影响[J]. 河北中医药学报, 2022, 37(2):1-5, 9. DOI: 10.16370/j.cnki.13-1214/r.2022.02.005 . |
WANG Y, LIU X Y, BO X L. Effect of Shenqi fuzheng decoction on autophagy level of upper reproductive tract cells in mice with sequelae of pelvic inflammatory disease[J]. J Hebei Tradit Chin Med Pharmacol, 2022, 37(2):1-5, 9. DOI: 10.16370/j.cnki.13-1214/r.2022.02.005 . | |
32 | 易丽贞, 刘欣, 吴雪芬, 等. 妇科千金片对盆腔炎大鼠TLR4、PI3K、AKT表达的影响[J]. 中国处方药, 2021, 19(1):31-34. DOI: 10.3969/j.issn.1671-945X.2021.01.017 . |
YI L Z, LIU X, WU X F, et al. Effect of Fuke Qianjin Tablets on TLR4, PI3K and AKT in pelvic inflammatory model rats[J]. J China Prescr Drug, 2021, 19(1):31-34. DOI: 10.3969/j.issn.1671-945X.2021.01.017 . | |
33 | 杨伟娜, 杨军娜, 姚伊. 五味消毒饮对急性盆腔炎模型大鼠JAK2/STAT3信号通路及炎性因子的影响[J]. 中医学报, 2019, 34(10):2138-2143. DOI: 10.16368/j.issn.1674-8999.2019.10.496 . |
YANG W N, YANG J N, YAO Y. Effects of Wuwei Xiaodu drink on JAK2/STAT3 signaling pathway and inflammatory factors in rats with acute pelvic inflammation[J]. Acta Chin Med, 2019, 34(10):2138-2143. DOI: 10.16368/j.issn.1674-8999.2019.10.496 . | |
34 | 杨伟娜, 杨军娜, 姚伊. 桃核承气汤通过JAK2/STAT1信号通路干预急性盆腔炎模型大鼠的研究[J]. 中国医院用药评价与分析, 2019, 19(9):1075-1078, 1082. DOI: 10.14009/j.issn.1672-2124.2019.09.010 . |
YANG W N, YANG J N, YAO Y. Research of the intervention of taohechengqi decoction on model rats with acute pelvic inflammatory disease through JAK2/STAT1 signal pathway[J]. Eval Anal Drug Use Hosp China, 2019, 19(9):1075-1078, 1082. DOI: 10.14009/j.issn.1672-2124.2019.09.010 . | |
35 | 岳秀永, 秦建设, 方应权, 等. 表没食子儿茶素没食子酸酯对慢性盆腔炎大鼠子宫组织的影响[J]. 中成药, 2018, 40(5):1182-1184. DOI: 10.3969/j.issn.1001-1528.2018.05.038 . |
YUE X Y, QIN J S, FANG Y Q, et al. Effect of epigallocatechin gallate on uterine tissue in rats with chronic pelvic inflammatory disease[J]. Chin Tradit Pat Med, 2018, 40(5):1182-1184. DOI: 10.3969/j.issn.1001-1528.2018.05.038 . | |
36 | 王霞, 桑飞, 郭鑫, 等. 赤芍总苷对慢性盆腔炎大鼠炎症抑制作用及NF-κB通路的调节作用研究[J]. 河北医药, 2022, 44(6):805-809. DOI: 10.3969/j.issn.1002-7386.2022.06.001 . |
WANG X, SANG F, GUO X, et al. Study on the inhibitory effects of total glucosides of paeony on inflammation and the regulation effects on NF-κB pathway in rats with chronic pelvic inflammation[J]. Hebei Med J, 2022, 44(6):805-809. DOI: 10.3969/j.issn.1002-7386.2022.06.001 . | |
37 | 陈晓强, 陆惠玲, 石乂丹, 等. 电针对盆腔炎性疾病后遗症大鼠子宫组织环氧合酶-2和转化生长因子-β1表达的影响[J]. 中华中医药杂志, 2022, 37(8):4688-4691. |
