实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (1): 68-73.DOI: 10.12300/j.issn.1674-5817.2021.097
何仁可1,2(), 鲁程1,2, 陈薇1,2, 汪萌芽1, 徐爱萍1(
)
收稿日期:
2021-05-16
修回日期:
2021-08-03
出版日期:
2022-02-25
发布日期:
2022-02-25
通讯作者:
徐爱萍(1989—),女,助教,博士,主要从事抑郁症发病机制研究。E-mail: ap.xu@wnmc.edu.cn作者简介:
何仁可(1999—),男,本科,研究方向:细胞电生理。E-mail: 18101010180@stu.wnmc.edu.cn
基金资助:
Renke HE1,2(), Cheng LU1,2, Wei CHEN1,2, Mengya WANG1, Aiping XU1(
)
Received:
2021-05-16
Revised:
2021-08-03
Published:
2022-02-25
Online:
2022-02-25
Contact:
XU Aiping, E-mail: ap.xu@wnmc.edu.cn摘要:
慢性疼痛伴发抑郁症状是常见的健康问题,严重危害了患者的身心健康,但这些症状的发生机制仍不清楚。为全面了解疼痛抑郁共病的发生机制及其治疗方法,疼痛抑郁共病动物模型的建立至关重要。本文就目前国内外疼痛抑郁共病相关的动物模型建立及行为学评价方法进行综述。
中图分类号:
何仁可,鲁程,陈薇,等. 疼痛抑郁共病动物模型及评价方法研究进展[J]. 实验动物与比较医学, 2022, 42(1): 68-73. DOI: 10.12300/j.issn.1674-5817.2021.097.
Renke HE,Cheng LU,Wei CHEN,et al. Advances in Animal Models and Evaluation Methods of Pain and Depression Comorbidity[J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 68-73. DOI: 10.12300/j.issn.1674-5817.2021.097.
1 | CHERIF F, ZOUARI H G, CHERIF W, et al. Depression prevalence in neuropathic pain and its impact on the quality of life[J]. Pain Res Manag, 2020, 2020:7408508. DOI:10.1155/2020/7408508 . |
2 | LI S, HUA D Y, WANG Q Y, et al. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress[J]. Int J Neuropsycho-pharmacol, 2020, 23(1):26-41. DOI:10.1093/ijnp/pyz061 . |
3 | BAIR M J, ROBINSON R L, KATON W, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20):2433-2445. DOI:10.1001/archinte.163.20.2433 . |
4 | EMMERICH A C, FRIEHS T, CROMBEZ G, et al. Self-compassion predicting pain, depression and anger in people suffering from chronic pain: a prospective study[J]. Eur J Pain, 2020, 24(10):1902-1914. DOI:10.1002/ejp.1638 . |
5 | UCKUN A C, DONMEZ B K, YURDAKUL F G, et al. The role of pain catastrophizing and depression in the outcomes of physical therapy in a prospective osteoarthritis cohort[J]. Pain Physician, 2020, 23(2):209-218. |
6 | ANGST F, BENZ T, LEHMANN S, et al. Extended overview of the longitudinal pain-depression association: a comparison of six cohorts treated for specific chronic pain conditions[J]. J Affect Disord, 2020, 273:508-516. DOI:10.1016/j.jad.2020. 05.044 . |
7 | SÁNCHEZ-RODRÍGUEZ E, ARAGONÈS E, JENSEN M P, et al. The role of pain-related cognitions in the relationship between pain severity, depression, and pain interference in a sample of primary care patients with both chronic pain and depression[J]. Pain Med, 2020, 21(10):2200-2211. DOI:10.1093/pm/pnz363 . |
8 | JIN Y, MENG Q, MEI L, et al. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain[J]. Pain, 2020, 161(2):416-428. DOI:10.1097/j.pain.0000000000001724 . |
