[1] |
ASHTON J J, BEATTIE R M. Inflammatory bowel disease: recent developments[J]. Arch Dis Child, 2024, 109(5):370-376. DOI:10.1136/archdischild-2023-325668 .
|
[2] |
XU L, HE B J, SUN Y X, et al. Incidence of inflammatory bowel disease in urban China: a nationwide population-based study[J]. Clin Gastroenterol Hepatol, 2023, 21(13): 3379-3386.e29. DOI:10.1016/j.cgh.2023.08.013 .
|
[3] |
SHAO B L, YANG W J, CAO Q. Landscape and predictions of inflammatory bowel disease in China: China will enter the Compounding Prevalence stage around 2030[J]. Front Public Health, 2022, 10:1032679. DOI:10.3389/fpubh.2022.1032679 .
|
[4] |
KATSANDEGWAZA B, HORSNELL W, SMITH K. Inflammatory bowel disease: a review of pre-clinical murine models of human disease[J]. Int J Mol Sci, 2022, 23(16):9344. DOI:10.3390/ijms23169344 .
|
[5] |
YANG H B, LUAN Y, LIU T T, et al. A map of cis-regulatory elements and 3D genome structures in zebrafish[J]. Nature, 2020, 588(7837): 337-343. DOI:10.1038/s41586-020-2962-9 .
|
[6] |
章琳俐, 姚一琳, 初晓红, 等. 斑马鱼肠黏膜屏障的结构与组成[J].实验动物与比较医学, 2013, 33(2):112-116. DOI: 10.3969/j.issn.1674-5817.2013.02.006 .
|
|
ZHANG L L, YAO Y L, CHU X H, et al. Structure and composition of intestinal mucosal barrier in zebrafish (Brachydanio rerio)[J]. Lab Anim Comp Med, 2013, 33(2):112-116. DOI: 10.3969/j.issn.1674-5817.2013.02.006 .
|
[7] |
XIA H, CHEN H M, CHENG X, et al. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota[J]. Mol Med, 2022, 28(1):161. DOI:10.1186/s10020-022-00579-1 .
|
[8] |
FERGUSON M, FOLEY E. Microbial recognition regulates intestinal epithelial growth in homeostasis and disease[J]. FEBS J, 2022, 289(13):3666-3691. DOI:10.1111/febs.15910 .
|
[9] |
WILLMS R J, FOLEY E. Mechanisms of epithelial growth and development in the zebrafish intestine[J]. Biochem Soc Trans, 2023, 51(3):1213-1224. DOI:10.1042/BST20221375 .
|
[10] |
SHAN Y, LEE M, CHANG E B. The gut microbiome and inflammatory bowel diseases[J]. Annu Rev Med, 2022, 73:455-468. DOI:10.1146/annurev-med-042320-021020 .
|
[11] |
CORNUAULT J K, BYATT G, PAQUET M E, et al. Zebrafish: a big fish in the study of the gut microbiota[J]. Curr Opin Biotechnol, 2022, 73:308-313. DOI:10.1016/j.copbio.2021.09.007 .
|
[12] |
ZHONG X T, LI J L, LU F R, et al. Application of zebrafish in the study of the gut microbiome[J]. Animal Model Exp Med, 2022, 5(4):323-336. DOI:10.1002/ame2.12227 .
|
[13] |
OEHLERS S H, FLORES M V, HALL C J, et al. Chemically induced intestinal damage models in zebrafish larvae[J]. Zebrafish, 2013, 10(2):184-193. DOI:10.1089/zeb.2012.0824 .
|
[14] |
BRUGMAN S, NIEUWENHUIS E E S. Oxazolone-induced intestinal inflammation in adult zebrafish[J]. Methods Mol Biol, 2017, 1559:311-318. DOI:10.1007/978-1-4939-6786-5_21 .
|
[15] |
FLEMING A, JANKOWSKI J, GOLDSMITH P. In vivo analysis of gut function and disease changes in a zebrafish larvae model of inflammatory bowel disease: a feasibility study[J]. Inflamm Bowel Dis, 2010, 16(7):1162-1172. DOI:10.1002/ibd. 21200 .
|
[16] |
OEHLERS S H, FLORES M V, OKUDA K S, et al. A chemical enterocolitis model in zebrafish larvae that is dependent on microbiota and responsive to pharmacological agents[J]. Dev Dyn, 2011, 240(1):288-298. DOI:10.1002/dvdy.22519 .
|
[17] |
OEHLERS S H, FLORES M V, HALL C J, et al. Retinoic acid suppresses intestinal mucus production and exacerbates experimental enterocolitis[J]. Dis Model Mech, 2012, 5(4):457-467. DOI:10.1242/dmm.009365 .