CHEN X Q, LU H L, SHI Y D, et al. Effects of electroacupuncture on expression of cyclooxygenase 2 and transforming growth factor-β1 in uterine tissue of sequelae of peivic inflammatory disease rats[J]. China J Tradit Chin Med Pharm, 2022, 37(8):4688-4691. | |
38 | LI Y, LIU Y, YANG Q, et al. Anti-inflammatory effect of feiyangchangweiyan capsule on rat pelvic inflammatory disease through JNK/NF-κB pathway[J]. Evid Based Complement Alternat Med, 2018, 2018:8476147. DOI: 10.1155/2018/8476147 . |
39 | TANG P, DING Q, LIN J, et al. Pen Yan Jing tablets alleviates pelvic inflammatory disease by inhibiting akt/NF-κB pathway[J]. Int J Med Sci, 2023, 20(11):1386-1398. DOI: 10.7150/ijms.87433 . |
40 | WANG C M, LA L, FENG H X, et al. Aldose reductase inhibitor engeletin suppresses pelvic inflammatory disease by blocking the phospholipase C/protein kinase C-dependent/NF-κB and MAPK cascades[J]. J Agric Food Chem, 2020, 68(42):11747-11757. DOI: 10.1021/acs.jafc.0c05102 . |
41 | KONG D J, FU P, ZHANG Q, et al. Protective effects of Asiatic acid against pelvic inflammatory disease in rats[J]. Exp Ther Med, 2019, 17(6):4687-4692. DOI: 10.3892/etm.2019.7498 . |
42 | BU X L, LIU Y X, LU Q D, et al. Effects of "Danzhi decoction" on chronic pelvic pain, hemodynamics, and proinflammatory factors in the murine model of sequelae of pelvic inflammatory disease[J]. Evid Based Complement Alternat Med, 2015, 2015:547251. DOI: 10.1155/2015/547251 . |
43 | 张岩雪, 李红艳, 孙军华, 等. 基于PD-1/PD-L1信号通路探讨妇炎汤对慢性盆腔炎小鼠Treg/Th17免疫平衡的影响[J]. 中国优生与遗传杂志, 2022, 30(5):744-749. DOI: 10.13404/j.cnki.cjbhh.2022.05.002 . |
ZHANG Y X, LI H Y, SUN J H, et al. Based on PD-1/PD-L1 signaling pathway investigate the influence of Fuyan Decoction on Treg/Th17 immune balance[J]. Chin J Birth Health Hered, 2022, 30(5):744-749. DOI: 10.13404/j.cnki.cjbhh.2022.05.002 . | |
44 | LI Y, YANG Q, SHI Z H, et al. The anti-inflammatory effect of Feiyangchangweiyan capsule and its main components on pelvic inflammatory disease in rats via the regulation of the NF-κB and BAX/BCL-2 pathway[J]. Evid Based Complement Alternat Med, 2019, 2019:9585727. DOI: 10.1155/2019/9585727 . |
45 | 罗娜, 孙蔚林, 宁静, 等. 骨髓间充质干细胞来源外泌体对盆腔炎模型大鼠氧化应激和炎症反应的影响[J]. 西部医学, 2022, 34(5):681-687. DOI: 10.3969/j.issn.1672-3511.2022.05.010 . |
LUO N, SUN W L, NING J, et al. Effects of exosomes derived from bone marrow mesenchymal stem cells on oxidative stress and inflammatory response in rats with pelvic inflammatory disease[J]. Med J West China, 2022, 34(5):681-687. DOI: 10.3969/j.issn.1672-3511.2022.05.010 . | |
