实验动物与比较医学 ›› 2025, Vol. 45 ›› Issue (6): 784-793.DOI: 10.12300/j.issn.1674-5817.2025.156
雷林蓓, 万小娟, 谢婧, 刘雨新, 邹节新, 谢宪兵(
)(
)
收稿日期:2025-09-16
修回日期:2025-12-03
出版日期:2025-12-25
发布日期:2025-12-19
通讯作者:
谢宪兵(1980—),男,博士,副教授,硕士研究生导师,研究方向:实验动物资源开发与利用。E-mail: xbxbees@ncu.edu.cn。ORCID: 0000-0002-9733-9857作者简介:雷林蓓(2000—),女,硕士研究生,研究方向:基础医学。E-mail: 996037484@qq.com
基金资助:
LEI Linbei, WAN Xiaojuan, XIE Jing, LIU Yuxin, ZOU Jiexin, XIE Xianbing(
)(
)
Received:2025-09-16
Revised:2025-12-03
Published:2025-12-25
Online:2025-12-19
Contact:
XIE Xianbing (ORCID: 0000-0002-9733-9857), E-mail: xbxbees@ncu.edu.cn摘要:
随着微生物组学研究的不断深入与精准医学的快速发展,寻找理想的研究模型已成为推动相关领域发展的关键。传统哺乳动物模型(如小鼠)虽应用广泛,但其复杂的肠道微生物组、显著的个体差异、较为昂贵的饲养成本与较长的实验周期,在一定程度上制约了高通量、机制明确型研究的开展。在此背景下,无菌蜜蜂作为一种新兴的生物医学研究模型日益受到重视。蜜蜂作为社会性昆虫,不仅具有生命周期短、繁殖快的特点,且其肠道菌群结构相对简单稳定,能够实现大规模的无菌化饲养与维持。这些独特的生物学优势使无菌蜜蜂成为探究宿主-微生物相互作用、免疫调控、代谢机制及神经行为关联的优质模型,在疾病机制解析、药物开发与微生物组功能研究等领域展现出显著潜力。本文系统阐述无菌蜜蜂模型的构建方法、核心生物学特性及其在生物医学研究中的具体应用,客观分析该模型当前面临的技术瓶颈与伦理挑战,并展望其在未来跨学科研究中的发展方向。本文首次从“模型构建”、“应用与优势”、“现存挑战”和“未来展望”共4个维度进行系统梳理,对无菌蜜蜂作为生物医学模型的研究进展进行全面整合,不仅为相关领域研究者提供了重要的技术与理论参考,也凸显了该模型在推动基础生物学向转化医学应用迈进中的独特价值,对其规范化发展与深入探索具有积极的指导意义。
中图分类号:
雷林蓓,万小娟,谢婧,等. 无菌蜜蜂在生物医学研究中的应用、优势与挑战[J]. 实验动物与比较医学, 2025, 45(6): 784-793. DOI: 10.12300/j.issn.1674-5817.2025.156.
LEI Linbei,WAN Xiaojuan,XIE Jing,et al. Applications, Advantages, and Challenges of Germ-Free Bees in Biomedical Research[J]. Laboratory Animal and Comparative Medicine, 2025, 45(6): 784-793. DOI: 10.12300/j.issn.1674-5817.2025.156.