|
[18] |
ZHAO S Y, XIA J H, WU X H, et al. Deficiency in class Ⅲ PI3-kinase confers postnatal lethality with IBD-like features in zebrafish[J]. Nat Commun, 2018, 9(1):2639. DOI:10.1038/s41467-018-05105-8 .
|
[19] |
ZHAO Q, CHANG H, ZHENG J, et al. A novel Trmt5-deficient zebrafish model with spontaneous inflammatory bowel disease-like phenotype[J]. Signal Transduct Target Ther, 2023, 8(1): 86. DOI:10.1038/s41392-023-01318-6 .
|
[20] |
PARK S C, JEEN Y T. Genetic studies of inflammatory bowel disease-focusing on Asian patients[J]. Cells, 2019, 8(5):404. DOI:10.3390/cells8050404 .
|
[21] |
OEHLERS S H, FLORES M V, HALL C J, et al. The inflammatory bowel disease (IBD) susceptibility genes NOD1 and NOD2 have conserved anti-bacterial roles in zebrafish[J]. Dis Model Mech, 2011, 4(6):832-841. DOI:10.1242/dmm.006122 .
|
[22] |
SIFUENTES-DOMINGUEZ L F, LI H Y, LLANO E, et al. SCGN deficiency results in colitis susceptibility[J]. eLife, 2019, 8: e49910. DOI:10.7554/eLife.49910 .
|
[23] |
KAYA B, DOÑAS C, WUGGENIG P, et al. Lysophosphatidic acid-mediated GPR35 signaling in CX3CR1+ macrophages regulates intestinal homeostasis[J]. Cell Rep, 2020, 32(5):107979. DOI:10.1016/j.celrep.2020.107979 .
|
[24] |
LAI C Y, YEH K Y, LIU B F, et al. microRNA-21 plays multiple oncometabolic roles in colitis-associated carcinoma and colorectal cancer via the PI3K/AKT, STAT3, and PDCD4/TNF-α signaling pathways in zebrafish[J]. Cancers, 2021, 13(21):5565. DOI:10.3390/cancers13215565 .
|
[25] |
MARJORAM L, ALVERS A, ELIZABETH DEERHAKE M, et al. Epigenetic control of intestinal barrier function and inflammation in zebrafish[J]. Proc Natl Acad Sci USA, 2015, 112(9):2770-2775. DOI:10.1073/pnas.1424089112 .
|
[26] |
BRUGMAN S, LIU K Y, LINDENBERGH-KORTLEVE D, et al. Oxazolone-induced enterocolitis in zebrafish depends on the composition of the intestinal microbiota[J]. Gastroenterology, 2009, 137(5):1757-1767.e1. DOI:10.1053/j.gastro.2009.07.069 .
|
[27] |
KANTHER M, SUN X L, MÜHLBAUER M, et al. Microbial colonization induces dynamic temporal and spatial patterns of NF-κB activation in the zebrafish digestive tract[J]. Gastroenterology, 2011, 141(1):197-207. DOI:10.1053/j.gastro. 2011.03.042 .
|
[28] |
THAKUR P C, DAVISON J M, STUCKENHOLZ C, et al. Dysregulated phosphatidylinositol signaling promotes endoplasmic-reticulum-stress-mediated intestinal mucosal injury and inflammation in zebrafish[J]. Dis Model Mech, 2014, 7(1):93-106. DOI:10.1242/dmm.012864 .
|
[29] |
VAN DER VAART M, VAN SOEST J J, SPAINK H P, et al. Functional analysis of a zebrafish myd88 mutant identifies key transcriptional components of the innate immune system[J]. Dis Model Mech, 2013, 6(3):841-854. DOI:10.1242/dmm.010843 .
|
[30] |
SANMARCO L M, CHAO C C, WANG Y C, et al. Identification of environmental factors that promote intestinal inflammation[J]. Nature, 2022, 611(7937):801-809. DOI:10.1038/s41586-022-05308-6 .
|
[31] |
DIAZ O E, SORINI C, MORALES R A, et al. Perfluoro-octanesulfonic acid modulates barrier function and systemic T-cell homeostasis during intestinal inflammation[J]. Dis Model Mech, 2021, 14(12): dmm049104. DOI:10.1242/dmm. 049104 .
|
[32] |
XIAO W, HU C Y, NI Y F, et al. 27-Hydroxycholesterol activates the GSK-3β/β-catenin signaling pathway resulting in intes-tinal fibrosis by inducing oxidative stress: effect of dietary interventions[J]. Inflamm Res, 2024, 73(2):289-304. DOI:10.1007/s00011-023-01835-8 .