46 | 宗利平, 侯思伟, 郝明玲, 等. 千金苇茎汤合桃红四物汤对慢性盆腔炎模型大鼠的影响[J]. 中医学报, 2023, 38(1):145-151. DOI: 10.16368/j.issn.1674-8999.2023.01.026 . |
ZONG L P, HOU S W, HAO M L, et al. Effect of Qianjin Weijing Decoction and Taohong Siwu Decoction on chronic pelvic inflammation model rats[J]. Acta Chin Med, 2023, 38(1):145-151. DOI: 10.16368/j.issn.1674-8999.2023.01.026 . | |
47 | 江利, 姜梦婕, 韩克. 桂枝茯苓丸对慢性盆腔炎大鼠血清炎症因子水平及子宫组织caspase-3、caspase-8表达的影响[J]. 中成药, 2021, 43(10):2846-2850. DOI: 10.3969/j.issn.1001-1528.2021.10.046 . |
JIANG L, JIANG M J, HAN K. Effect of Guizhi Fuling pill on serum inflammatory factor level and expression of caspase-3 and caspase-8 in uterine tissue of rats with chronic pelvic inflammation[J]. Chin Tradit Pat Med, 2021, 43(10):2846-2850. DOI: 10.3969/j.issn.1001-1528.2021.10.046 . | |
48 | 邹学红, 汪俊, 王芳, 等. 金刚藤颗粒对急性盆腔炎模型大鼠NLRP3炎症小体通路及免疫功能的影响[J]. 中国中医急症, 2019, 28(8):1362-1365, 1382. DOI: 10.3969/j.issn.1004-745X.2019.08.012 . |
ZOU X H, WANG J, WANG F, et al. Effects of Jingangteng Granule oEffects of Jingangteng Granule on NLRP3 inflammatory body pathway and immunologic function of in rats with acute pelvic inflammation[J]. J Emerg Tradit Chin Med, 2019, 28(8):1362-1365, 1382. DOI: 10.3969/j.issn.1004-745X.2019.08.012 . | |
49 | 李茂雅, 魏绍斌, 黄利. 经PBEF/Caspase-3通路研究妇炎舒胶囊治疗盆腔炎性疾病模型大鼠的作用机制[J]. 中华中医药学刊, 2022, 40(9):128-131. DOI: 10.13193/j.issn.1673-7717.2022.09.029 . |
LI M Y, WEI S B, HUANG L. Mechanism of fuyanshu capsules in treatment of pelvic inflammatory disease model rats via PBEF/caspase-3 pathway[J]. Chin Arch Tradit Chin Med, 2022, 40(9):128-131. DOI: 10.13193/j.issn.1673-7717.2022.09.029 . | |
50 | 谷风, 谷周蓉, 由春玲, 等. 利湿化瘀中药对慢性盆腔炎大鼠输卵管组织Fas/FasL通路的影响[J]. 中国中医药科技, 2020, 27(4):515-519. |
GU F, GU Z R, YOU C L, et al. Effects of removing dampness and blood stasis Chinese medicine on fas/FasL pathway of fallopian tubal tissue of rats with chronic pelvic inflammatory[J]. Chin J Tradit Med Sci Technol, 2020, 27(4):515-519. | |
51 | ZHANG L J, ZHU J Y, SUN M Y, et al. Anti-inflammatory effect of Man-Pen-Fang, a Chinese herbal compound, on chronic pelvic inflammation in rats[J]. J Ethnopharmacol, 2017, 208:57-65. DOI: 10.1016/j.jep.2017.06.034 . |
52 | 齐进, 崔颖娜. 金刚藤多糖对慢性盆腔炎大鼠炎症介质、细胞凋亡及免疫细胞功能的影响[J]. 海南医学院学报, 2018, 24(13):1219-1221, 1225. DOI: 10.13210/j.cnki.jhmu.20180515.002 . |