项目 Aspect | 幼虫 Larva | 羽化成蜂 Newly emerged adult | 主要区别 Key differences |
|---|---|---|---|
总体功能 Overall function | 主要用于吸收液体饲料,以供快速生长 | 消化和吸收花粉、花蜜等多样食物,并进行能量代谢 | 成蜂肠道功能更复杂,代谢能力增强 |
口器与咽部 Mouthparts and pharynx | 吸食型,仅适用于液体饲料 | 咀嚼-吸吮式口器,可处理固体花粉和花蜜 | 不同结构与食性相适应 |
前肠 Foregut | 简单管状,无明显膨大 | 前端形成蜜囊,具有幽门瓣调控功能 | 成蜂具储蜜与携蜜功能 |
中肠 Midgut | 壁薄、上皮简单,主要吸收液态营养 | 上皮发达、具绒毛及多种消化酶 | 成蜂消化与吸收效率显著提高 |
后肠 Hindgut | 短而简单,无直肠垫结构 | 具有发达的直肠垫,可重吸收水分 | 可适应成蜂外出期间保留粪便的需要 |
马氏管 Malpighian tubules | 发育不完全或数量较少 | 完全发育,参与排泄与渗透调节 | 成蜂排泄系统完善 |
肠道菌群 Gut microbiota | 近乎无菌;蜂王浆具有抗菌性 | 通过群体接触获得核心菌群 | 成蜂建立稳定肠道菌群 |
表1 成年蜜蜂的消化系统与幼虫之间的主要差异
Table 1 Major differences in the digestive system between adult bees and larvae
项目 Aspect | 幼虫 Larva | 羽化成蜂 Newly emerged adult | 主要区别 Key differences |
|---|---|---|---|
总体功能 Overall function | 主要用于吸收液体饲料,以供快速生长 | 消化和吸收花粉、花蜜等多样食物,并进行能量代谢 | 成蜂肠道功能更复杂,代谢能力增强 |
口器与咽部 Mouthparts and pharynx | 吸食型,仅适用于液体饲料 | 咀嚼-吸吮式口器,可处理固体花粉和花蜜 | 不同结构与食性相适应 |
前肠 Foregut | 简单管状,无明显膨大 | 前端形成蜜囊,具有幽门瓣调控功能 | 成蜂具储蜜与携蜜功能 |
中肠 Midgut | 壁薄、上皮简单,主要吸收液态营养 | 上皮发达、具绒毛及多种消化酶 | 成蜂消化与吸收效率显著提高 |
后肠 Hindgut | 短而简单,无直肠垫结构 | 具有发达的直肠垫,可重吸收水分 | 可适应成蜂外出期间保留粪便的需要 |
马氏管 Malpighian tubules | 发育不完全或数量较少 | 完全发育,参与排泄与渗透调节 | 成蜂排泄系统完善 |
肠道菌群 Gut microbiota | 近乎无菌;蜂王浆具有抗菌性 | 通过群体接触获得核心菌群 | 成蜂建立稳定肠道菌群 |
| [1] | 秦川, 魏泓, 谭毅, 等. 实验动物学(第2版)[M]. 北京: 人民卫生出版社, 2021. |
| QIN C, WEI H, TAN Y, et al. Laboratory animal science[M]. 2nd ed. Beijing: People's Health Publishing House, 2021. | |
| [2] | 中华人民共和国中央人民政府网. 习近平主持中共中央政治局第三十三次集体学习并发表重要讲话[EB/OL]. (2021-09-29)[2025-12-04]. . |
| The Central People's Government of the People's Republic of China website. Xi Jinping presided over the 33rd collective study session of the Political Bureau of the CPC Central Committee and delivered an important speech [EB/OL]. (2021-09-29)[2025-12-04]. . | |
| [3] | 秦川, 孔琪, 钱军, 等. 实验动物科学技术是生命科学和健康中国建设的基础支撑条件[J]. 科技导报, 2017, 35(11): 10-14. DOI: CNKI:SUN:KJDB.0.2017-11-004 . |
| QIN C, KONG Q, QIAN J, et al. Laboratory animal science and technology is strategically important to life science and health China construction[J]. Sci Technol Rev, 2017, 35(11): 10-14. DOI: CNKI:SUN:KJDB.0.2017-11-004 . | |
| [4] | 赵心刚, 卢凡, 程苹, 等. 我国实验动物资源建设的问题与展望[J]. 中国科学院院刊, 2019, 34(12): 1371-1378. DOI: 10.16418/j.issn.1000-3045.2019.12.006 . |
| ZHAO X G, LU F, CHENG P, et al. Problems and prospects of laboratory animal resources in China[J]. Bull Chin Acad Sci, 2019, 34(12): 1371-1378. DOI: 10.16418/j.issn.1000-3045.2019.12.006 . | |
| [5] | 陈俊, 江舒文. 进口实验动物那些事儿[J]. 中国海关, 2020(5): 44-45. |
| CHEN J, JIANG S W. Those things about importing experimental animals[J]. China Cust, 2020(5): 44-45. | |
| [6] | O'BRIEN T J, BARLOW I L FERIANI L, et al. High-throughput tracking enables systematic phenotyping and drug repurposing in C. elegans disease models[J]. Elife, 2025: 1-17. DOI: 10.7554/eLife.92491 . |
