实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (5): 423-431.DOI: 10.12300/j.issn.1674-5817.2022.063
胡祺雯1,2(), 毕正1,2, 刘海萍1, 董志华1, 朱燕林1, 王进华1(
)(
)
收稿日期:
2022-05-11
修回日期:
2022-07-26
出版日期:
2022-10-25
发布日期:
2022-10-25
通讯作者:
王进华(1972—),男,博士,副主任医师,副教授,硕士生导师,主要从事妇产科、儿科影像诊断以及血管介入治疗工作。E-mail: wangjinhua80119@163.com。ORCID:0000-0002-3442-6259作者简介:
胡祺雯(1997—),女,硕士研究生,主要从事影像诊断研究。E-mail:mkyhu@outlook.com
基金资助:
Qiwen HU1,2(), Zheng BI1,2, Haiping LIU1, Zhihua DONG1, ZHUYanlin1, Jinhua WANG1(
)(
)
Received:
2022-05-11
Revised:
2022-07-26
Published:
2022-10-25
Online:
2022-10-25
Contact:
WANG Jinhua (ORCID:0000-0002-3442-6259), E-mail: wangjinhua80119@163.com摘要:
宫内生长受限(intrauterine growth restriction,IUGR)的发生可能与母体营养不良、胎盘功能异常、免疫异常、遗传相关问题以及其他疾病有关,但其机制尚不明确。因此,IUGR的研究以及其动物模型相关研究的发展是产科学中的关键问题。IUGR模型以实验啮齿类动物如小鼠、大鼠,以及部分哺乳类动物如猪、兔、羊为主要造模动物。本文介绍几种常用的IUGR模型,包括营养限制模型、高海拔妊娠模型、自然选择模型、尼古丁暴露模型等,并描述各种模型的构建方法,比较它们的优缺点。
中图分类号:
胡祺雯,毕正,刘海萍,等. 胎儿宫内生长受限动物模型的研究进展[J]. 实验动物与比较医学, 2022, 42(5): 423-431. DOI: 10.12300/j.issn.1674-5817.2022.063.
Qiwen HU,Zheng BI,Haiping LIU,et al. Research Progress on Animal Models of Intrauterine Growth Restriction[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 423-431. DOI: 10.12300/j.issn.1674-5817.2022.063.
造模办法 Modeling method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
子宫动脉结扎模型 Uterine artery ligation (UAL) | 在大鼠中应用较广;发明时间早(最早由 Wigglesworth在1964年提出),可参考的研究较多[ | 围产期母体和胎儿死亡率高;胎儿体质量(IUGR程度)受胎儿所在的子宫位置影响大,使得离宫角最近的胎儿血供完全被阻,导致胎儿死亡率达30%~85%[ |
选择性子宫胎盘动脉结扎模型 Selective ligature of uteroplacental vessels | 胎儿体质量(IUGR程度)不受胎儿所在子宫位置的影响;可通过调整结扎血管的比例来控制IUGR的时间和严重程度;此模型限制血流,因此可模拟氧和营养的双重限制[ | 结扎比例高时,胎儿死亡率高[ |
卵巢中动脉灼烧模型 Cauterization of meso-ovarian vessels | 手术时间短;CMO对胎儿/胎盘重量比的影响比UAL模型更显著;子宫-胎盘缺血均匀,使得胎儿之间体质量较均匀[ | 胎儿死亡率与UAL相当,都较高 |
子宫动脉灌注减少模型 Reduced uterine perfusion pressure | 可使得子宫灌注压减少约40%;此模型可用于研究胎儿IUGR与高血压的关系 | 后代性别特异性较大,雄性较雌性更易表现为IUGR |
肾脏压迫模型 Kidney wrapped | 可使得胎盘血流灌注减少50% 可通过包裹一个肾或者两个肾来控制高血压程度从而影响IUGR的发生率。此模型可用于研究胎儿IUGR与高血压或肾疾病的关系 | 手术较为复杂,目前应用较少 |
表1 五种宫内生长受限手术干预模型的优缺点
Table 1 Advantage and disadvantage of five models for intrauterine growth restriction (IUGR) surgical intervention
造模办法 Modeling method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
子宫动脉结扎模型 Uterine artery ligation (UAL) | 在大鼠中应用较广;发明时间早(最早由 Wigglesworth在1964年提出),可参考的研究较多[ | 围产期母体和胎儿死亡率高;胎儿体质量(IUGR程度)受胎儿所在的子宫位置影响大,使得离宫角最近的胎儿血供完全被阻,导致胎儿死亡率达30%~85%[ |
选择性子宫胎盘动脉结扎模型 Selective ligature of uteroplacental vessels | 胎儿体质量(IUGR程度)不受胎儿所在子宫位置的影响;可通过调整结扎血管的比例来控制IUGR的时间和严重程度;此模型限制血流,因此可模拟氧和营养的双重限制[ | 结扎比例高时,胎儿死亡率高[ |
卵巢中动脉灼烧模型 Cauterization of meso-ovarian vessels | 手术时间短;CMO对胎儿/胎盘重量比的影响比UAL模型更显著;子宫-胎盘缺血均匀,使得胎儿之间体质量较均匀[ | 胎儿死亡率与UAL相当,都较高 |
子宫动脉灌注减少模型 Reduced uterine perfusion pressure | 可使得子宫灌注压减少约40%;此模型可用于研究胎儿IUGR与高血压的关系 | 后代性别特异性较大,雄性较雌性更易表现为IUGR |
肾脏压迫模型 Kidney wrapped | 可使得胎盘血流灌注减少50% 可通过包裹一个肾或者两个肾来控制高血压程度从而影响IUGR的发生率。此模型可用于研究胎儿IUGR与高血压或肾疾病的关系 | 手术较为复杂,目前应用较少 |