|
[33] |
FLORES E, DUTTA S, BOSSERMAN R, et al. Colonization of larval zebrafish (Danio rerio) with adherent-invasive Escherichia coli prevents recovery of the intestinal mucosa from drug-induced enterocolitis[J]. mSphere, 2023, 8(6): e0051223. DOI:10.1128/msphere.00512-23 .
|
[34] |
RAMANAN D, BOWCUTT R, LEE S C, et al. Helminth infection promotes colonization resistance via type 2 immunity[J]. Science, 2016, 352(6285):608-612. DOI:10.1126/science.aaf3229 .
|
[35] |
HAARDER S, KANIA P W, HOLM T L, et al. Effect of ES products from Anisakis (Nematoda: Anisakidae) on experimentally induced colitis in adult zebrafish[J]. Parasite Immunol, 2017, 39(10):e12456. DOI:10.1111/pim.12456 .
|
[36] |
REN X X, LIU Q Y, ZHOU P R, et al. DHX9 maintains epithelial homeostasis by restraining R-loop-mediated genomic instability in intestinal stem cells[J]. Nat Commun, 2024, 15(1):3080. DOI:10.1038/s41467-024-47235-2 .
|
[37] |
HABJAN E, SCHOUTEN G K, SPEER A, et al. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment[J]. FEMS Microbiol Rev, 2024, 48(3): fuae011. DOI:10.1093/femsre/fuae011 .
|
[38] |
SILVA N V, CARREGOSA D, GONÇALVES C, et al. A dietary cholesterol-based intestinal inflammation assay for improving drug-discovery on inflammatory bowel diseases[J]. Front Cell Dev Biol, 2021, 9:674749. DOI:10.3389/fcell.2021. 674749 .
|
[39] |
SHENG Y, LI H L, LIU M J, et al. A manganese-superoxide dismutase from Thermus thermophilus HB27 suppresses inflammatory responses and alleviates experimentally induced colitis[J]. Inflamm Bowel Dis, 2019, 25(10):1644-1655. DOI:10.1093/ibd/izz097 .
|
[40] |
MOUSAVI T, HASSANI S, BAEERI M, et al. Comparison of the safety and efficacy of fingolimod and tofacitinib in the zebrafish model of colitis[J]. Food Chem Toxicol, 2022, 170:113509. DOI:10.1016/j.fct.2022.113509 .
|
[41] |
JEFREMOW A, NEURATH M F. Novel small molecules in IBD: current state and future perspectives[J]. Cells, 2023, 12(13):1730. DOI:10.3390/cells12131730 .
|
[42] |
HUANG X D, AI F, JI C, et al. A rapid screening method of candidate probiotics for inflammatory bowel diseases and the anti-inflammatory effect of the selected strain Bacillus smithii XY1[J]. Front Microbiol, 2021, 12:760385. DOI:10.3389/fmicb.2021.760385 .
|
[43] |
NAG D, FARR D, RAYCHAUDHURI S, et al. An adult zebrafish model for adherent-invasive Escherichia coli indicates protection from AIEC infection by probiotic E. coli Nissle[J]. iScience, 2022, 25(7):104572. DOI:10.1016/j.isci.2022.104572 .
|
[44] |
CHEN H J, LEI P Y, JI H, et al. Escherichia coli Nissle 1917 ghosts alleviate inflammatory bowel disease in zebrafish[J]. Life Sci, 2023, 329:121956. DOI:10.1016/j.lfs.2023.121956 .
|
[45] |
CHEN M, LIU C, DAI M Z, et al. Bifidobacterium lactis BL-99 modulates intestinal inflammation and functions in zebrafish models[J]. PLoS One, 2022, 17(2): e0262942. DOI:10.1371/journal.pone.0262942 .
|
[46] |
YU Y R, CHEN J, ZHANG X H, et al. Identification of anti-inflammatory compounds from Zhongjing formulae by knowledge mining and high-content screening in a zebrafish model of inflammatory bowel diseases[J]. Chin Med, 2021, 16(1):42. DOI:10.1186/s13020-021-00452-z .
|
[47] |
JIA D S, TIAN X, CHEN Y T, et al. Preparation of enzymatic hydrolysates of mulberry leaf flavonoids and investigation into its treatment and mechanism for zebrafish inflammatory bowel disease[J]. Fish Shellfish Immunol, 2024, 154:109960. DOI:10.1016/j.fsi.2024.109960 .
|
[48] |
LI Y, LIU X J, SU S L, et al. Evaluation of anti-inflammatory and antioxidant effectsof Chrysanthemum stem and leaf extract on zebrafish inflammatory bowel disease model[J]. Molecules, 2022, 27(7):2114. DOI:10.3390/molecules27072114 .
|