QI J, CUI Y N. Effects of smilax bockii warb polysaccharide on inflammatory mediators, apoptosis and immune cell function in rats with chronic pelvic inflammatory disease[J]. J Hainan Med Univ, 2018, 24(13):1219-1221, 1225. DOI: 10.13210/j.cnki.jhmu.20180515.002 . | |
53 | 刘凤萍, 张民英. 妇乐颗粒对家兔盆腔炎模型炎症细胞因子及 ICAM-1的影响[J]. 陕西中医, 2015, 36(8):1090-1091. DOI: 10.3969/j.issn.1000-7369.2015.08.075 . |
LIU F P, ZHANG M Y. Effect of Fule Granule on inflammatory cytokines and ICAM-1 in rabbit pelvic inflammatory disease model[J]. Shaanxi J Tradit Chin Med, 2015, 36(8):1090-1091. DOI: 10.3969/j.issn.1000-7369.2015.08.075 . | |
54 | 秦翠梅, 于洪建, 陈建梅, 等. 三棱-莪术有效组分配伍液对慢性盆腔炎大鼠盆腔粘连的影响[J]. 中成药, 2018, 40(6):1233-1237. DOI: 10.3969/j.issn.1001-1528.2018.06.001 . |
QIN C M, YU H J, CHEN J M, et al. Effects of active components in compatible solution of Sparganii Rhizoma-Curcumae Rhizoma on pelvic adhesion in rats with chronic pelvic inflammatory disease[J]. Chin Tradit Pat Med, 2018, 40(6):1233-1237. DOI: 10.3969/j.issn.1001-1528.2018.06.001 . | |
55 | 谷风, 陶红星, 苗久旺, 等. 泽丹冲剂对盆腔炎性大鼠子宫 TGF-β1mRNA 、CTGFmRNA的干预研究[J]. 陕西中医, 2014, 35(5):623-625. DOI: 10.3969/j.issn.1000-7369.2014.05.062 . |
GU F, TAO H X, MIAO J W, et al. Intervention study of Zedan Granule on TGF-β1mRNA and CTGFmRNA in uterus of rats with pelvic inflammatory disease[J]. Shaanxi J Tradit Chin Med, 2014, 35(5):623-625. DOI: 10.3969/j.issn.1000-7369.2014.05.062 . | |
56 | 李筠, 陈刚. 金刚藤胶囊对慢性盆腔炎大鼠盆腔粘连的作用及其药理机制[J]. 中药药理与临床, 2020, 36(1):144-149. DOI: 10.13412/j.cnki.zyyl.2020.01.021 . |
LI J, CHEN G. Effect and pharmacological mechanism of Jingangteng capsule on pelvic adhesion in rats with chronic pelvic inflammation[J]. Pharmacol Clin Chin Mater Med, 2020, 36(1):144-149. DOI: 10.13412/j.cnki.zyyl.2020.01.021 . | |
57 | 安琪, 郑建华. 康妇消炎栓对盆腔炎大鼠子宫VEGF、EGF和MUC-1水平的影响[J]. 基因组学与应用生物学, 2018, 37(9):4200-4207. DOI: 10.13417/j.gab.037.004200 . |
AN Q, ZHENG J H. Effect of Kangfu Xiaoyan suppository on the levels of VEGF, EGF and MUC-1 in uterus of rats with pelvic inflammatory disease[J]. Genom Appl Biol, 2018, 37(9):4200-4207. DOI: 10.13417/j.gab.037.004200 . | |
58 | 吕耀中, 宗绍波, 李芳, 等. 散结镇痛胶囊对慢性盆腔炎大鼠抗炎及抗纤维化研究[J]. 中草药, 2019, 50(20):5011-5017. DOI: 10.7501/j.issn.0253-2670.2019.20.024 . |