1 | LANE S L, DOYLE A S, BALES E S, et al. Peroxisome proliferator-activated receptor gamma blunts endothelin-1-mediated contraction of the uterine artery in a murine model of high-altitude pregnancy[J]. FASEB J, 2020, 34(3):4283-4292. DOI:10.1096/fj.201902264RR . |
2 | CORTES-ARAYA Y, STENHOUSE C, SALAVATI M, et al. KLB dysregulation mediates disrupted muscle development in intrauterine growth restriction[J]. J Physiol, 2022, 600(7):1771-1790. DOI:10.1113/JP281647 . |
3 | DARENDELILER F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(3):101260. DOI:10.1016/j.beem.2019.01.001 . |
4 | HUNTER D S, HAZEL S J, KIND K L, et al. Programming the brain: common outcomes and gaps in knowledge from animal studies of IUGR[J]. Physiol Behav, 2016, 164:233-248. DOI:10.1016/j.physbeh.2016.06.005 . |
5 | GONZALEZ-BULNES A, ASTIZ S, PARRAGUEZ V H, et al. Empowering translational research in fetal growth restriction: sheep and swine animal models[J]. Curr Pharm Biotechnol, 2016, 17(10):848-855. DOI:10.2174/1389201017666-160519111529 . |
6 | MORRISON J L, BERRY M J, BOTTING K J, et al. Improving pregnancy outcomes in humans through studies in sheep[J]. Am J Physiol Regul Integr Comp Physiol, 2018, 315(6): R1123-R1153. DOI:10.1152/ajpregu.00391.2017 . |
7 | 杨杏, 潘兴芳, 赵天易, 等. 继发性淋巴水肿动物模型的研究进展[J]. 实验动物与比较医学, 2022, 42(1):62-67. |
YANG X, PAN X F, ZHAO T Y, et al. Progress in animal models of secondary lymphedema[J]. Lab Animal Comp Med, 2022, 42(1):62-67. | |
8 | DANIEL-CARLIER N, HARSCOËT E, THÉPOT D, et al. Gonad differentiation in the rabbit: evidence of species-specific features[J]. PLoS One, 2013, 8(4): e60451. DOI:10.1371/journal.pone.0060451 . |
9 | NATURIL-ALFONSO C, MARCO-JIMÉNEZ F, JIMÉNEZ-TRIGOS E, et al. Role of embryonic and maternal genotype on prenatal survival and foetal growth in rabbit[J]. Reprod Domest Anim, 2015, 50(2):312-320. DOI:10.1111/rda.12493 . |
10 | VICENTE J S, LLOBAT M D, JIMÉNEZ-TRIGOS E, et al. Effect of embryonic and maternal genotype on embryo and foetal survival in rabbit[J]. Reprod Domest Anim, 2013, 48(3):402-406. DOI:10.1111/rda.12087 . |
11 | GONZALEZ-BULNES A, CHAVATTE-PALMER P. Contribution of large animals to translational research on prenatal programming of obesity and associated diseases[J]. Curr Pharm Biotechnol, 2017, 18(7):541-551. DOI:10.2174/1389201018666170811150920 . |
12 | DUNLOP K, SARR O, STACHURA N, et al. Differential and synergistic effects of low birth weight and western diet on skeletal muscle vasculature, mitochondrial lipid metabolism and insulin signaling in male Guinea pigs[J]. Nutrients, 2021, 13(12):4315. DOI:10.3390/nu13124315 . |
13 | BAZER F W, JOHNSON G A. Pig blastocyst-uterine inter-actions[J]. Differentiation, 2014, 87(1-2):52-65. DOI:10.1016/j.diff.2013.11.005 . |
