实验动物与比较医学 ›› 2025, Vol. 45 ›› Issue (1): 55-66.DOI: 10.12300/j.issn.1674-5817.2024.121
收稿日期:
2024-08-21
修回日期:
2024-12-03
出版日期:
2025-03-12
发布日期:
2025-02-25
通讯作者:
郭建平(1964—),男,本科,主任医师,研究方向:胃肠、疝外科疾病的诊疗。E-mail: gjphr@126.com。ORCID:0009-0005-2655-7127作者简介:
费 彬(1999—),男,硕士研究生,研究方向:胃肠、疝外科疾病的诊疗。E-mail: feibin2022@163.com。ORCID:0009-0007-9428-4890
基金资助:
FEI Bin1()(
), GUO Wenke2, GUO Jianping2(
)(
)
Received:
2024-08-21
Revised:
2024-12-03
Published:
2025-02-25
Online:
2025-03-12
Contact:
GUO Jianping (ORCID: 0009-0005-2655-7127), E-mail: gjphr@126.com摘要:
疝是普外科常见病和多发病,指体内器官整体或一部分离开正常的解剖位置,通过先天或后天形成的薄弱点、缺损或空隙进入其他部位。疝的发生机制复杂,与腹壁薄弱或腹腔内压增高等多种因素有关,临床表现多样,因类型、部位和严重程度的不同而有所差异。随着老龄化社会进程不断加剧,疝的发病率呈逐年上升趋势。动物模型作为研究疝疾病的重要手段,一方面能够检验新修补材料和新技术的安全性和有效性;另一方面有助于临床医师探索新的手术方式,并对某些疝疾病及其并发症的发生机制和新疗法展开研究。由于不同类型的疝疾病在病理生理机制上存在显著差异,其动物模型的建立方法和评价标准也呈现出明显的多样性。此外,动物模型的建立方法与实验目的密切相关,不同的实验目的对动物模型的要求各不相同。因此,根据不同的实验目的精准选择动物模型的建立方法,是确保研究顺利开展并取得可靠成果的关键。为此,本文综述了建立腹外疝(包括腹壁切口疝、腹股沟疝、脐疝、造口旁疝、嵌顿疝及盆底疝)、先天性膈疝、食管裂孔疝及脑疝动物模型的有效方法,详细分析了这些模型的优缺点及相关的评价标准;同时,总结了一些新型疝修补材料在临床前疝疾病动物模型研究中的应用,以期为疝疾病相关研究及治疗提供有价值的参考。
中图分类号:
费彬,郭文科,郭建平. 疝疾病动物模型研究及新型疝修补材料应用进展[J]. 实验动物与比较医学, 2025, 45(1): 55-66. DOI: 10.12300/j.issn.1674-5817.2024.121.
FEI Bin,GUO Wenke,GUO Jianping. Research Progress on Animal Models for Hernia Diseases and New Hernia Repair Materials[J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 55-66. DOI: 10.12300/j.issn.1674-5817.2024.121.
疝疾病类型 Types of hernia | 构建方法 Establishment Methods | 实验动物 Laboratory Animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
腹壁切口疝 Incisional hernia | 手术诱发 | 猪 | 腹壁结构、生理功能与人类相似程度高,临床转化率较高[ | 成本较高,手术、麻醉操作复杂[ |
犬 | 腹壁结构、腹腔压力变化规律等与人类相似[ | 成本较高,饲养管理和手术麻醉操作复杂[ | ||
兔 | 成本较低,体型小,操作简单[ | 腹壁厚度、强度与人类差异较大[ | ||
鼠 | 成本低,操作简单,模型重复性好[ | 腹壁厚度、强度与人类差异较大[ | ||
腹股沟疝 Inguinal hernia | 自发 | 猪 | 疝的发生机制更贴合临床实际,可研究疾病自然发生过程[ | 发生率低,样本获取难度大;遗传背景不明确[ |
兔 | 成本较低;存在永不闭合内环口;体积大小适中,更适合腹腔镜手术操作训练[ | 腹股沟区解剖与人类差距较大;不能形成疝,适用条件有限[ | ||
转基因 | 小鼠 | 可重复性强,多用于机制研究[ | 技术难度及成本高,适用条件有限[ | |
手术诱发 | 大鼠 | 可控制疝种类及严重程度,快速成模型[ | 与临床实际差距较大,应用较少 | |
脐疝 Umbilical hernia | 自发 | 大鼠 | 发生机制更贴合临床,可用于基因的研究[ | 个体差异大[ |
造口旁疝 Parastomal hernia | 手术诱发 | 大鼠 | 成本低,操作简单;模型重复性好[ | 腹壁厚度、强度与人类差异较大 |
嵌顿疝 Incarcerated hernia | 手术诱发 | 大鼠 | 简单易行,可控性和重复性好[ | 疝内容物、疾病进展速度及治疗效果等多方面与临床存在一定差异[ |
盆底疝 Pelvic floor hernia | 手术诱发 | 犬 | 疝的发生机制更贴合临床实际情况[ | 盆底局部解剖复杂,不易识别,与人类存在差异[ |
转基因 | 小鼠 | 可用于盆底疝的发病机制研究[ | 技术难度及成本高,适用条件有限[ |
表1 腹外疝动物模型的构建方法及优缺点
Table 1 Methods for establishing animal models of external abdominal hernia, and their advantages and disadvantages
疝疾病类型 Types of hernia | 构建方法 Establishment Methods | 实验动物 Laboratory Animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
腹壁切口疝 Incisional hernia | 手术诱发 | 猪 | 腹壁结构、生理功能与人类相似程度高,临床转化率较高[ | 成本较高,手术、麻醉操作复杂[ |
犬 | 腹壁结构、腹腔压力变化规律等与人类相似[ | 成本较高,饲养管理和手术麻醉操作复杂[ | ||
兔 | 成本较低,体型小,操作简单[ | 腹壁厚度、强度与人类差异较大[ | ||
鼠 | 成本低,操作简单,模型重复性好[ | 腹壁厚度、强度与人类差异较大[ | ||
腹股沟疝 Inguinal hernia | 自发 | 猪 | 疝的发生机制更贴合临床实际,可研究疾病自然发生过程[ | 发生率低,样本获取难度大;遗传背景不明确[ |
兔 | 成本较低;存在永不闭合内环口;体积大小适中,更适合腹腔镜手术操作训练[ | 腹股沟区解剖与人类差距较大;不能形成疝,适用条件有限[ | ||