| [7] | HUANG Z Y, BIAN G W, XI Z Y, et al. Genes important for survival or reproduction in Varroa destructor identified by RNAi[J]. Insect Sci, 2019, 26(1): 68-75. DOI: 10.1111/1744-7917.12513 . |
| [8] | BOUKRAA L. Bee products: the rediscovered antibiotics[J]. Anti Infect Agents, 2015, 13(1): 36-41. DOI: 10.2174/2211352513666150318233855 . |
| [9] | CALDERONE N W. Insect pollinated crops, insect pollinators and US agriculture: trend analysis of aggregate data for the period 1992-2009[J]. PLoS One, 2012, 7(5): e37235. DOI: 10.1371/journal.pone.0037235 . |
| [10] | GIURFA M, MENZEL R. Human spatial representation derived from a honeybee compass[J]. Trends Cogn Sci, 2003, 7(2): 59-60. DOI: 10.1016/s1364-6613(02)00044-x . |
| [11] | IHLE K E, RUEPPELL O, HUANG Z Y, et al. Genetic architecture of a hormonal response to gene knockdown in honey bees[J]. J Hered, 2015, 106(2): 155-165. DOI: 10.1093/jhered/esu086 . |
| [12] | 罗照亮. 蜜蜂授粉助力绿色农业——记蓬勃发展中的北京市蜜蜂授粉产业[J]. 中国蜂业, 2023, 74(6): 36-37. DOI: 10.3969/j.issn.0412-4367.2023.06.018 . |
| LUO Z L. Bee pollination helps green agriculture: The booming bee pollination industry in Beijing[J]. Apic China, 2023, 74(6): 36-37. DOI: 10.3969/j.issn.0412-4367.2023.06.018 . | |
| [13] | MORSE R A, CALDERONE N W. The value of honey bees as pollinators of U.S[EB/OL]. (2003-06-13)[2025-12-04]. . |
| [14] | LIU J H, LIAO C H, LI Z, et al. Synergistic resistance of honeybee (Apis mellifera) and their gut microorganisms to fluvalinate stress[J]. Pestic Biochem Physiol, 2024, 201: 105865. DOI: 10.1016/j.pestbp.2024.105865 . |
| [15] | NIEH J C, ENDLER M, RUBANOV A, et al. Immune priming of honey bees protects against a major microsporidian pathogen[J]. Pest Manag Sci, 2025, 81(12): 7939-7949. DOI: 10.1002/ps.70106 . |
| [16] | MARGOTTA J W, MANCINELLI G E, BENITO A A, et al. Effects of flight on gene expression and aging in the honey bee brain and flight muscle[J]. Insects, 2013, 4(1): 9-30. DOI: 10.3390/insects4010009 . |
| [17] | FENG Y, WEI R K, CHEN Q L, et al. Host specificity and cophylogeny in the "animal-gut bacteria-phage" tripartite system[J]. NPJ Biofilms Microbiomes, 2024, 10: 1-12. DOI: 10.1038/s41522-024-00557-x . |
| [18] | MÜNCH D, AMDAM G V, WOLSCHIN F. Ageing in a eusocial insect: molecular and physiological characteristics of life span plasticity in the honey bee[J]. Funct Ecol, 2008, 22(3): 407-421. DOI: 10.1111/j.1365-2435.2008.01419.x . |
| [19] | ZHANG Z J, MU X H, SHI Y, et al. Distinct roles of honeybee gut bacteria on host metabolism and neurological processes[J]. Microbiol Spectr, 2022, 10(2): 1-15. DOI: 10.1128/spectrum. 02438-21 . |
| [20] | LANG H Y, DUAN H J, WANG J N, et al. Specific strains of honeybee gut Lactobacillus stimulate host immune system to protect against pathogenic Hafnia alvei [J]. Microbiol Spectr, 2022, 10(1): 1-15. DOI: 10.1128/spectrum.01896-21 . |