14 | FERENC K, PIETRZAK P, GODLEWSKI M M, et al. Intrauterine growth retarded piglet as a model for humans: studies on the perinatal development of the gut structure and function[J]. Reprod Biol, 2014, 14(1):51-60. DOI:10.1016/j.repbio.2014.01.005 . |
15 | GAO H M, ZHANG L C, WANG L G, et al. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development[J]. BMC Genom, 2020, 21(1):701. DOI:10.1186/s12864-020-07094-9 . |
16 | BAILEY M, CHRISTOFORIDOU Z, LEWIS M C. The evolu-tionary basis for differences between the immune systems of man, mouse, pig and ruminants[J]. Vet Immunol Immuno-pathol, 2013, 152(1-2):13-19. DOI:10.1016/j.vetimm. 2012.09.022 . |
17 | FAVRE-INHOFER A, CARBONNEL M, DOMERT J, et al. Involving animal models in uterine transplantation[J]. Front Surg, 2022, 9:830826. DOI:10.3389/fsurg.2022.830826 . |
18 | CARTER A M. Evolution of placentation in cattle and antelopes[J]. Anim Reprod, 2020, 16(1):3-17. DOI:10.21451/1984-3143-AR2018-00145 . |
19 | MORRISON J L. Sheep models of intrauterine growth restriction: fetal adaptations and consequences[J]. Clin Exp Pharmacol Physiol, 2008, 35(7):730-743. DOI:10.1111/j.1440-1681.2008.04975.x . |
20 | TANNER A R, KENNEDY V C, LYNCH C S, et al. In vivo investigation of ruminant placenta function and physiology–a review[J]. J Anim Sci, 2022, 100(6): skac045. DOI:10.1093/jas/skac045 . |
21 | GRIGSBY P L. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy[J]. Semin Reprod Med, 2016, 34(1):11-16. DOI:10.1055/s-0035-1570031 . |
22 | RYAN A M, BAUMAN M D. Primate models as a translational tool for understanding prenatal origins of neuro-developmental disorders associated with maternal infection[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5):510-523. DOI:10.1016/j.bpsc.2022.02.012 . |
23 | 王宏, 付学魏, 陈智岗, 等. 昆明地区恒河猴、食蟹猴种群繁殖规律和繁殖性能研究[J]. 中国比较医学杂志, 2017, 27(7):34-39. DOI:10.3969.j.issn.1671-7856.2017.07.007 . |
WANG H, FU X W, CHEN Z G, et al. Population reproductive regularity and reproductive performance of rhesus monkeys and cynomolgus monkeys in Kunming area[J]. Chin J Comp Med, 2017, 27(7):34-39. DOI:10.3969.j.issn.1671-7856.2017.07.007 . | |
24 | BAUER C. The baboon (Papio sp.) as a model for female reproduction studies[J]. Contraception, 2015, 92(2):120-123. DOI:10.1016/j.contraception.2015.06.007 . |
25 | LI W, LI B, LV J Q, et al. Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs[J]. Asian-Australas J Anim Sci, 2018, 31(5):686-695. DOI:10.5713/ajas.15.0810 . |
26 | TANG X P, XIONG K N. Intrauterine growth retardation affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses[J]. Oxid Med Cell Longev, 2022, 2022:2644205. DOI:10.1155/2022/2644205 . |
27 | PAREDES S P, JANSMAN A J M, VERSTEGEN M W A, et al. Identifying the limitations for growth in low performing piglets from birth until 10 weeks of age[J]. Animal, 2014, 8(6):923-930. DOI:10.1017/S175173111400069X . |