LÜ Y Z, ZONG S B, LI F, et al. Anti-inflammatory and anti-fibrosis effects of Sanjie Zhentong Capsule on chronic pelvic inflammatory disease in rats[J]. Chin Tradit Herb Drugs, 2019, 50(20):5011-5017. DOI: 10.7501/j.issn.0253-2670.2019.20.024 . | |
59 | 许浩, 丁渊. 红藤煎剂对盆腔炎模型大鼠子宫内膜整合素αvβ3表达影响的实验研究[J]. 中国中医药科技, 2017, 24(2):159-160, 184. DOI:CNKI:SUN:TJYY.0.2017-02-012 . |
XU H, DING Y. Experimental study of Hongteng Decoction on endometrial integrin αvβ3 expression of rats with pelvic inflammation[J]. Chin J Tradit Med Sci Technol, 2017, 24(2):159-160, 184. DOI:CNKI:SUN:TJYY.0.2017-02-012 . | |
60 | 许浩, 丁渊. 红藤煎剂对盆腔炎大鼠子宫内膜HOXA10表达影响的实验研究[J]. 中国中医药科技, 2016, 23(6):668-670. DOI:CNKI:SUN:TJYY.0.2016-06-014 . |
XU H, DING Y. Experimental study on effect of Hongteng Decoction on endometrial HOXA10 expression of rats with pelvic inflammation[J]. Chin J Tradit Med Sci Technol, 2016, 23(6):668-670. DOI:CNKI:SUN:TJYY.0.2016-06-014 . | |
61 | 张秋慧, 匡继林, 李萍. 盆炎方对盆腔炎性疾病后遗症大鼠卵巢、子宫组织TGF-β1、TβRⅡ蛋白的影响[J]. 上海中医药杂志, 2016, 50(2):84-88. DOI: 10.16305/j.1007-1334.2016.02.026 . |
ZHANG Q H, KUANG J L, LI P. The influence of "Penyan Fang" on the TGF-β1 and TβR Ⅱ expression of the sequelae of pelvic inflammatory disease rats' ovary and uterus[J]. Shanghai J Tradit Chin Med, 2016, 50(2):84-88. DOI: 10.16305/j.1007-1334.2016.02.026 . | |
62 | 张志鹏, 高升, 任存霞. 当归芍药散对慢性盆腔炎模型大鼠分子免疫调控的影响[J]. 中华中医药学刊, 2015, 33(11):2684-2686. DOI: 10.13193/j.issn.1673-7717.2015.11.037 . |
ZHANG Z P, GAO S, REN C X. Effect of Danggui Shaoyao Powder on molecular immune regulation of chronic pelvic inflammatory disease model rats[J]. Chin Arch Tradit Chin Med, 2015, 33(11):2684-2686. DOI: 10.13193/j.issn.1673-7717.2015.11.037 . | |
63 | 张嘉晔, 许丽绵. 坤复康胶囊对盆腔炎性疾病后遗症大鼠红细胞免疫功能的影响[J]. 中成药, 2016, 38(10):2253-2256. DOI: 10.3969/j.issn.1001-1528.2016.10.032 . |
ZHANG J Y, XU L M. Effect of kunfukang capsule on erythrocyte immune function in rats with pelvic inflammatory disease sequela[J]. Chin Tradit Pat Med, 2016, 38(10):2253-2256. DOI: 10.3969/j.issn.1001-1528.2016.10.032 . | |
64 | 朱平, 李秀玲, 王思磊, 等. 盆炎汤对急性盆腔炎模型大鼠细胞炎症因子、免疫功能及自由基代谢的影响[J]. 中国中医急症, 2019, 28(9):1590-1593, 1618. DOI: 10.3969/j.issn.1004-745X.2019.09.022 . |
ZHU P, LI X L, WANG S L, et al. Effect of penyan decoction on cellular inflammatory factor, immune function and free radical metabolism in rats with acute pelvic inflammation[J]. J Emerg Tradit Chin Med, 2019, 28(9):1590-1593, 1618. DOI: 10.3969/j.issn.1004-745X.2019.09.022 . | |