转基因 | 小鼠 | 可重复性强,多用于机制研究[ | 技术难度及成本高,适用条件有限[ | |
手术诱发 | 大鼠 | 可控制疝种类及严重程度,快速成模型[ | 与临床实际差距较大,应用较少 | |
脐疝 Umbilical hernia | 自发 | 大鼠 | 发生机制更贴合临床,可用于基因的研究[ | 个体差异大[ |
造口旁疝 Parastomal hernia | 手术诱发 | 大鼠 | 成本低,操作简单;模型重复性好[ | 腹壁厚度、强度与人类差异较大 |
嵌顿疝 Incarcerated hernia | 手术诱发 | 大鼠 | 简单易行,可控性和重复性好[ | 疝内容物、疾病进展速度及治疗效果等多方面与临床存在一定差异[ |
盆底疝 Pelvic floor hernia | 手术诱发 | 犬 | 疝的发生机制更贴合临床实际情况[ | 盆底局部解剖复杂,不易识别,与人类存在差异[ |
转基因 | 小鼠 | 可用于盆底疝的发病机制研究[ | 技术难度及成本高,适用条件有限[ |
疝疾病类型 Types of hernia | 构建方法 Establishment methods | 实验动物 Laboratory animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
先天性膈疝 Congenital diaphragmatic hernia | 转基因 | 小鼠 | 可模拟疾病自然发生;特定基因的功能研究[ | 技术难度及成本高[ |
药物诱发 | 大鼠、小鼠 | 经济易行;可模拟人类膈疝不同严重程度的肺和膈胚胎发育研究[ | 缺乏对大型动物的实验研究;存在硝基酚本身致畸作用的影响[ | |
手术诱发 | 羊 | 胎儿尺寸大,易形成疝缺损[ | 成本高,妊娠周期长,窝产仔数少;仅限于从小管期开始的胎儿肺的研究[ | |
兔 | 成本较低,妊娠期短,窝产仔数多,肺部生理学与人类相似[ | 仅限于从小管期开始的胎儿肺的研究[ | ||
大鼠 | 成本低,妊娠期短,窝产仔数多[ | 手术操作难度大,需显微操作基础;仅限于从小管期开始的胎儿肺的研究[ | ||
食管裂孔疝 Hiatal hernia | 自发 | 猪 | 重要解剖结构与人类相似;多用作手术训练模型[ | 成本高;麻醉、围术期监护等复杂[ |
鼠、兔 | 简单易行[ | 与临床差距较大;适用条件有限,近年来较少使用[ | ||
手术诱发 | 猪 | 重要解剖结构与人类相似;可作为手术训练模型[ | 成本高;麻醉、围术期监护等复杂[ | |
犬 | 重要解剖结构与人类相似[ | 成本高;麻醉、围术期监护等复杂[ | ||
脑疝 Cerebral hernia | 手术诱发 | 广西巴马 小型猪 | 大脑解剖及生理与人类相似;脑容积较大,易于影像学评估[ | 成本高;麻醉、围术期监护等复杂[ |
兔 | 病灶局限,可控性高[ | 手术操作技术难度较大[ |
表2 先天性膈疝模型、食管裂孔疝模型及脑疝动物模型的构建方法及优缺点
Table 2 Methods for establishing animal models of congenital diaphragmatic hernia, hiatal hernia, and cerebral hernia, and their advantages and disadvantages
疝疾病类型 Types of hernia | 构建方法 Establishment methods | 实验动物 Laboratory animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
先天性膈疝 Congenital diaphragmatic hernia | 转基因 | 小鼠 | 可模拟疾病自然发生;特定基因的功能研究[ | 技术难度及成本高[ |
药物诱发 | 大鼠、小鼠 | 经济易行;可模拟人类膈疝不同严重程度的肺和膈胚胎发育研究[ | 缺乏对大型动物的实验研究;存在硝基酚本身致畸作用的影响[ | |
手术诱发 | 羊 | 胎儿尺寸大,易形成疝缺损[ | 成本高,妊娠周期长,窝产仔数少;仅限于从小管期开始的胎儿肺的研究[ | |
兔 | 成本较低,妊娠期短,窝产仔数多,肺部生理学与人类相似[ | 仅限于从小管期开始的胎儿肺的研究[ | ||
大鼠 | 成本低,妊娠期短,窝产仔数多[ | 手术操作难度大,需显微操作基础;仅限于从小管期开始的胎儿肺的研究[ | ||
食管裂孔疝 Hiatal hernia | 自发 | 猪 | 重要解剖结构与人类相似;多用作手术训练模型[ | 成本高;麻醉、围术期监护等复杂[ |
鼠、兔 | 简单易行[ | 与临床差距较大;适用条件有限,近年来较少使用[ | ||
手术诱发 | 猪 | 重要解剖结构与人类相似;可作为手术训练模型[ | 成本高;麻醉、围术期监护等复杂[ | |
犬 | 重要解剖结构与人类相似[ | 成本高;麻醉、围术期监护等复杂[ | ||
脑疝 Cerebral hernia | 手术诱发 | 广西巴马 小型猪 | 大脑解剖及生理与人类相似;脑容积较大,易于影像学评估[ | 成本高;麻醉、围术期监护等复杂[ |
兔 | 病灶局限,可控性高[ | 手术操作技术难度较大[ |
1 | 陈静宇, 洪阁, 郭宁, 等. 疝修复补片: 材料设计与应用的最新进展[J]. 中国组织工程研究, 2025, 29(16):3494-3502. DOI: 10.12307/2025.437 . |
CHEN J Y, HONG G, GUO N, et al. Hernia repair patch: recent advances in material design and application[J]. Chin J Tissue Eng Res, 2025, 29(16):3494-3502. DOI: 10.12307/2025.437 . | |
2 | 陈双, 江志鹏. 切口疝、腹壁力学与外科技术[J]. 中国普通外科杂志, 2023, 32(10):1453-1459. DOI: 10.7659/j.issn.1005-6947.2023.10.002 . |
CHEN S, JIANG Z P. Incision hernia, abdominal wall mechanics and surgical techniques[J]. China J Gen Surg, 2023, 32(10):1453-1459. DOI: 10.7659/j.issn.1005-6947.2023.10.002 . | |
3 | 仲洁, 逯景辉, 林振华, 等. 模拟临床的猪腹壁切口疝模型建立研究[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(2):168-172. DOI: 10.3877/cma.j.issn.1674-392X.2024.02.008 . |