28 | VAN GINNEKEN C, AYUSO M, VAN BOCKSTAL L, et al. Preweaning performance in intrauterine growth-restricted piglets: characteristics and interventions[J]. Mol Reprod Dev, 2022:2022 Jun 2. DOI:10.1002/mrd.23614 . |
29 | 段畅, 王曜晖, 高静, 等. 各种宫内发育迟缓动物模型的比较[J]. 重庆医学, 2016, 45(5):696-699. DOI:10.3969/j.issn.1671-8348.2016.05.042 . |
DUAN C, WANG Y H, GAO J, et al. Comparison of various animal models of intrauterine developmental delay [J]. Chongqing Med, 2016, 45(5):696-699. DOI:10.3969/j.issn.1671-8348.2016.05.042 . | |
30 | TAN C Q, HUANG Z H, XIONG W Y, et al. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs[J]. J Anim Sci Biotechnol, 2022, 13(1):28. DOI:10.1186/s40104-022-00676-5 . |
31 | CHU A, THAMOTHARAN S, GANGULY A, et al. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction[J]. Nutr Res, 2016, 36(10):1055-1067. DOI:10.1016/j.nutres. 2016. 08.001 . |
32 | SELIVANOVA E K, SHVETSOVA A A, SHILOVA L D, et al. Intrauterine growth restriction weakens anticontractile influence of NO in coronary arteries of adult rats[J]. Sci Rep, 2021, 11:14475.DOI:10.1038/s41598-021-93491-3 . |
33 | GARCIA-CONTRERAS C, VAZQUEZ-GOMEZ M, PESANTEZ-PACHECO J L, et al. Maternal metformin treatment improves developmental and metabolic traits of IUGR fetuses[J]. Biomolecules, 2019, 9(5):166. DOI:10.3390/biom9050166 . |
34 | PEREIRA S P, TAVARES L C, DUARTE A I, et al. Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction[J]. Clin Sci (Lond), 2021, 135(9):1103-1126. DOI:10.1042/CS20201339 . |
35 | SIMONCINI S, COPPOLA H, ROCCA A, et al. Endothelial colony-forming cells dysfunctions are associated with arterial hypertension in a rat model of intrauterine growth restriction[J]. Int J Mol Sci, 2021, 22(18):10159. DOI:10.3390/ijms221810159 . |
36 | ROBERTS V H J, GAFFNEY J E, MORGAN T K, et al. Placental adaptations in a nonhuman primate model of gestational protein restriction[J]. J Dev Orig Health Dis, 2021, 12(6):908-914. DOI:10.1017/S204017442000121X . |
37 | ARMENGAUD J B, YZYDORCZYK C, SIDDEEK B, et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood[J]. Reproductive Toxicol, 2021, 99:168-176. DOI:10.1016/j.reprotox.2020.10.005 . |
38 | EIXARCH E, HERNANDEZ-ANDRADE E, CRISPI F, et al. Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction[J]. Placenta, 2011, 32(4):304-309. DOI:10.1016/j.placenta.2011.01.014 . |
39 | DUCSAY C A, MLYNARCZYK M, KAUSHAL K M, et al. Long-term hypoxia enhances ACTH response to arginine vasopressin but not corticotropin-releasing hormone in the near-term ovine fetus[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297(3): R892-R899. DOI:10.1152/ajpregu.00220. 2009 . |
40 | ROUSSEAU-RALLIARD D, AUBRIÈRE M C, DANIEL N, et al. Importance of windows of exposure to maternal high-fat diet and feto-placental effects: discrimination between pre-conception and gestational periods in a rabbit model[J]. Front Physiol, 2021, 12:784268. DOI:10.3389/fphys.2021.784268 . |
