实验动物与比较医学

• •    

基于人工智能的实验动物中心信息化升级及应用实践探讨

王庭君1, 罗浩2, 陈琦1()   

  1. 1.浙江大学医学院附属第一医院, 杭州 310006
    2.浙江大学智能创新药物研究院, 杭州 310018
  • 发布日期:2025-05-20
  • 通讯作者: 陈 琦(1985—),男,博士,副主任医师,研究方向:实验动物管理。E-mail: chen_qi@zju.edu.cn。ORCID: 0000-0001-6729-7185
  • 作者简介:王庭君(1996—),女,硕士研究生,助理实验员,研究方向:实验动物管理。E-mail: 21817093@zju.edu.cn

Informationization Upgrade and Application of Laboratory Animal Center Based on Artificial Intelligence

WANG Tingjun1, LUO Hao2, CHEN Qi1()   

  1. 1.The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
    2.Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
  • Published:2025-05-20
  • Contact: CHEN Qi (ORCID: 0000-0001-6729-7185), E-mail: chen_qi@zju.edu.cn

摘要:

目的 针对传统实验动物中心管理中存在的笼位调度效率低、人员行为监管不到位、设备老化难升级等问题,本研究旨在通过应用多模态大模型技术升级现有实验动物中心,实现实验动物笼位状态的实时感知、实验人员行为的智能监管以及业务流程的自动化处理,从而提升管理效率与精细化水平。 方法 提出了一个基于人工智能的实验动物中心信息化升级方式,能够兼容不同饲养设备。该系统架构自下而上依次包括硬件设施层、核心算法层和应用功能层。硬件设施层配备摄像头和高速网络传输设备用于笼位和人员信息采集;核心算法层通过多阶段图像预处理技术和多模态大模型识别技术实现图片信息抽取和识别;应用功能层将识别结果和已有动物中心信息相整合,生产实时笼位占有热力图,直观、清晰展示实验动物中心的笼位使用密度分布情况。 结果 基于人工智能的管理系统笼位识别准确率达到98.5%,实验服正确识别率为98.8%。图片平均处理时间3.7 秒/张,笼位有效使用率提升23%,周转效率提高35%。此外,管理系统能够实时追踪并警告不规范行为,综合违规行为的发现次数在通过智能化识别后暴露更多,违规行为发现率提升90.6%,持续使用三个月后,周平均违规行为同比下降54.0%。 结论 本研究创新性地将多模态大模型应用于实验动物管理领域,实现笼位标识实时监控与自动化管理,提升管理效率和精确度。系统整合视觉识别和行为分析等多源数据,构建了对实验人员的全方位智能监管体系。为科研机构提供高效、精准、价廉的管理工具,推动实验动物管理的智能化发展。

关键词: 实验动物, 大模型, 智能识别, 信息系统

Abstract:

Objective In traditional laboratory animal centers, there are issues such as low cage scheduling efficiency, insufficient supervision of personnel behavior, and difficulty in upgrading aging equipment. This study aims to upgrade existing laboratory animal centers by applying multimodal large-model technology. This upgrade intends to achieve real-time perception of the status of animal cages, intelligent supervision of experimental personnel behavior, and automated management of business workflows, thereby improving management efficiency and refinement. Methods This study proposes an artificial-intelligence-based informatization approach for upgrading laboratory animal centers, which can be compatible with different breeding equipment. The system architecture, from the bottom up, consists of three layers: the hardware facilities layer, the core algorithm layer, and the application functions layer. The hardware facilities layer is equipped with cameras and high-speed network transmission devices for collecting information on cages and personnel. The core algorithm layer utilizes multi-stage image preprocessing technology and multimodal large-model recognition technology to extract and identify image information. The application functions layer integrates the recognition results with the existing information of the animal center to generate real-time cage occupancy heatmaps, which can visually and clearly show the density distribution of cage usage in the laboratory animal center. Results The artificial-intelligence-based management system has achieved a cage recognition accuracy of 98.5% and a correct identification rate of laboratory coats of 98.8%. The average image processing time is 3.7 seconds per image, the effective utilization rate of cages has increased by 23%, and the turnover efficiency has improved by 35%. In addition, the management system can track and warn against non-compliant behaviors in real time. After intelligent recognition, the system has detected more violations, with the violation detection rate rising by 90.6%. After continuous use for three months, the weekly average number of violations decreased by 54.0% compared to the baseline period. Conclusion This study innovatively applies multimodal large models to the field of laboratory animal management, achieving real-time monitoring and automated management of cage marking, thereby improving management efficiency and precision. The system integrates multi-source data such as visual recognition and behavior analysis, establishing a comprehensive intelligent supervision system for experimental personnel. It provides research institutions with efficient, accurate, and cost-effective management tools, promoting the intelligent development of laboratory animal management.

Key words: Experimental animals, Large language model, Intelligent recognition, Information system

中图分类号: