实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (1): 68-73.DOI: 10.12300/j.issn.1674-5817.2021.097
何仁可1,2(), 鲁程1,2, 陈薇1,2, 汪萌芽1, 徐爱萍1(
)
收稿日期:
2021-05-16
修回日期:
2021-08-03
出版日期:
2022-02-25
发布日期:
2022-02-25
通讯作者:
徐爱萍(1989—),女,助教,博士,主要从事抑郁症发病机制研究。E-mail: ap.xu@wnmc.edu.cn作者简介:
何仁可(1999—),男,本科,研究方向:细胞电生理。E-mail: 18101010180@stu.wnmc.edu.cn
基金资助:
Renke HE1,2(), Cheng LU1,2, Wei CHEN1,2, Mengya WANG1, Aiping XU1(
)
Received:
2021-05-16
Revised:
2021-08-03
Online:
2022-02-25
Published:
2022-02-25
Contact:
XU Aiping, E-mail: ap.xu@wnmc.edu.cn摘要:
慢性疼痛伴发抑郁症状是常见的健康问题,严重危害了患者的身心健康,但这些症状的发生机制仍不清楚。为全面了解疼痛抑郁共病的发生机制及其治疗方法,疼痛抑郁共病动物模型的建立至关重要。本文就目前国内外疼痛抑郁共病相关的动物模型建立及行为学评价方法进行综述。
中图分类号:
何仁可, 鲁程, 陈薇, 汪萌芽, 徐爱萍. 疼痛抑郁共病动物模型及评价方法研究进展[J]. 实验动物与比较医学, 2022, 42(1): 68-73.
Renke HE, Cheng LU, Wei CHEN, Mengya WANG, Aiping XU. Advances in Animal Models and Evaluation Methods of Pain and Depression Comorbidity[J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 68-73.
1 | CHERIF F, ZOUARI H G, CHERIF W, et al. Depression prevalence in neuropathic pain and its impact on the quality of life[J]. Pain Res Manag, 2020, 2020:7408508. DOI:10.1155/2020/7408508 . |
2 | LI S, HUA D Y, WANG Q Y, et al. The role of bacteria and its derived metabolites in chronic pain and depression: recent findings and research progress[J]. Int J Neuropsycho-pharmacol, 2020, 23(1):26-41. DOI:10.1093/ijnp/pyz061 . |
3 | BAIR M J, ROBINSON R L, KATON W, et al. Depression and pain comorbidity: a literature review[J]. Arch Intern Med, 2003, 163(20):2433-2445. DOI:10.1001/archinte.163.20.2433 . |
4 | EMMERICH A C, FRIEHS T, CROMBEZ G, et al. Self-compassion predicting pain, depression and anger in people suffering from chronic pain: a prospective study[J]. Eur J Pain, 2020, 24(10):1902-1914. DOI:10.1002/ejp.1638 . |
5 | UCKUN A C, DONMEZ B K, YURDAKUL F G, et al. The role of pain catastrophizing and depression in the outcomes of physical therapy in a prospective osteoarthritis cohort[J]. Pain Physician, 2020, 23(2):209-218. |
6 | ANGST F, BENZ T, LEHMANN S, et al. Extended overview of the longitudinal pain-depression association: a comparison of six cohorts treated for specific chronic pain conditions[J]. J Affect Disord, 2020, 273:508-516. DOI:10.1016/j.jad.2020. 05.044 . |
7 | SÁNCHEZ-RODRÍGUEZ E, ARAGONÈS E, JENSEN M P, et al. The role of pain-related cognitions in the relationship between pain severity, depression, and pain interference in a sample of primary care patients with both chronic pain and depression[J]. Pain Med, 2020, 21(10):2200-2211. DOI:10.1093/pm/pnz363 . |
8 | JIN Y, MENG Q, MEI L, et al. A somatosensory cortex input to the caudal dorsolateral striatum controls comorbid anxiety in persistent pain[J]. Pain, 2020, 161(2):416-428. DOI:10.1097/j.pain.0000000000001724 . |
9 | ZHU X, TANG H D, DONG W Y, et al. Distinct thalamocortical circuits underlie allodynia induced by tissue injury and by depression-like states[J]. Nat Neurosci, 2021, 24(4):542-553. DOI:10.1038/s41593-021-00811-x . |
10 | ZHOU W, JIN Y, MENG Q, et al. A neural circuit for comorbid depressive symptoms in chronic pain[J]. Nat Neurosci, 2019, 22(10):1649-1658. DOI:10.1038/s41593-019-0468-2 . |
11 | GRÉGOIRE S, WATTIEZ A S, ETIENNE M, et al. Monoarthritis-induced emotional and cognitive impairments in rats are sensitive to low systemic doses or intra-amygdala injections of morphine[J]. Eur J Pharmacol, 2014, 735:1-9. DOI:10.1016/j.ejphar.2014.03.056 . |
12 | SILVA RODRIGUES J F, SILVA E SILVA C, FRANCA MUNIZ T, et al. Sulforaphane modulates joint inflammation in a murine model of complete Freund's adjuvant-induced mono-arthritis[J]. Molecules, 2018, 23(5):988. DOI:10.3390/molecules 23050988 . |
13 | JI R R, XU Z Z, GAO Y J. Emerging targets in neuro-inflammation-driven chronic pain[J]. Nat Rev Drug Discov, 2014, 13(7):533-548. DOI:10.1038/nrd4334 . |
14 | SUZUKI T, AMATA M, SAKAUE G, et al. Experimental neuropathy in mice is associated with delayed behavioral changes related to anxiety and depression[J]. Anesth Analg, 2007, 104(6):1570-7,tableofcontents. DOI:10.1213/01.ane. 0000261514.19946.66 . |
15 | HU X, DONG Y, JIN X, et al. The novel and potent anti-depressive action of triptolide and its influences on hippocampal neuroinflammation in a rat model of depression comorbidity of chronic pain[J]. Brain Behav Immun, 2017, 64:180-194. DOI:10.1016/j.bbi.2017.03.005 . |
16 | ZHU X, ZHOU W, JIN Y, et al. A central amygdala input to the parafascicular nucleus controls comorbid pain in depression[J]. Cell Rep, 2019, 29(12):3847-3858.e5. DOI:10.1016/j.celrep. 2019.11.003 . |
17 | SANNA M D, LES F, LOPEZ V, et al. Lavender (Lavandula angustifolia mill.) essential oil alleviates neuropathic pain in mice with spared nerve injury[J]. Front Pharmacol, 2019, 10:472. DOI:10.3389/fphar.2019.00472 . |
18 | ZHAO X, WANG C, ZHANG J F, et al. Chronic curcumin treatment normalizes depression-like behaviors in mice with mononeuropathy: involvement of supraspinal serotonergic system and GABAA receptor[J]. Psychopharmacology (Berl), 2014, 231(10):2171-2187. DOI:10.1007/s00213-013-3368-2 . |
19 | ZHANG Y W, GAO T, LI X, et al. Circ_0005075 targeting miR-151a-3p promotes neuropathic pain in CCI rats via inducing NOTCH2 expression[J]. Gene, 2021, 767:145079. DOI:10.1016/j.gene.2020.145079 . |
20 | ZHANG W G, WANG F, ZHANG L C, et al. Intrathecal injection of ozone alleviates CCI‑induced neuropathic pain via the GluR6‑NF‑κB/p65 signalling pathway in rats[J]. Mol Med Rep, 2021, 23(4):231. DOI:10.3892/mmr.2021.11870 . |
21 | MEUWISSEN K P V, DE VRIES L E, GU J W, et al. Burst and tonic spinal cord stimulation both activate spinal GABAergic mechanisms to attenuate pain in a rat model of chronic neuropathic pain[J]. Pain Pract, 2020, 20(1):75-87. DOI:10.1111/papr.12831 . |
22 | BIRMANN P T, SOUSA F S S, DOMINGUES M, et al. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice[J]. J Trace Elem Med Biol, 2019, 54:126-133. DOI:10.1016/j.jtemb.2019. 04.014 . |
23 | GARCIA MENDES M P, CARVALHO DOS SANTOS D, REZENDE M J S, et al. Effects of intravenous administration of recombinant Phα1β toxin in a mouse model of fibromyalgia[J]. Toxicon, 2021, 195:104-110. DOI:10.1016/j.toxicon.2021. 03.012 . |
24 | CHEAH M, FAWCETT J, ANDREWS M. Assessment of thermal pain sensation in rats and mice using the Hargreaves test[J]. Bio Protocol, 2017, 7(16): e2506. DOI:10.21769/bioprotoc.2506 . |
25 | MA Z, LI Y, ZHANG Y P, et al. Thermal nociception using a modified Hargreaves method in primates and humans[J]. Funct Neurol, 2015, 30(4):229-236. DOI:10.11138/fneur/2015. 30.4.229 . |
26 | AZIZ Z A A, NASIR H M, AHMAD A, et al. Enrichment of Eucalyptus oil nanoemulsion by micellar nanotechnology: transdermal analgesic activity using hot plate test in rats' assay[J]. Sci Rep, 2019, 9(1):13678. DOI:10.1038/s41598-019-50134-y . |
27 | SINGH P, KONGARA K, HARDING D, et al. Comparison of electroencephalographic changes in response to acute electrical and thermal stimuli with the tail flick and hot plate test in rats administered with opiorphin[J]. BMC Neurol, 2018, 18(1):43. DOI:10.1186/s12883-018-1047-y . |
28 | 余雪霏, 张铭勋, 方博文, 等. 大鼠光辐射热甩尾试验的时反应量-效关系[J]. 皖南医学院学报, 2014, 33(2):176-180. DOI:10.3969/j.issn.1002-0217.2014.02.029 . |
29 | BANNON A W, MALMBERG A B. Models of nociception: hot-plate, tail-flick, and formalin tests in rodents[J]. Curr Protoc Neurosci, 2007, Chapter 8: Unit 8.9. DOI:10.1002/0471142301.ns0809s41 . |
30 | GURURAJAN A, REIF A, CRYAN J F, et al. The future of rodent models in depression research[J]. Nat Rev Neurosci, 2019, 20(11):686-701. DOI:10.1038/s41583-019-0221-6 . |
31 | XIA G B, HAN Y, MENG F T, et al. Reciprocal control of obesity and anxiety–depressive disorder via a GABA and serotonin neural circuit[J]. Mol Psychiatry, 2021:1-17. DOI:10.1038/s41380-021-01053-w . |
32 | CAO P, CHEN C M, LIU A, et al. Early-life inflammation promotes depressive symptoms in adolescence via microglial engulfment of dendritic spines[J]. Neuron, 2021, 109(16):2573-2589.e9. DOI:10.1016/j.neuron.2021.06.012 . |
33 | PORSOLT R D, ANTON G, BLAVET N, et al. Behavioural despair in rats: a new model sensitive to antidepressant treatments[J]. Eur J Pharmacol, 1978, 47(4):379-391. DOI:10.1016/0014-2999(78)90118-8 . |
34 | STERU L, CHERMAT R, THIERRY B, et al. The tail suspension test: a new method for screening antidepressants in mice[J]. Psychopharmacology (Berl), 1985, 85(3):367-370. DOI:10.1007/bf00428203 . |
35 | CUI Y, YANG Y, NI Z, et al. Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression[J]. Nature, 2018, 554(7692):323-327. DOI:10.1038/nature25752 . |
36 | KARBOWSKA M, HERMANOWICZ J M, TANKIEWICZ-KWEDLO A, et al. Neurobehavioral effects of uremic toxin-indoxyl sulfate in the rat model[J]. Sci Rep, 2020, 10(1):9483. DOI:10.1038/s41598-020-66421-y . |
37 | LUEPTOW L M. Novel object recognition test for the investigation of learning and memory in mice[J]. J Vis Exp, 2017(126): 55718. DOI:10.3791/55718 . |
38 | DENNINGER J K, SMITH B M, KIRBY E D. Novel object recognition and object location behavioral testing in mice on a budget[J]. J Vis Exp, 2018(141): 10.3791/58593. DOI:10.3791/58593 . |
39 | DULAWA S C, HEN R. Recent advances in animal models of chronic antidepressant effects: the novelty-induced hypophagia test[J]. Neurosci Biobehav Rev, 2005, 29(4-5):771-783. DOI:10.1016/j.neubiorev.2005.03.017 . |
40 | QU S Y, LI X Y, HENG X, et al. Analysis of antidepressant activity of Huang-Lian Jie-du decoction through network pharmacology and metabolomics[J]. Front Pharmacol, 2021, 12:619288. DOI:10.3389/fphar.2021.619288 . |
41 | GOLDEN S A, COVINGTON H E, BERTON O, et al. A standardized protocol for repeated social defeat stress in mice[J]. Nat Protoc, 2011, 6(8):1183-1191. DOI:10.1038/nprot. 2011.361 . |
42 | GILAM G, GROSS J J, WAGER T D, et al. What is the relationship between pain and emotion? Bridging constructs and communities[J]. Neuron, 2020, 107(1):17-21. DOI:10.1016/j.neuron.2020.05.024 . |
43 | MALFLIET A, COPPIETERS I, WILGEN P VAN, et al. Brain changes associated with cognitive and emotional factors in chronic pain: a systematic review[J]. Eur J Pain, 2017, 21(5):769-786. DOI:10.1002/ejp.1003 . |
44 | KUMMER K K, MITRIĆ M, KALPACHIDOU T, et al. The medial prefrontal cortex as a central hub for mental comorbidities associated with chronic pain[J]. Int J Mol Sci, 2020, 21(10): E3440. DOI:10.3390/ijms21103440 . |
45 | BEUREL E, TOUPS M, NEMEROFF C B. The bidirectional relationship of depression and inflammation: double trouble[J]. Neuron, 2020, 107(2):234-256. DOI:10.1016/j.neuron. 2020.06.002 . |
[1] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[2] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[3] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[4] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[5] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[6] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[7] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[8] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[9] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[10] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[11] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[12] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[13] | 赖灿, 李乐乐, 胡塔拉, 孟彦. 肾脏间质纤维化动物模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 163-172. |
[14] | 胡玲, 胡志斌, 胡筠卿, 丁玉强. 精神分裂症动物模型的研究概述[J]. 实验动物与比较医学, 2023, 43(2): 145-155. |
[15] | 尹丹阳, 胡怡, 史仍飞. 动物衰老模型的研究进展[J]. 实验动物与比较医学, 2023, 43(2): 156-162. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||