9 | ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4):542-553. DOI:10.1038/s41593-021-00811-x . |
10 | ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10):1649-1658. DOI:10.1038/s41593-019-0468-2 . |
11 | GRÉGOIRE S, WATTIEZ A S, ETIENNE M, et al. Monoarthritis-induced emotional and cognitive impairments in rats are sensitive to low systemic doses or intra-amygdala injections of morphine[J]. Eur J Pharmacol, 2014, 735:1-9. DOI:10.1016/j.ejphar.2014.03.056 . |
12 | SILVA RODRIGUES J F, SILVA E SILVA C, FRANCA MUNIZ T, et al. Sulforaphane modulates joint inflammation in a murine model of complete Freund's adjuvant-induced mono-arthritis[J]. Molecules, 2018, 23(5):988. DOI:10.3390/molecules 23050988 . |
13 | JI R R, XU Z Z, GAO Y J. Emerging targets in neuro-inflammation-driven chronic pain[J]. Nat Rev Drug Discov, 2014, 13(7):533-548. DOI:10.1038/nrd4334 . |
14 | SUZUKI T, AMATA M, SAKAUE G, et al. Experimental neuropathy in mice is associated with delayed behavioral changes related to anxiety and depression[J]. Anesth Analg, 2007, 104(6):1570-7,tableofcontents. DOI:10.1213/01.ane. 0000261514.19946.66 . |
15 | HU X, DONG Y, JIN X, et al. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain[J]. Brain Behav Immun, 2017, 64:180-194. DOI:10.1016/j.bbi.2017.03.005 . |
16 | ZHU X, ZHOU W, JIN Y, et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression[J]. Cell Rep, 2019, 29(12):3847-3858.e5. DOI:10.1016/j.celrep. 2019.11.003 . |
17 | SANNA M D, LES F, LOPEZ V, et al. Lavender (Lavandula angustifolia mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury[J]. Front Pharmacol, 2019, 10:472. DOI:10.3389/fphar.2019.00472 . |
18 | ZHAO X, WANG C, ZHANG J F, et al. Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor[J]. Psychopharmacology (Berl), 2014, 231(10):2171-2187. DOI:10.1007/s00213-013-3368-2 . |
19 | ZHANG Y W, GAO T, LI X, et al. Circ_0005075 targeting miR-151a-3p promotes neuropathic pain in CCI rats via inducing NOTCH2 expression[J]. Gene, 2021, 767:145079. DOI:10.1016/j.gene.2020.145079 . |
20 | ZHANG W G, WANG F, ZHANG L C, et al. Intrathecal injection of ozone alleviates CCI‑induced neuropathic pain via the GluR6‑NF‑κB/p65 signalling pathway in rats[J]. Mol Med Rep, 2021, 23(4):231. DOI:10.3892/mmr.2021.11870 . |
21 | MEUWISSEN K P V, DE VRIES L E, GU J W, et al. Burst and tonic spinal cord stimulation both activate spinal GABAergic mechanisms to attenuate pain in a rat model of chronic neuropathic pain[J]. Pain Pract, 2020, 20(1):75-87. DOI:10.1111/papr.12831 . |
22 | BIRMANN P T, SOUSA F S S, DOMINGUES M, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice[J]. J Trace Elem Med Biol, 2019, 54:126-133. DOI:10.1016/j.jtemb.2019. 04.014 . |