ZHONG J, LU J H, LIN Z H, et al. Study on the establishment of porcine abdominal incisional hernia model simulating clinical practice[J/OL]. Chin J Hernia Abdom Wall SurgElectron Ed, 2024, 18(2):168-172. DOI: 10.3877/cma.j.issn.1674-392X.2024.02.008 . | |
4 | LIU H, GIELEN M M, BOSMANS J M, et al. Inadequate awareness of adherence to ARRIVE guidelines, regarding reporting quality of hernia models repaired with meshes: a systematic review[J]. Hernia, 2022, 26(2):389-400. DOI:10.1007/s10029-020-02351-y . |
5 | 邓美海, 林楠, 胡昆鹏, 等. 猪切口疝模型的建立及使用生物型补片修补的研究[J]. 中华实验外科杂志, 2008, 25(10):1260-1261. DOI: 10.3321/j.issn: 1001-9030.2008.10.014 . |
DENG M H, LIN N, HU K P, et al. Empirical study of establishing piglet model of incisional hernia and repairing the hernia with biotic patch[J]. Chin J Exp Surg, 2008, 25(10):1260-1261. DOI: 10.3321/j.issn: 1001-9030.2008.10.014 . | |
6 | SAHOO S, BAKER A R, HASKINS I N, et al. Development of a critical-sized ventral hernia model in the pig[J]. J Surg Res, 2017, 210:115-123. DOI:10.1016/j.jss.2016.10.026 . |
7 | ZHARIKOV A N, LUBYANSKY V G, GLADYSHEVA E K, et al. Early morphological changes in tissues when replacing abdominal wall defects by bacterial nanocellulose in experimental trials[J]. J Mater Sci Mater Med, 2018, 29(7):95. DOI:10.1007/s10856-018-6111-z . |
8 | NAKAYAMA Y, OSHIMA N, TATSUMI E, et al. iBTA-induced bovine Biosheet for repair of abdominal wall defects in a beagle model: proof of concept[J]. Hernia, 2018, 22(6):1033-1039. DOI:10.1007/s10029-018-1799-8 . |
9 | 周岩. 新型兔腹壁疝模型建立及评价的研究[D]. 昆明: 云南中医学院, 2018. |
ZHOU Y. Research on the establishment and evaluation of a new rabbit abdominal wall hernia model [D]. Kunming: Yunnan University of Traditional Chinese Medicine, 2018. | |
10 | 邹振玉, 杨硕, 王明刚, 等. 新型巨大腹壁疝及腹腔高压动物模型的实验研究[J]. 首都医科大学学报, 2018, 39(6):900-904. DOI: 10.3969/j.issn.1006-7795.2018.06.019 . |
ZOU Z Y, YANG S, WANG M G, et al. Experimental study on a novel rabbit model of giant ventral hernia and intraabdominal hypertension[J]. J Cap Med Univ, 2018, 39(6):900-904. DOI: 10.3969/j.issn.1006-7795.2018.06.019 . | |
11 | BENITO-MARTÍNEZ S, PÉREZ-KÖHLER B, RODRÍGUEZ M, et al. Antibacterial biopolymer gel coating on meshes used for abdominal hernia repair promotes effective wound repair in the presence of infection[J]. Polymers, 2021, 13(14):2371. DOI:10.3390/polym13142371 . |
12 | PÉREZ-KÖHLER B, PASCUAL G, BENITO-MARTÍNEZ S, et al. Thermo-responsive antimicrobial hydrogel for the in situ coating of mesh materials for hernia repair[J]. Polymers, 2020, 12(6):1245. DOI:10.3390/polym12061245 . |
13 | 朱佳琳.大鼠切口疝腹膜前间隙补片修补术对腹壁肌肉病理变化的影响研究[D]. 成都: 成都医学院, 2023. DOI:10.27843/d.cnki.gcdyy.2023.000149 . |
ZHU J L. Study on the Ⅱnfluence of preperitoneal mesh repair of Ⅱncisional hernia on the pathological changes of abdominal wall muscles in rats [D]. Chengdu: Chengdu Medical College, 2023. DOI: 10.27843/d.cnki.gcdyy.2023.000149 . | |