| [21] | HUANG J, ZHANG Z, FENG W, et al. Food wanting is mediated by transient activation of dopaminergic signaling in the honey bee brain[J]. Science, 2022, 376(6592): 508-512. DOI: 10.1126/science.abn9920 . |
| [22] | DONG S H, LIN T, NIEH J C, et al. Social signal learning of the waggle dance in honey bees[J]. Science, 2023, 379(6636): 1015-1018. DOI: 10.1126/science.ade1702 . |
| [23] | POWELL J E, MARTINSON V G, URBAN-MEAD K, et al. Routes of acquisition of the gut microbiota of the honey bee Apis mellifera [J]. Appl Environ Microbiol, 2014, 80(23): 7378-7387. DOI: 10.1128/AEM.01861-14 . |
| [24] | 陈盛禄. 中国蜜蜂学[M]. 北京: 中国农业出版社, 2001. |
| CHEN S L. The Apicultural Science in China[M]. Beijing: China Agriculture Press, 2001. | |
| [25] | LOZUPONE C A, STOMBAUGH J I, GORDON J I, et al. Diversity, stability and resilience of the human gut microbiota[J]. Nature, 2012, 489(7415): 220-230. DOI: 10.1038/nature11550 . |
| [26] | SPILLMAN E C, SHEPHERD A K, KUANG M C, et al. Gut microbial metabolites link dietary history to appetite regulation[J]. J Neurogenet, 2025: 1-10. DOI: 10.1080/01677063. 2025.2548783 . |
| [27] | KNOP M, TREITZ C, BETTENDORF S, et al. Mitochondrial sirtuin 4 shapes the intestinal microbiota of Drosophila by controlling lysozyme expression[J]. Anim Microbiome, 2025, 7(1): 1-17. DOI: 10.1186/s42523-025-00431-x . |
| [28] | RIVERA D E, POIRIER K, MOORE S, et al. Dynamics of gut colonization by commensal and pathogenic bacteria that attach to the intestinal epithelium[J]. NPJ Biofilms Microbiomes, 2025, 11(1): 1-15. DOI: 10.1038/s41522-025-00696-9 . |
| [29] | LI Y, BAI R J, ZHU Y, et al. Genetic variation in gut microbe as a key regulator of host social behavior in C. elegans [J]. Gut Microbes, 2025, 17(1): 1-13. DOI: 10.1080/19490976.2025.2490828 . |
| [30] | DOUGLAS A E. The Drosophila model for microbiome research[J]. Lab Anim, 2018, 47(6): 157-164. DOI: 10.1038/s41684-018-0065-0 . |
| [31] | DIRKSEN P, MARSH S A, BRAKER I, et al. The native microbiome of the nematode Caenorhabditis elegans: gateway to a new host-microbiome model[J]. BMC Biol, 2016, 14(1): 1-16. DOI: 10.1186/s12915-016-0258-1 . |
| [32] | MENG Y J, ZHANG X, ZHAI Y F, et al. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis[J]. Microbiome, 2024, 12(1): 1-17. DOI: 10.1186/s40168-024-01813-0 . |
| [33] | HUANG Q, LARIVIERE P J, POWELL J E, et al. Engineered gut symbiont inhibits microsporidian parasite and improves honey bee survival[J]. Proc Natl Acad Sci USA, 2023, 120(25): 1-6. DOI: 10.1073/pnas.2220922120 . |
| [34] | LANG H Y, WANG H, WANG H Q, et al. Engineered symbiotic bacteria interfering Nosema redox system inhibit microsporidia parasitism in honeybees[J]. Nat Commun, 2023, 14(1): 1-12. DOI: 10.1038/s41467-023-38498-2 . |
| [35] | EVANS J D, ARONSTEIN K, CHEN Y P, et al. Immune pathways and defence mechanisms in honey bees Apis mellifera [J]. Insect Mol Biol, 2006, 15(5): 645-656. DOI: 10.1111/j.1365-2583.2006.00682.x . |