23 | GARCIA MENDES M P, CARVALHO DOS SANTOS D, REZENDE M J S, et al. Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia[J]. Toxicon, 2021, 195:104-110. DOI:10.1016/j.toxicon.2021. 03.012 . |
24 | CHEAH M, FAWCETT J, ANDREWS M. Assessment of thermal pain sensation in rats and mice using the Hargreaves test[J]. Bio Protocol, 2017, 7(16): e2506. DOI:10.21769/bioprotoc.2506 . |
25 | MA Z, LI Y, ZHANG Y P, et al. Thermal nociception using a modified Hargreaves method in primates and humans[J]. Funct Neurol, 2015, 30(4):229-236. DOI:10.11138/fneur/2015. 30.4.229 . |
26 | AZIZ Z A A, NASIR H M, AHMAD A, et al. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats' assay[J]. Sci Rep, 2019, 9(1):13678. DOI:10.1038/s41598-019-50134-y . |
27 | SINGH P, KONGARA K, HARDING D, et al. Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin[J]. BMC Neurol, 2018, 18(1):43. DOI:10.1186/s12883-018-1047-y . |
28 | 余雪霏, 张铭勋, 方博文, 等. 大鼠光辐射热甩尾试验的时反应量-效关系[J]. 皖南医学院学报, 2014, 33(2):176-180. DOI:10.3969/j.issn.1002-0217.2014.02.029 . |
29 | BANNON A W, MALMBERG A B. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents[J]. Curr Protoc Neurosci, 2007, Chapter 8: Unit 8.9. DOI:10.1002/0471142301.ns0809s41 . |
30 | GURURAJAN A, REIF A, CRYAN J F, et al. The future of rodent models in depression research[J]. Nat Rev Neurosci, 2019, 20(11):686-701. DOI:10.1038/s41583-019-0221-6 . |
31 | XIA G B, HAN Y, MENG F T, et al. Reciprocal control of obesity and anxiety–depressive disorder via a GABA and serotonin neural circuit[J]. Mol Psychiatry, 2021:1-17. DOI:10.1038/s41380-021-01053-w . |
32 | CAO P, CHEN C M, LIU A, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines[J]. Neuron, 2021, 109(16):2573-2589.e9. DOI:10.1016/j.neuron.2021.06.012 . |
33 | PORSOLT R D, ANTON G, BLAVET N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments[J]. Eur J Pharmacol, 1978, 47(4):379-391. DOI:10.1016/0014-2999(78)90118-8 . |
34 | STERU L, CHERMAT R, THIERRY B, et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl), 1985, 85(3):367-370. DOI:10.1007/bf00428203 . |
35 | CUI Y, YANG Y, NI Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554(7692):323-327. DOI:10.1038/nature25752 . |
36 | KARBOWSKA M, HERMANOWICZ J M, TANKIEWICZ-KWEDLO A, et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model[J]. Sci Rep, 2020, 10(1):9483. DOI:10.1038/s41598-020-66421-y . |
37 | LUEPTOW L M. Novel object recognition test for the investigation of learning and memory in mice[J]. J Vis Exp, 2017(126): 55718. DOI:10.3791/55718 . |
38 | DENNINGER J K, SMITH B M, KIRBY E D. Novel object recognition and object location behavioral testing in mice on a budget[J]. J Vis Exp, 2018(141): 10.3791/58593. DOI:10.3791/58593 . |