14 | HELMEDAG M J, HEISE D, EICKHOFF R M, et al. Ultra-fine polyethylene hernia meshes improve biocompatibility and reduce intraperitoneal adhesions in IPOM position in animal models[J]. Biomedicines, 2022, 10(6):1294. DOI:10.3390/biomedicines10061294 . |
15 | SAHIN M, SAYDAM M, YILMAZ K B, et al. Comparison of incisional hernia models in rats: an experimental study[J]. Hernia, 2020, 24(6):1275-1281. DOI:10.1007/s10029-020-02234-2 . |
16 | 祁伟伟, 黄博. 成人腹股沟疝危险因素及外科治疗的研究进展[J]. 国际外科学杂志, 2024, 51(4):283-288. DOI:10.3760/cma.j.cn115396-20240103-00006 . |
QI W W, HUANG B. Research progress on risk factors and treatment of adult inguinal hernia[J]. Int J Surg, 2024, 51(4):283-288. DOI:10.3760/cma.j.cn115396-20240103-00006 . | |
17 | 何永平, 陈德威, 于梅芳. 小型猪自发性腹股沟疝模型[J]. 上海实验动物科学, 1992, 12(1):14-15. |
HE Y P, CHEN D W, YU M F. Spontaneous inguinal hernia model in miniature pigs[J]. Shanghai Lab Anim Sci, 1992, 12(1):14-15. | |
18 | TAKEGAWA Y, TSUTSUMI N, YAMANAKA K, et al. Impact of different fibrin glue application methods on inguinal hernia mesh fixation capability[J]. Sci Rep, 2024, 14(1):12773. DOI:10.1038/s41598-024-63682-9 . |
19 | FUNG A C H, CHUNG P H Y, CHAN I H Y, et al. Enhancing neonatal thoracoscopic surgical training with rabbit model[J]. Heliyon, 2024, 10(10): e31498. DOI:10.1016/j.heliyon.2024.e31498 . |
20 | POTLURI T, TAYLOR M J, STULBERG J J, et al. An estrogen-sensitive fibroblast population drives abdominal muscle fibrosis in an inguinal hernia mouse model[J]. JCI Insight, 2022, 7(9): e152011. DOI:10.1172/jci.insight.152011 . |
21 | ZHAO H, ZHOU L, LI L, et al. Shift from androgen to estrogen action causes abdominal muscle fibrosis, atrophy, and inguinal hernia in a transgenic male mouse model[J]. Proc Natl Acad Sci USA, 2018, 115(44): E10427-E10436. DOI:10.1073/pnas.1807765115 . |
22 | 陈昊强, 程军胜, 张旭升, 等. 骨髓间充质干细胞覆膜聚乳酸-羟基乙酸/Ⅰ型胶原蛋白支架补片在腹股沟疝模型中的作用[J]. 中华实验外科杂志, 2022, 39(2):377. DOI:10.3760/cma.j.cn421213-20210808-00599 . |
CHEN H Q, CHENG J S, ZHANG X S, et al. Bone marrow mesenchymal stem cell-coated polylactic acid-hydroxyacetic acid/type Ⅰ collagen scaffold patches in an inguinal hernia model[J]. Chin J Exp Surg, 2022, 39(2):377. DOI:10.3760/cma.j.cn421213-20210808-00599 . | |
23 | MORADIAN S, KLOSOWIAK J L, BOCTOR M J, et al. Novel approach for umbilical hernia repair using mesh strips[J]. Plast Reconstr Surg Glob Open, 2023, 11(4): e4947. DOI:10.1097/GOX.0000000000004947 . |
24 | 恽时锋, 孙敬方. 大鼠自发性脐疝观察初报[J]. 畜牧与兽医, 1998(3):30-31. DOI:CNKI:SUN:XMYS.0.1998-03-015 . |
YUN S F, SUN J F. Preliminary report on observation of spontaneous umbilical hernia in rats[J]. Anim Husb Vet Med, 1998(3): 30-31. DOI:CNKI:SUN:XMYS.0.1998-03-015 . | |
25 | 张涛, 尚世臣, 张广州, 等. 遗传性大鼠脐疝模型的选育[J]. 中国实验动物学报, 2014, 22(5):84-86, 8. DOI:10.3969/j.issn.1005-4847.2014.05.019 . |
ZHANG T, SHANG S C, ZHANG G Z, et al. Selective breeding of a rat model of congenital umbilical hernia[J]. Acta Lab Animalis Sci Sin, 2014, 22(5):84-86, 8. DOI:10.3969/j.issn.1005-4847.2014.05.019 . | |