| [36] | WU J Q, LANG H Y, MU X H, et al. Honey bee genetics shape the strain-level structure of gut microbiota in social transmission[J]. Microbiome, 2021, 9(1): 1-19. DOI: 10.1186/s40168-021-01174-y . |
| [37] | TANG J B, ZUO W L, GUO L Z, et al. Synergistic pectin deconstruction is a prerequisite for mutualistic interactions between honeybee gut bacteria[J]. Nat Commun, 2024, 15(1): 1-16. DOI: 10.1038/s41467-024-51365-y . |
| [38] | KWONG W K, MORAN N A. Gut microbial communities of social bees[J]. Nat Rev Microbiol, 2016, 14(6): 374-384. DOI: 10.1038/nrmicro.2016.43 . |
| [39] | EMERY O, SCHMIDT K, ENGEL P. Immune system stimulation by the gut symbiont Frischella perrara in the honey bee (Apis mellifera)[J]. Mol Ecol, 2017, 26(9): 2576-2590. DOI: 10.1111/mec.14058 . |
| [40] | ZHENG H, POWELL J E, STEELE M I, et al. Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling[J]. Proc Natl Acad Sci USA, 2017, 114(18): 4775-4780. DOI: 10.1073/pnas.1701819114 . |
| [41] | LI W F, EVANS J D, LI J H, et al. Spore load and immune response of honey bees naturally infected by Nosema ceranae [J]. Parasitol Res, 2017, 116(12): 3265-3274. DOI: 10.1007/s00436-017-5630-8 . |
| [42] | BLOT N, VEILLAT L, ROUZÉ R, et al. Glyphosate, but not its metabolite AMPA, alters the honeybee gut microbiota[J]. PLoS One, 2019, 14(4): 1-16. DOI: 10.1371/journal.pone.0215466 . |
| [43] | HAN B F, HU J W, YANG C F, et al. Lactobacillus Firm-5-derived succinate prevents honeybees from having diabetes-like symptoms[J]. Proc Natl Acad Sci USA, 2024, 121(36): 1-11. DOI: 10.1073/pnas.2405410121 . |
| [44] | JIN M J, BARRON A B, HE S Y, et al. Bombella intestini: a probiotic honeybee(Apis mellifera)gut bacterium[J]. J Insect Physiol, 2025, 164: 104836. DOI: 10.1016/j.jinsphys.2025.104836 . |
| [45] | ZHONG Z P, MU X H, LANG H Y, et al. Gut symbiont-derived anandamide promotes reward learning in honeybees by activating the endocannabinoid pathway[J]. Cell Host Microbe, 2024, 32(11): 1944-1958, e1-e7. DOI: 10.1016/j.chom.2024.09.013 . |
| [46] | MINAHAN D, GOREN M, SHAFIR S. Unbalanced dietary omega-6: 3 ratio affects onset of nursing and nurse–larvae interactions by honey bees, Apis mellifera [J]. Anim Behav, 2024, 213: 235-246. DOI: 10.1016/j.anbehav.2024.05.007 . |
| [47] | RAYMANN K, BOBAY L M, MORAN N A. Antibiotics reduce genetic diversity of core species in the honeybee gut microbiome[J]. Mol Ecol, 2018, 27(8): 2057-2066. DOI: 10.1111/mec.14434 . |
| [48] | SBAGHDI T, GARNEAU J R, YERSIN S, et al. The response of the honey bee gut microbiota to Nosema ceranae is modulated by the probiotic Pediococcus acidilactici and the neonicotinoid thiamethoxam[J]. Microorganisms, 2024, 12(1): 1-14. DOI: 10.3390/microorganisms12010192 . |
| [49] | SHI J L, ZHANG Y H, LIU J H, et al. Larval antibiotic exposure causes persistent impacts on honeybees across life stages via metabolic succession[J]. J Hazard Mater, 2025, 497: 139628. DOI: 10.1016/j.jhazmat.2025.139628 . |