65 | 王春梅, 康燕, 靳紫薇, 等. TLR4抑制剂Tak-242对慢性盆腔炎大鼠炎症指标及病理形态学改变的影响[J]. 中国老年学杂志, 2016, 36(5):1053-1055. DOI: 10.3969/j.issn.1005-9202.2016.05.013 . |
WANG C M, KANG Y, JIN Z W, et al. Effect of TLR4 inhibitor Tak-242 on inflammatory indexes and pathomorphological changes in rats with chronic pelvic inflammatory disease[J]. Chin J Gerontol, 2016, 36(5):1053-1055. DOI: 10.3969/j.issn.1005-9202.2016.05.013 . | |
66 | 高升, 高飞, 闫亚楠, 等. 当归芍药散对慢性盆腔炎大鼠外周血Th、Tc细胞和NO、IL-4、IL-10的影响[J]. 中药新药与临床药理, 2016, 27(4):528-533. DOI: 10.19378/j.issn.1003-9783.2016.04.013 . |
GAO S, GAO F, YAN Y N, et al. Effect of Danggui Shaoyao San on Th, Tc cells and nitric oxide, interleukin-4, interleukin-10 levels in peripheral blood of rats with chronic pelvic inflammatory disease[J]. Tradit Chin Drug Res Clin Pharmacol, 2016, 27(4):528-533. DOI: 10.19378/j.issn.1003-9783.2016.04.013 . | |
67 | 潘震宇, 李勇敏. 妇炎宁片对细菌性盆腔炎大鼠免疫功能及盆腔炎症的影响[J]. 湖南中医杂志, 2013, 29(10):124-126. DOI: 10.16808/j.cnki.issn1003-7705.2013.10.070 . |
PAN Z Y, LI Y M. Effects of Fuyanning Tablets on immune function and pelvic inflammation in rats with bacterial pelvic inflammatory disease[J]. Hunan J Tradit Chin Med, 2013, 29(10):124-126. DOI: 10.16808/j.cnki.issn1003-7705.2013.10.070 . | |
68 | 李冀红, 何延浩, 肖云芳, 等. 康妇炎胶囊对盆腔炎性疾病后遗症模型大鼠免疫功能的影响[J]. 中国妇产科临床杂志, 2017, 18(3):230-232. DOI: 10.13390/j.issn.1672-1861.2017.03.013 . |
LI J H, HE Y H, XIAO Y F, et al. Effect of Kangfuyan capsule on immune function of rats with pelvic inflammatory disease sequelae[J]. Chin J Clin Obstet Gynecol, 2017, 18(3):230-232. DOI: 10.13390/j.issn.1672-1861.2017.03.013 . | |
69 | 程乐, 曹耀丹, 陈慧. 丹栀逍遥散对大肠杆菌感染致慢性盆腔炎大鼠模型治疗作用的实验研究[J]. 中国现代中药, 2013, 15(2):93-96. DOI: 10.13313/j.issn.1673-4890.2013.02.014 . |
CHENG L, CAO Y D, CHEN H. The experimental study of Danzhi Xiaoyao power on the therapeutic effect of chronic pelvic inflammatory disease rat model reduced by E.coli infection[J]. Mod Chin Med, 2013, 15(2):93-96. DOI: 10.13313/j.issn.1673-4890.2013.02.014 . | |
70 | 汪明德, 叶芳建, 林亚平, 等. 盆宁颗粒对盆腔炎模型鼠血液流变学和镇痛作用的影响[J]. 中华中医药学刊, 2012, 30(8):1719-1722. DOI: 10.13193/j.archtcm.2012.08.25.wangmd.036 . |
WANG M D, YE F J, LIN Y P, et al. Effect of penning granule on hemorheology and analgesia of pelvic inflammatory disease model rats[J]. Chin Arch Tradit Chin Med, 2012, 30(8):1719-1722. DOI: 10.13193/j.archtcm.2012.08.25.wangmd.036 . | |
71 | 陈十昔, 高慧, 王楚然, 等. 高氏盆炎方四号方对慢性盆腔炎大鼠抗炎作用及对免疫指标、MCP-1因子影响[J]. 四川中医, 2022, 40(2):45-51. |