26 | 孙天奇, 秦佟童, 张睿, 等. 遗传性脐疝大鼠生物学特性的初步研究[J]. 实验动物科学, 2022, 39(1):38-43. DOI:10.3969/j.issn.1006-6179.2022.01.008 . |
SUN T Q, QIN T T, ZHANG R, et al. Preliminary study on biological characteristics of umbilical hernia rats[J]. Lab Anim Sci, 2022, 39(1):38-43. DOI:10.3969/j.issn.1006-6179.2022.01.008 . | |
27 | 李明磊, 傅晓键, 姚琪远. 造口旁疝修补的技术发展[J]. 中华胃肠外科杂志, 2022, 25(11):1033-1038. DOI:10.3760/cma.j.cn441530-20220421-00170 . |
LI M L, FU X J, YAO Q Y. Dechnical development of parastomal hernia repair techniques[J]. Chin J Gastrointest Surg, 2022, 25(11):1033-1038. DOI:10.3760/cma.j.cn441530-20220421-00170 . | |
28 | ZHU X, LIU J, LIU Z, et al. Establishment and evaluation of rat models of parastomal hernia[J]. Hernia, 2024, 28(5):1657-1665. DOI:10.1007/s10029-024-03010-2 . |
29 | CHEN Y, QIN C F, WANG G H, et al. Contribution of heparin to recovery of incarcerated intestine in a rat incarcerated hernia model[J]. Hernia, 2019, 23(6):1155-1161. DOI:10.1007/s10029-019-01985-x . |
30 | 曹迪, 张玉茹. 经腹腔镜生物补片修补直肠癌根治术后盆底疝 1例[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(1):115-116. DOI:10.3877/cma.j.issn.1674-3946.2024.01.030 . |
CAO D, ZHANG Y R. A case of pelvic floor hernia repaired by laparoscopic biological patch after radical resection of rectal cancer[J/OL]. Chin J Oper Proced Gen Surg (Electron Ed), 2024, 18(1):115-116. DOI:10.3877/cma.j.issn.1674-3946.2024.01.030 . | |
31 | 杨硕, 陈杰, 申英末, 等. 犬盆底疝动物模型的建立[J]. 中华实验外科杂志, 2013, 30(1):163-164. DOI: 10.3760/cma.j.issn.1001-9030.2013.01.057 . |
YANG S, CHEN J, SHEN Y M, et al. Establishment of dog pelvic floor hernia model[J]. Chin J Exp Surg, 2013, 30(1):163-164. DOI:10.3760/cma.j.issn.1001-9030.2013.01.057 . | |
32 | YIOU R, DELMAS V, CARMELIET P, et al. The pathophysiology of pelvic floor disorders: evidence from a histomorphologic study of the perineum and a mouse model of rectal prolapse[J]. J Anat, 2001, 199(Pt 5):599-607. DOI:10.1046/j.1469-7580.2001.19950599.x . |
33 | 中华医学会妇产科学分会产科学组. 胎儿先天性膈疝临床管理指南(2022)[J]. 中华妇产科杂志, 2022, 57(10):721-732. DOI:10.3760/cma.j.cn112141-20220421-00261 . |
Department of Obstetrics and Gynecology, Chinese Medical Association. Clinical management guideline for fetal congenital diaphragmatic hernia (2022)[J]. Chin J Obstet Gynecol, 2022, 57(10):721-732. DOI:10.3760/cma.j.cn112141-20220421-00261 . | |
34 | PULIGANDLA P, SKARSGARD E, BAIRD R, et al. Diagnosis and management of congenital diaphragmatic hernia: a 2023 update from the Canadian Congenital Diaphragmatic Hernia Collaborative[J]. Arch Dis Child Fetal Neonatal Ed, 2024, 109(3):239-252. DOI:10.1136/archdischild-2023-325865 . |
35 | ZANI A, CHUNG WK, DEPREST J, et al. Congenital diaphragmatic hernia[J]. Nat Rev Dis Primers. 2022, 8(1):37. DOI:10.1038/s41572-022-00362-w . |
36 | PUGNALONI F, CAPOLUPO I, PATEL N, et al. Role of microRNAs in congenital diaphragmatic hernia-associated pulmonary hypertension[J]. Int J Mol Sci, 2023, 24(7):6656. DOI:10.3390/ijms24076656 . |