41 | LOPEZ-TELLO J, ARIAS-ALVAREZ M, GONZALEZ-BULNES A, et al. Models of Intrauterine growth restriction and fetal programming in rabbits[J]. Mol Reprod Dev, 2019, 86(12):1781-1809. DOI:10.1002/mrd.23271 . |
42 | ROCK C R, WHITE T A, PISCOPO B R, et al. Cardiovascular and cerebrovascular implications of growth restriction: mechanisms and potential treatments[J]. Int J Mol Sci, 2021, 22(14):7555. DOI:10.3390/ijms22147555 . |
43 | AIZER A, CURRIE J. The intergenerational transmission of inequality: maternal disadvantage and health at birth[J]. Science, 2014, 344(6186):856-861. DOI:10.1126/science.1251872 . |
44 | WU D M, HE Z, CHEN T, et al. DNA hypermethylation of acetoacetyl-CoA synthetase contributes to inhibited cholesterol supply and steroidogenesis in fetal rat adrenals under prenatal nicotine exposure[J]. Toxicology, 2016, 340:43-52. DOI:10.1016/j.tox.2016.01.002 . |
45 | ZHANG G H, ZHOU J, HUANG W, et al. Placental mechanism of prenatal nicotine exposure-reduced blood cholesterol levels in female fetal rats[J]. Toxicol Lett, 2018, 296:31-38. DOI:10.1016/j.toxlet.2018.07.022 . |
46 | FENG J H, YAN Y E, LIANG G, et al. Maternal and fetal metabonomic alterations in prenatal nicotine exposure-induced rat intrauterine growth retardation[J]. Mol Cell Endocrinol, 2014, 394(1-2):59-69. DOI:10.1016/j.mce.2014. 06.016 . |
47 | MORALES-PRIETO D M, FUENTES-ZACARÍAS P, MURRIETA-COXCA J M, et al. Smoking for two-effects of tobacco consumption on placenta[J]. Mol Aspects Med, 2022, 87:101023. DOI:10.1016/j.mam.2021.101023 . |
48 | COLL T A, CHAUFAN G, PÉREZ-TITO L G, et al. Cellular and molecular oxidative stress-related effects in uterine myometrial and trophoblast-decidual tissues after perigestational alcohol intake up to early mouse organogenesis[J]. Mol Cell Biochem, 2018, 440(1):89-104. DOI:10.1007/s11010-017-3158-y . |
49 | LI Y, YAN Y E, WANG H. Enhancement of placental antioxidative function and P-gp expression by sodium ferulate mediated its protective effect on rat IUGR induced by prenatal tobacco/alcohol exposure[J]. Environ Toxicol Pharmacol, 2011, 32(3):465-471. DOI:10.1016/j.etap.2011.08.013 . |
50 | GHADHANFAR E, ALSALEM A, AL-KANDARI S, et al. The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction[J]. Reprod Biol Endocrinol, 2017, 15(1):97. DOI:10.1186/s12958-017-0316-8 . |
51 | HUNG T H, LIU Y C, WU C H, et al. Antenatal low-intensity pulsed ultrasound reduces neurobehavioral deficits and brain injury following dexamethasone-induced intrauterine growth restriction[J]. Brain Pathol, 2021, 31(6): e12968. DOI:10.1111/bpa.12968 . |
52 | CUFFE J S M, SAIF Z, PERKINS A V, et al. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice[J]. J Endocrinol, 2017, 234(2):89-100. DOI:10.1530/JOE-17-0171 . |
53 | ARIAS A, SCHANDER J A, BARIANI M V, et al. Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth[J]. Mol Hum Reprod, 2021, 27(3): gaab006. DOI:10.1093/molehr/gaab006 . |