CHEN S X, GAO H, WANG C R, et al. Anti-inflammatory effect of Gao's Penyan Formula No.4 on chronic pelvic inflammatory disease rats and its influence on immune index and MCP-1 factor[J]. J Sichuan Tradit Chin Med, 2022, 40(2):45-51. | |
72 | LI X H, LIU Y R, JIANG D H, et al. Research on the mechanism of Chinese herbal medicine Radix Paeoniae Rubra in improving chronic pelvic inflammation disease by regulating PTGS2 in the arachidonic acid pathway[J]. Biomedecine Pharmacother, 2020, 129:110052. DOI: 10.1016/j.biopha.2020.110052 . |
73 | 陈民利, 苗明三. 实验动物学[M]. 北京: 中国中医药出版社, 2020: 99-103. |
CHEN M L, MIAO M S. Laboratory zoology[M]. Beijing: China Press of Traditional Chinese Medicine, 2020: 99-103. | |
74 | 邓亚胜, 黄慧, 梁天薇, 等. 基于数据挖掘的慢性支气管炎动物模型应用分析[J]. 中国实验动物学报, 2023, 31(3):327-336. DOI: 10.3969/j.issn.1005-4847.2023.03.007 . |
DENG Y S, HUANG H, LIANG T W, et al. Analysis of the application of animal models of chronic bronchitis by data mining[J]. Acta Lab Animalis Sci Sin, 2023, 31(3):327-336. DOI: 10.3969/j.issn.1005-4847.2023.03.007 . | |
75 | 覃倩, 李彤, 尤剑鹏, 等. 盆腔炎鼠类模型构建与评价[J]. 上海交通大学学报(医学版), 2019, 39(10):1218-1222. DOI: 10.3969/j.issn.1674-8115.2019.10.021 . |
QIN Q, LI T, YOU J P, et al. Rat model construction and evaluation of pelvic inflammatory disease[J]. J Shanghai Jiaotong Univ Med Sci, 2019, 39(10):1218-1222. DOI: 10.3969/j.issn.1674-8115.2019.10.021 . | |
76 | 李莎莎, 李军. 盆腔炎性疾病动物实验研究进展[J]. 河南中医, 2015, 35(3):606-608. DOI: 10.16367/j.issn.1003-5028.2015.03.0258 . |
LI S S, LI J. Experimental research progress of the animals with pelvic inflammatory diseases[J]. Henan Tradit Chin Med, 2015, 35(3):606-608. DOI: 10.16367/j.issn.1003-5028.2015.03.0258 . | |
77 | YANG M X, LIU S Y, CAI J X, et al. Bile acids ameliorates lipopolysaccharide-induced endometritis in mice by inhibiting NLRP3 inflammasome activation[J]. Life Sci, 2023, 331:122062. DOI: 10.1016/j.lfs.2023.122062 . |
78 | 陈华彪. 左氧氟沙星联合阿奇霉素治疗宫颈炎的临床效果[J]. 临床合理用药, 2024, 17(2):109-112. DOI: 10.15887/j.cnki.13-1389/r.2024.02.032 . |
CHEN H B. Clinical effect of levofloxacin combined with azithromycin in the treatment of cervicitis[J]. Chin J Clin Ration Drug Use, 2024, 17(2):109-112. DOI: 10.15887/j.cnki.13-1389/r.2024.02.032 . | |
79 | 吴凡, 王保贵, 胡文, 等. 多西环素联合左氧氟沙星对耐药肺炎克雷伯菌的体内外抗菌活性研究[J]. 中国新药杂志, 2023, 32(23):2425-2433. DOI: 10.3969/j.issn.1003-3734.2023.23.014 . |