37 | GÜRÜNLÜOĞLU K, DÜNDAR M, UNVER T, et al. Global gene expression profiling in congenital diaphragmatic hernia (CDH) patients[J]. Funct Integr Genomics, 2022, 22(3):359-369. DOI:10.1007/s10142-022-00837-9 . |
38 | MARULANDA K, TSIHLIS N D, MCLEAN S E, et al. Emerging antenatal therapies for congenital diaphragmatic hernia-induced pulmonary hypertension in preclinical models[J]. Pediatr Res, 2021, 89(7):1641-1649. DOI:10.1038/s41390-020-01191-x . |
39 | JANK M, SCHWARTZ J, MIYAKE Y, et al. Dysregulation of CITED2 in abnormal lung development in the nitrofen rat model[J]. Pediatr Surg Int, 2024, 40(1):43. DOI:10.1007/s00383-023-05607-7 . |
40 | SBRAGIA L, ORIA M, SCORLETTI F, et al. A novel surgical toxicological-free model of diaphragmatic hernia in fetal rats[J]. Pediatr Res, 2022, 92(1):118-124. DOI:10.1038/s41390-021-01702-4 . |
41 | DE BIE F R, REGIN Y, DUBOIS A, et al. Prenatal treprostinil improves pulmonary arteriolar hypermuscularization in the rabbit model of congenital diaphragmatic hernia[J]. Biomed Pharmacother, 2024, 170:115996. DOI:10.1016/j.biopha. 2023. 115996 . |
42 | HARRISON M R, BRESSACK M A, CHURG A M, et al. Correction of congenital diaphragmatic hernia in utero. II. Simulated correction permits fetal lung growth with survival at birth[J]. Surgery, 1980, 88(2):260-268. |
43 | RUSSO F M, CUNHA M G M C M DA, JIMENEZ J, et al. Complementary effect of maternal sildenafil and fetal tracheal occlusion improves lung development in the rabbit model of congenital diaphragmatic hernia[J]. Ann Surg, 2022, 275(3): e586-e595. DOI:10.1097/SLA.0000000000003943 . |
44 | GILLEY J, HANNEMAN S K, OTTOSEN M J, et al. Endothelial-to-mesenchymal transition in human and murine models of congenital diaphragmatic hernia[J]. Neonatology, 2024, 121(4):512-518. DOI:10.1159/000537802 . |
45 | OHI R, SUZUKI H, KATO T, et al. Development of the lung in fetal rabbits with experimental diaphragmatic hernia[J]. J Pediatr Surg, 1976, 11(6):955-959. DOI:10.1016/s0022-3468(76)80073-5 . |
46 | FAUZA D O, TANNURI U, AYOUB A A, et al. Surgically produced congenital diaphragmatic hernia in fetal rabbits[J]. J Pediatr Surg, 1994, 29(7):882-886. DOI:10.1016/0022-3468(94)90008-6 . |
47 | WU J, YAMAMOTO H, GRATACOS E, et al. Lung development following diaphragmatic hernia in the fetal rabbit[J]. Hum Reprod, 2000, 15(12):2483-2488. DOI:10.1093/humrep/15.12.2483 . |
48 | 赵颖, 胡海清. 食管裂孔疝的治疗进展[J]. 现代消化及介入诊疗, 2023, 28(10):1318-1323.DOI:10.3969/j.issn.1672-2159.2023.10.026 . |
ZHAO Y, HU H Q.Progress in treatment of esophageal hiatal hernia[J]. Mod Interv Diagn Treat Gastroenterol, 2023, 28(10):1318-1323. DOI:10.3969/j.issn.1672-2159.2023.10.026 . | |
49 | 艾克拜尔·艾力, 黎鑫, 克力木·阿不都热依木, 等. 机器人食管裂孔疝修补联合胃底折叠术动物模型实验研究[J]. 中国实用外科杂志, 2024, 44(7):829-831. DOI: 10.19538/j.cjps.issn1005-2208.2024.07.21 . |
Aili Aikebaier, LI X, Abudureyimu Kelimu, et al. Experimental study on an animal model of robotic esophageal hiatal hernia repair combined with fundoplication[J]. Chin J Pract Surg, 2024, 44(7): 829-831. DOI:10.19538/j.cjps.issn1005-2208.2024.07.21 . | |