| [50] | ZHANG Z J, MU X H, CAO Q N, et al. Antibiotic exposure alters the honeybee gut microbiota and may interfere with the honeybee behavioral caste transition[J]. Insect Sci, 2025, 32(1): 260-276. DOI: 10.1111/1744-7917.13374 . |
| [51] | NOWAK A, SZCZUKA D, GÓRCZYŃSKA A, et al. Characteri-zation of Apis mellifera gastrointestinal microbiota and lactic acid bacteria for honeybee protection-a review[J]. Cells, 2021, 10(3): 701. DOI: 10.3390/cells10030701 . |
| [52] | HARIPRASATH K, MOHANKUMAR S, SUDHA M, et al. The role of honeybee gut and honey microbiome in sustainable bee and human health[J]. J Pure Appl Microbiol, 2025, 19(1): 19-33. DOI: 10.22207/jpam.19.1.03 . |
| [53] | 谢建芸. 东方田鼠作为一种实验动物新资源的研究进展报告[J]. 实验动物与比较医学, 2023, 43(5): 482-491. DOI: 10.12300/j.issn.1674-5817.2023.114 . |
| XIE J Y. Research progress report on Microtus fortis as a new resource of laboratory animal[J]. Lab Anim Comp Med, 2023, 43(5): 482-491. DOI: 10.12300/j.issn.1674-5817.2023.114 . | |
| [54] | 杜小燕, 刘云波. 中国实验动物资源鉴定与评价工作进展分析[J]. 实验动物与比较医学, 2024, 44(5): 469-474. DOI: 10.12300/j.issn.1674-5817.2024.050 . |
| DU X Y, LIU Y B. Analysis of the progress in identification and evaluation of laboratory animal resources in China[J]. Lab Anim Comp Med, 2024, 44(5): 469-474. DOI: 10.12300/j.issn.1674-5817.2024.050 . |
| [1] | 刘松, 莫倩茹, 王瑾, 崔颖, 田铃. 黑水虻的主要生物学特性及其作为模式生物的开发应用前景[J]. 实验动物与比较医学, 2025, 45(6): 803-809. |
| [2] | 刘洋, 程来洋, 郭中坤. 中医病症结合的围绝经期综合征动物模型研究进展[J]. 实验动物与比较医学, 2025, 45(5): 586-595. |
| [3] | 中国研究型医院学会医学动物实验专家委员会, 中国研究型医院学会神经再生与 组织器官损伤修复专业委员会, 中国解剖学会工程解剖学分会, 李忠海, 李斌, 赵杰, 杨操, 李英俊. 椎间盘退行性病变的临床前研究动物模型选择指南(2025年版)[J]. 实验动物与比较医学, 2025, 45(5): 524-541. |
| [4] | 聂永强, 王朝霞. 高校基因编辑小鼠一站式服务平台建设的探索与实践:以上海交通大学为例[J]. 实验动物与比较医学, 2025, 45(5): 642-648. |
| [5] | 王笑铭, 孟晨晨, 范鹿, 李艳阳, 张军平, 吕仕超. 中医证候类动物模型构建方法概述[J]. 实验动物与比较医学, 2025, 45(5): 596-610. |
| [6] | 高超奇, 祝志波, 孙显东. 大鼠血管重构模型的应用进展与分类分析[J]. 实验动物与比较医学, 2025, 45(5): 542-550. |
| [7] | 刘子琪, 李云英, 李钦, 李元涵, 何芳雁, 温伟波. 脾胃虚寒型胃溃疡动物模型研究进展[J]. 实验动物与比较医学, 2025, 45(5): 574-585. |
| [8] | 刘巍, 许中衎, 侯丰田, 张心妍, 乔涵, 马丽颖. 2024年各类实验动物设施检测机构的动物照度检测能力评价报告[J]. 实验动物与比较医学, 2025, 45(5): 634-641. |
| [9] | 王庭君, 罗浩, 陈琦. 基于人工智能的实验动物中心信息化升级及应用实践[J]. 实验动物与比较医学, 2025, 45(4): 473-482. |
| [10] | 赵鑫, 王晨曦, 石文清, 娄月芬. 斑马鱼在炎症性肠病机制及药物研究中的应用进展[J]. 实验动物与比较医学, 2025, 45(4): 422-431. |
| [11] | 刘文涛, 罗艳红, 龙永霞, 罗启慧, 陈正礼, 刘丽达. 四川省实验动物设施常见环境问题及检测经验[J]. 实验动物与比较医学, 2025, 45(4): 483-489. |
| [12] | 刘亚益, 贾云凤, 左一鸣, 张军平, 吕仕超. 心气阴两虚证动物模型的构建方法与评价进展[J]. 实验动物与比较医学, 2025, 45(4): 411-421. |
| [13] | 焦青贞, 吴桂华, 唐雯, 樊帆, 冯凯, 杨春响, 乔建, 邓素芳. 暖通系统暂停送风下实验动物设施氨浓度的动态监测与分析[J]. 实验动物与比较医学, 2025, 45(4): 490-495. |
| [14] | 潘颐聪, 蒋汶洪, 胡明, 覃晓. 慢性肾脏病大鼠主动脉钙化模型的术式优化及效果评价[J]. 实验动物与比较医学, 2025, 45(3): 279-289. |
| [15] | 沈黄奕, 黄宇飞, 杨云鹏. 实验动物肠道菌群特征分析及性别差异性的研究进展[J]. 实验动物与比较医学, 2025, 45(3): 349-359. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||