WU F, WANG B G, HU W, et al. In vitro and in vivo antibacterial activity of doxycycline combined with levofloxacin against carbapenem-resistant Klebsiella pneumoniae [J]. Chin J N Drugs, 2023, 32(23):2425-2433. DOI: 10.3969/j.issn.1003-3734.2023.23.014 . | |
80 | 杨秀伟, 张鹏. 妇科千金方质量标志物研究[J]. 中国现代中药, 2023, 25(5):1105-1112. DOI: 10.13313/j.issn.1673-4890.20220920002 . |
YANG X W, ZHANG P. Quality markers in fuke Qianjin formula[J]. Mod Chin Med, 2023, 25(5):1105-1112. DOI: 10.13313/j.issn.1673-4890.20220920002 . | |
81 | 郭颖. 妇炎康治疗慢性盆腔炎的临床疗效[J]. 中国实用医药, 2021, 16(24):169-171. DOI: 10.14163/j.cnki.11-5547/r.2021.24.060 . |
GUO Y. Clinical efficacy of Fuyankang on chronic pelvic inflammatory disease[J]. China Pract Med, 2021, 16(24):169-171. DOI: 10.14163/j.cnki.11-5547/r.2021.24.060 . | |
82 | 凌娜, 陈莹. 妇炎宁汤对慢性盆腔炎大鼠模型体内IFN-γ、IL-10的影响[J]. 中华中医药学刊, 2013, 31(5):1142-1144. DOI: 10.13193/j.archtcm.2013.05.184.lingn.068 . |
LING N, CHEN Y. Influence of fuyanning decoction on IFN-γ and IL-10 in rats with chronic pelvic inflammation[J]. Chin Arch Tradit Chin Med, 2013, 31(5):1142-1144. DOI: 10.13193/j.archtcm.2013.05.184.lingn.068 . |
[1] | 吴玥, 李璐, 张阳, 王珏, 冯婷婷, 李依桐, 王凯, 孔琪. 冠状病毒感染动物模型组学数据集成分析[J]. 实验动物与比较医学, 2024, 44(4): 357-373. |
[2] | 肖攀, 王红义, 陆璐, 张梅, 陈克明, 申栋帅, 牛廷献. 低氧敏感和低氧耐受型Wistar大鼠筛选及其G1代的低氧敏感性初探[J]. 实验动物与比较医学, 2024, 44(4): 374-383. |
[3] | 丁天送, 谢京红, 杨斌, 李河桥, 乔一倬, 陈心如, 田纹凡, 李佳佩, 张婉怡, 李帆旋. 复发性流产动物模型特点评价与应用分析[J]. 实验动物与比较医学, 2024, 44(4): 393-404. |
[4] | 朱晓雨, 袁韩涛, 李四波. 微RNA-887-3p能抑制大鼠椎间盘纤维环细胞中 MDM4表达和细胞增殖并促进细胞凋亡[J]. 实验动物与比较医学, 2024, 44(3): 270-278. |
[5] | 姚广源, 董平, 吴昊, 柏梅, 党嬴, 王悦, 胡凯. 长骨骨折动物模型的研究进展[J]. 实验动物与比较医学, 2024, 44(3): 289-296. |
[6] | 包方奇, 屠海烨, 方明笋, 张倩, 陈民利. 基于动物模型的高尿酸肾病病理及分子机制研究进展[J]. 实验动物与比较医学, 2024, 44(2): 180-191. |
[7] | 张莉, 匡宇, 韩凌霞. 人与其他动物椎间盘解剖和组织学结构的比较医学研究进展[J]. 实验动物与比较医学, 2024, 44(2): 192-201. |
[8] | 钟瑞华, 李国停, 杨文捷, 郭湘洁, 周洁芸, 胡颖怡, 倪其承, 杨野, 张敏, 朱焰. 同种异体子宫内膜异位症大鼠模型用于GnRH激动剂类药物的药效评价研究[J]. 实验动物与比较医学, 2024, 44(2): 127-138. |
[9] | 胡锦华, 韩菁婕, 金旻, 胡滨, 娄月芬. 葛根素对大鼠和小鼠骨密度影响的Meta分析[J]. 实验动物与比较医学, 2024, 44(2): 149-161. |
[10] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[11] | . 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[12] | 侯敏博, 崔甜甜, 苏娜瑛, 张苗苗, 焦永敏, 严建燕, 汪溪洁, 大平东子. 一例Han-Wistar大鼠垂体细胞瘤的病理学分析[J]. 实验动物与比较医学, 2023, 43(6): 654-658. |
[13] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[14] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[15] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||