54 | SHALOM-PAZ E, WEILL S, GINZBERG Y, et al. IUGR induced by maternal chronic inflammation: long-term effect on offspring's ovaries in rat model—a preliminary report[J]. J Endocrinol Invest, 2017, 40(10):1125-1131. DOI:10.1007/s40618-017-0681-3 . |
55 | CADARET C N, MERRICK E M, BARNES T L, et al. Sustained maternal inflammation during the early third-trimester yields intrauterine growth restriction, impaired skeletal muscle glucose metabolism, and diminished β-cell function in fetal sheep 1,2[J]. J Anim Sci, 2019, 97(12):4822-4833. DOI:10.1093/jas/skz321 . |
56 | WANG B, XU S, LU X, et al. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction[J]. Environ Pollut, 2020, 260:113984. DOI:10.1016/j.envpol.2020.113984 . |
57 | LI R, WANG X L, WANG B, et al. Gestational 1-nitropyrene exposure causes gender-specific impairments on postnatal growth and neurobehavioral development in mice[J]. Ecotoxicol Environ Saf, 2019, 180:123-129. DOI:10.1016/j.ecoenv.2019.05.016 . |
58 | GUO C, YANG Y, SHI M X, et al. Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice[J]. Ecotoxicol Environ Saf, 2019, 172:186-193. DOI:10.1016/j.ecoenv.2019.01.054 . |
59 | RUFF C A, FAULKNER S D, RUMAJOGEE P, et al. The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents[J]. PLoS One, 2017, 12(9): e0184653. DOI:10.1371/journal.pone. 0184653 . |
60 | SUTHERLAND A E, YAWNO T, CASTILLO-MELENDEZ M, et al. Does antenatal betamethasone alter white matter brain development in growth restricted fetal sheep? [J]. Front Cell Neurosci, 2020, 14:100. DOI:10.3389/fncel.2020.00100 . |
61 | EIXARCH E, FIGUERAS F, HERNÁNDEZ-ANDRADE E, et al. An experimental model of fetal growth restriction based on selective ligature of uteroplacental vessels in the pregnant rabbit[J]. Fetal Diagn Ther, 2009, 26(4):203-211. DOI:10.1159/000264063 . |
62 | CAMPRUBÍ M, ORTEGA Á, BALAGUER A, et al. Cauterization of meso-ovarian vessels, a new model of intrauterine growth restriction in rats[J]. Placenta, 2009, 30(9):761-766. DOI:10.1016/j.placenta.2009.06.010 . |
63 | COATS L E, BAKRANIA B A, BAMRICK-FERNANDEZ D R, et al. Soluble guanylate cyclase stimulation in late gestation does not mitigate asymmetric intrauterine growth restriction or cardiovascular risk induced by placental ischemia in the rat[J]. Am J Physiol Heart Circ Physiol, 2021, 320(5): H1923-H1934. DOI:10.1152/ajpheart.00033.2021 . |
64 | LIN C, HE H, CUI N, et al. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and-9 in hypertensive pregnancy[J]. Am J Physiol Heart Circ Physiol, 2020, 318(1): H165-H180. DOI:10.1152/ajpheart.00602.2019 . |
65 | COATS L E, BAMRICK-FERNANDEZ D R, ARIATTI A M, et al. Stimulation of soluble guanylate cyclase diminishes intrauterine growth restriction in a rat model of placental ischemia[J]. Am J Physiol Regul Integr Comp Physiol, 2021, 320(2): R149-R161. DOI:10.1152/ajpregu.00234.2020 . |