50 | 古丽帕丽·哈里甫, 克力木·阿不都热依木, 阿力木江·麦提斯依提. 腹腔镜下食管裂孔疝补片修补+短松Nissen胃底折叠术在猪动物模型中的应用[J]. 中华胃食管反流病电子杂志, 2016, 3(4):176-178.DOI:10.3877/cma.j.issn.1674-6899.2016.04.010 . |
Halifu Gulipali, Abudureyimu Kelimu, Maisiyiti Alimujiang. The application of laparoscopic hiatal hernia repair and short fold Nissen fundoplication in swine models[J]. Chin J Gastroesoph Reflux Dis (Electron Ed), 2016, 3(4):176-178. DOI:10.3877/cma.j.issn.1674-6899.2016.04.010 . | |
51 | JANSEN M, OTTO J, LYNEN JANSEN P, et al. Mesh migration into the esophageal wall after mesh hiatoplasty: comparison of two alloplastic materials[J]. Surg Endosc, 2007, 21(12):2298-2303. DOI:10.1007/s00464-007-9514-3 . |
52 | 买买提·依斯热依力, 阿力木江·麦斯依提, 艾克拜尔·艾力, 等. 不同材质补片固定大鼠膈肌后的炎症反应、粘连及补片皱缩情况对比研究[J]. 中国普通外科杂志, 2023, 32(4):548-556. DOI:10.7659/j.issn.1005-6947.2023.04.009 . |
MAIMAITI·Yisireyili, ALIMUJIANG·Maisiyiti, AIKEBAIER·Aili, et al. Comparative study of inflammatory reaction, adhesion and mesh shrinkage following diaphragmatic fixation with different types of meshes in rats[J]. Chin J Gen Surg, 2023, 32(4):548-556. DOI:10.7659/j.issn.1005-6947.2023.04.009 . | |
53 | BRODY F J, HUNT J, SACKIER J. Transthoracic induction of a hiatal hernia in domestic swine[J]. Surg Endosc, 1998, 12(8):1061-1063. DOI:10.1007/s004649900781 . |
54 | SMITH G S, HAZEBROEK E J, ECKSTEIN R, et al. Evaluation of DualMesh for repair of large hiatus hernia in a porcine model[J]. Surg Endosc, 2008, 22(7):1625-1631. DOI:10.1007/s00464-007-9669-y . |
55 | DESAI K M, DIAZ S, DORWARD I G, et al. Histologic results 1 year after bioprosthetic repair of paraesophageal hernia in a canine model[J]. Surg Endosc, 2006, 20(11):1693-1697. DOI:10.1007/s00464-006-0680-5 . |
56 | 谭波, 张钺, 杨佳强, 等. 创伤性脑疝患者去骨瓣减压术后脑积水危险因素分析以及贝叶斯网络模型构建[J]. 中国现代神经疾病杂志, 2024, 24(6):442-449. DOI:10.3969/j.issn.1672-6731.2024.06.005 . |
TAN B, ZHANG Y, YANG J Q, et al. Risk factors analysis and Bayesian network model construction of Hydrocephalus after decompressive craniectomy in patients with cerebral hernia after traumatic brain injury[J]. Chin J Contemp Neurol Neurosurg, 2024, 24(6):442-449. DOI:10.3969/j.issn.1672-6731.2024.06.005 . | |
57 | 吴红月, 朱晓玲, 牟思瞳, 等. 超声测量视神经鞘直径评估猪急性颅内高压合并脑疝的研究[J]. 蛇志, 2022, 34(2):163-166. DOI:10.3969/j.issn.1001-5639.2022.02.005 . |
WU H Y, ZHU X L, MOUS T, et al. Evaluation of acute intracranial hypertension with cerebral hernia in swine by ultrasonic measurement of optic sheath diameter[J]. J Snake, 2022, 34(2):163-166. DOI:10.3969/j.issn.1001-5639.2022.02.005 . | |
58 | 胡旭, 董吉荣, 蔡学见, 等. 脑中心疝动物模型的建立[J]. 中华神经外科杂志, 2012, 28(9):953-956. DOI:10.3760/cma.j.issn.1001-2346.2012.09.030 . |
HU X, DONG J R, CAI X J, et al. Animal Models of brain central herniation[J]. Chin J Neurosurg, 2012, 28(9):953-956. DOI:10.3760/cma.j.issn.1001-2346.2012.09.030 . | |
59 | EAST B, WOLESKÝ J, DIVÍN R, et al. Liquid resorbable nanofibrous surgical mesh: a proof of a concept[J]. Hernia, 2022, 26(2):557-565. DOI:10.1007/s10029-022-02582-1 . |