39 | DULAWA S C, HEN R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test[J]. Neurosci Biobehav Rev, 2005, 29(4-5):771-783. DOI:10.1016/j.neubiorev.2005.03.017 . |
40 | QU S Y, LI X Y, HENG X, et al. Analysis of antidepressant activity of Huang-Lian Jie-du decoction through network pharmacology and metabolomics[J]. Front Pharmacol, 2021, 12:619288. DOI:10.3389/fphar.2021.619288 . |
41 | GOLDEN S A, COVINGTON H E, BERTON O, et al. A standardized protocol for repeated social defeat stress in mice[J]. Nat Protoc, 2011, 6(8):1183-1191. DOI:10.1038/nprot. 2011.361 . |
42 | GILAM G, GROSS J J, WAGER T D, et al. What is the relationship between pain and emotion? Bridging constructs and communities[J]. Neuron, 2020, 107(1):17-21. DOI:10.1016/j.neuron.2020.05.024 . |
43 | MALFLIET A, COPPIETERS I, WILGEN P VAN, et al. Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review[J]. Eur J Pain, 2017, 21(5):769-786. DOI:10.1002/ejp.1003 . |
44 | KUMMER K K, MITRIĆ M, KALPACHIDOU T, et al. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain[J]. Int J Mol Sci, 2020, 21(10): E3440. DOI:10.3390/ijms21103440 . |
45 | BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2):234-256. DOI:10.1016/j.neuron. 2020.06.002 . |
[1] | 刘亚益, 贾云凤, 左一鸣, 张军平, 吕仕超. 心气阴两虚证动物模型的构建方法与评价进展[J]. 实验动物与比较医学, 2025, 45(4): 411-421. |
[2] | 赵鑫, 王晨曦, 石文清, 娄月芬. 斑马鱼在炎症性肠病机制及药物研究中的应用进展[J]. 实验动物与比较医学, 2025, 45(4): 422-431. |
[3] | 李会萍, 高洪彬, 温金银, 杨锦淳. 疾病动物模型数字化图谱数据库平台的构建与初步应用[J]. 实验动物与比较医学, 2025, 45(3): 300-308. |
[4] | 潘颐聪, 蒋汶洪, 胡明, 覃晓. 慢性肾脏病大鼠主动脉钙化模型的术式优化及效果评价[J]. 实验动物与比较医学, 2025, 45(3): 279-289. |
[5] | 陈钰涵, 陈瑾玲, 李欣, 区燕华, 王斯, 陈镜伊, 王兴易, 袁嘉丽, 段媛媛, 羊忠山, 牛海涛. 基于中西医临床病证特点的重症肌无力动物模型分析[J]. 实验动物与比较医学, 2025, 45(2): 176-186. |
[6] | 连辉, 姜艳玲, 刘佳, 张玉立, 谢伟, 薛晓鸥, 李健. 异常子宫出血大鼠模型的构建与评价[J]. 实验动物与比较医学, 2025, 45(2): 130-146. |
[7] | 罗世雄, 张赛, 陈慧. 常见哮喘动物模型的建立方法与评价研究进展[J]. 实验动物与比较医学, 2025, 45(2): 167-175. |
[8] | 王碧莹, 鲁家铄, 昝桂影, 陈若松, 柴景蕊, 刘景根, 王瑜珺. 啮齿类动物药物成瘾模型的构建方法和应用进展[J]. 实验动物与比较医学, 2025, 45(2): 158-166. |
[9] | 费彬, 郭文科, 郭建平. 疝疾病动物模型研究及新型疝修补材料应用进展[J]. 实验动物与比较医学, 2025, 45(1): 55-66. |
[10] | 杨家豪, 丁纯蕾, 钱风华, 孙旗, 姜旭升, 陈雯, 沈梦雯. 脓毒症相关脏器损伤动物模型研究进展[J]. 实验动物与比较医学, 2024, 44(6): 636-644. |
[11] | 孙效容, 苏丹, 贵文娟, 陈玥. 手术诱导大鼠中重度膝骨关节炎模型的建立与评价[J]. 实验动物与比较医学, 2024, 44(6): 597-604. |
[12] | 田芳, 潘滨, 史佳怡, 徐燕意, 李卫华. 大气细颗粒物PM2.5暴露动物模型建立方法及在生殖毒性研究中的应用进展[J]. 实验动物与比较医学, 2024, 44(6): 626-635. |
[13] | 赵小娜, 王鹏, 叶茂青, 曲新凯. 应用Triacsin C构建新型高血糖肥胖小鼠心功能减退模型[J]. 实验动物与比较医学, 2024, 44(6): 605-612. |
[14] | 涂颖欣, 纪依澜, 王菲, 杨东明, 王冬冬, 孙芷馨, 戴悦欣, 王言吉, 阚广捍, 吴斌, 赵德明, 杨利峰. 小型猪后肢去负荷模拟失重模型的建立与组织损伤研究[J]. 实验动物与比较医学, 2024, 44(5): 475-486. |
[15] | 黄冬妍, 吴建辉. 生殖毒理学研究动物模型的建立方法及应用评价[J]. 实验动物与比较医学, 2024, 44(5): 550-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||