66 | SEKIMOTO A, TANAKA K, HASHIZUME Y, et al. Tadalafil alleviates preeclampsia and fetal growth restriction in RUPP model of preeclampsia in mice[J]. Biochem Biophys Res Commun, 2020, 521(3):769-774. DOI:10.1016/j.bbrc.2019.10.186 . |
67 | TRAVIS O K, BAIK C, TARDO G A, et al. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats[J]. Am J Reprod Immunol, 2021, 85(6): e13386. DOI:10.1111/aji.13386 . |
68 | GILBERT J S, BAUER A J, GINGERY A, et al. Circulating and utero-placental adaptations to chronic placental ischemia in the rat[J]. Placenta, 2012, 33(2):100-105. DOI:10.1016/j.placenta.2011.11.025 . |
69 | MCARDLE A M, ROBERTS C T, MADUWEGEDERA D, et al. Chronic maternal hypertension characterized by renal dysfunction is associated with reduced placental blood flow during late gestation in rabbits[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(4): R1043-R1049. DOI:10.1152/ajpregu. 00202.2009 . |
70 | BEUNE I M, BLOOMFIELD F H, GANZEVOORT W, et al. Consensus based definition of growth restriction in the newborn[J]. J Pediatr, 2018, 196:71-76.e1. DOI:10.1016/j.jpeds.2017.12.059 . |
71 | LAI J, SYNGELAKI A, NICOLAIDES K H, et al. Using ultrasound and angiogenic markers from a 19- to 23-week assessment to inform the subsequent diagnosis of preeclampsia[J]. Am J Obstet Gynecol, 2022, 227(2):294.e1-294.e11. DOI:10.1016/j.ajog.2022.03.007 . |
[1] | 刘亚益, 贾云凤, 左一鸣, 张军平, 吕仕超. 心气阴两虚证动物模型的构建方法与评价进展[J]. 实验动物与比较医学, 2025, 45(4): 411-421. |
[2] | 赵鑫, 王晨曦, 石文清, 娄月芬. 斑马鱼在炎症性肠病机制及药物研究中的应用进展[J]. 实验动物与比较医学, 2025, 45(4): 422-431. |
[3] | 李会萍, 高洪彬, 温金银, 杨锦淳. 疾病动物模型数字化图谱数据库平台的构建与初步应用[J]. 实验动物与比较医学, 2025, 45(3): 300-308. |
[4] | 潘颐聪, 蒋汶洪, 胡明, 覃晓. 慢性肾脏病大鼠主动脉钙化模型的术式优化及效果评价[J]. 实验动物与比较医学, 2025, 45(3): 279-289. |
[5] | 王碧莹, 鲁家铄, 昝桂影, 陈若松, 柴景蕊, 刘景根, 王瑜珺. 啮齿类动物药物成瘾模型的构建方法和应用进展[J]. 实验动物与比较医学, 2025, 45(2): 158-166. |
[6] | 陈钰涵, 陈瑾玲, 李欣, 区燕华, 王斯, 陈镜伊, 王兴易, 袁嘉丽, 段媛媛, 羊忠山, 牛海涛. 基于中西医临床病证特点的重症肌无力动物模型分析[J]. 实验动物与比较医学, 2025, 45(2): 176-186. |
[7] | 连辉, 姜艳玲, 刘佳, 张玉立, 谢伟, 薛晓鸥, 李健. 异常子宫出血大鼠模型的构建与评价[J]. 实验动物与比较医学, 2025, 45(2): 130-146. |
[8] | 罗世雄, 张赛, 陈慧. 常见哮喘动物模型的建立方法与评价研究进展[J]. 实验动物与比较医学, 2025, 45(2): 167-175. |
[9] | 费彬, 郭文科, 郭建平. 疝疾病动物模型研究及新型疝修补材料应用进展[J]. 实验动物与比较医学, 2025, 45(1): 55-66. |
[10] | 杨家豪, 丁纯蕾, 钱风华, 孙旗, 姜旭升, 陈雯, 沈梦雯. 脓毒症相关脏器损伤动物模型研究进展[J]. 实验动物与比较医学, 2024, 44(6): 636-644. |
[11] | 孙效容, 苏丹, 贵文娟, 陈玥. 手术诱导大鼠中重度膝骨关节炎模型的建立与评价[J]. 实验动物与比较医学, 2024, 44(6): 597-604. |
[12] | 田芳, 潘滨, 史佳怡, 徐燕意, 李卫华. 大气细颗粒物PM2.5暴露动物模型建立方法及在生殖毒性研究中的应用进展[J]. 实验动物与比较医学, 2024, 44(6): 626-635. |
[13] | 赵小娜, 王鹏, 叶茂青, 曲新凯. 应用Triacsin C构建新型高血糖肥胖小鼠心功能减退模型[J]. 实验动物与比较医学, 2024, 44(6): 605-612. |
[14] | 涂颖欣, 纪依澜, 王菲, 杨东明, 王冬冬, 孙芷馨, 戴悦欣, 王言吉, 阚广捍, 吴斌, 赵德明, 杨利峰. 小型猪后肢去负荷模拟失重模型的建立与组织损伤研究[J]. 实验动物与比较医学, 2024, 44(5): 475-486. |
[15] | 黄冬妍, 吴建辉. 生殖毒理学研究动物模型的建立方法及应用评价[J]. 实验动物与比较医学, 2024, 44(5): 550-559. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||