60 | DING X Z, ZHU J C, LIU A N, et al. Preparation and biocompatibility study of contrast-enhanced hernia mesh material[J]. Tissue Eng Regen Med, 2022, 19(4):703-715. DOI:10.1007/s13770-022-00460-6 . |
61 | 夏建福, 袁航, 陈浩, 等. 三维打印技术在腹部外科的应用与局限性[J]. 腹腔镜外科杂志, 2021, 26(5):388-391. DOI:10.13499/j.cnki.fqjwkzz.2021.05.388 . |
XIA J F, YUAN H, CHEN H, et al. Application and limitation of three-dimensional printing technology in abdominal surgery[J]. J Laparosc Surg, 2021, 26(5):388-391. DOI:10.13499/j.cnki.fqjwkzz.2021.05.388 . | |
62 | 张海光, 汪辉, 胡庆夕. 3D打印器官源脱细胞外基质血管支持补片重建腹壁的组织工程方法[J]. 上海大学学报(自然科学版), 2023, 29(2):234-243. DOI:10.12066/j.issn.1007-2861.2468 . |
ZHANG H G, WANG H, HU Q X. Tissue engineering approach for abdominal wall reconstruction using 3D printed vascular supportive patches made of organ-derived decellularized extracellular matrix[J]. J Shanghai Univ Nat Sci Ed, 2023, 29(2):234-243. DOI:10.12066/j.issn.1007-2861.2468 . | |
63 | BHARADWAJ S N, RAIKAR C H, DUMANIAN G A, et al. Novel mesh suture may resist bone cutting seen with wire-based sternal closures[J]. JTCVS Tech, 2023, 20:130-137. DOI:10.1016/j.xjtc.2023.06.002 . |
64 | DUMANIAN G A. Suturable mesh demonstrates improved outcomes over standard suture in a porcine laparotomy closure model[J]. Plast Reconstr Surg Glob Open, 2021, 9(10): e3879. DOI:10.1097/GOX.0000000000003879 . |
65 | SCHEIBER C J, KURAPATY S S, GOLDMAN S M, et al. Suturable mesh better resists early laparotomy failure in a cyclic ball-burst model[J]. Hernia, 2020, 24(3):559-565. DOI:10.1007/s10029-020-02133-6 . |
[1] | 杨家豪, 丁纯蕾, 钱风华, 孙旗, 姜旭升, 陈雯, 沈梦雯. 脓毒症相关脏器损伤动物模型研究进展[J]. 实验动物与比较医学, 2024, 44(6): 636-644. |
[2] | 孙效容, 苏丹, 贵文娟, 陈玥. 手术诱导大鼠中重度膝骨关节炎模型的建立与评价[J]. 实验动物与比较医学, 2024, 44(6): 597-604. |
[3] | 田芳, 潘滨, 史佳怡, 徐燕意, 李卫华. 大气细颗粒物PM2.5暴露动物模型建立方法及在生殖毒性研究中的应用进展[J]. 实验动物与比较医学, 2024, 44(6): 626-635. |
[4] | 赵小娜, 王鹏, 叶茂青, 曲新凯. 应用Triacsin C构建新型高血糖肥胖小鼠心功能减退模型[J]. 实验动物与比较医学, 2024, 44(6): 605-612. |
[5] | 涂颖欣, 纪依澜, 王菲, 杨东明, 王冬冬, 孙芷馨, 戴悦欣, 王言吉, 阚广捍, 吴斌, 赵德明, 杨利峰. 小型猪后肢去负荷模拟失重模型的建立与组织损伤研究[J]. 实验动物与比较医学, 2024, 44(5): 475-486. |
[6] | 黄冬妍, 吴建辉. 生殖毒理学研究动物模型的建立方法及应用评价[J]. 实验动物与比较医学, 2024, 44(5): 550-559. |
[7] | 郑卿勇, 李腾飞, 许建国, 周泳佳, 马智超, 王娜, 李莫兰, 杨雯景, 吴佩润, 王海东, 田金徽. 动物实验证据整合方法研究的进展与挑战[J]. 实验动物与比较医学, 2024, 44(5): 567-576. |
[8] | 郑艺清, 邓亚胜, 范燕萍, 梁天薇, 黄慧, 刘永辉, 倪召兵, 林江. 基于数据挖掘的盆腔炎性疾病动物模型应用分析[J]. 实验动物与比较医学, 2024, 44(4): 405-418. |
[9] | 吴玥, 李璐, 张阳, 王珏, 冯婷婷, 李依桐, 王凯, 孔琪. 冠状病毒感染动物模型组学数据集成分析[J]. 实验动物与比较医学, 2024, 44(4): 357-373. |
[10] | 丁天送, 谢京红, 杨斌, 李河桥, 乔一倬, 陈心如, 田纹凡, 李佳佩, 张婉怡, 李帆旋. 复发性流产动物模型特点评价与应用分析[J]. 实验动物与比较医学, 2024, 44(4): 393-404. |
[11] | 姚广源, 董平, 吴昊, 柏梅, 党嬴, 王悦, 胡凯. 长骨骨折动物模型的研究进展[J]. 实验动物与比较医学, 2024, 44(3): 289-296. |
[12] | 包方奇, 屠海烨, 方明笋, 张倩, 陈民利. 基于动物模型的高尿酸肾病病理及分子机制研究进展[J]. 实验动物与比较医学, 2024, 44(2): 180-191. |
[13] | 张莉, 匡宇, 韩凌霞. 人与其他动物椎间盘解剖和组织学结构的比较医学研究进展[J]. 实验动物与比较医学, 2024, 44(2): 192-201. |
[14] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[15] | . 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||