[1] 李小群, 陈朔阳. 建设昆明国际实验动物产业园打造云南省经济发展新增长极[J]. 云南科技管理, 2018, 31(2):19-22. DOI:10.19774/j.cnki.53-1085.2018.02.005. [2] 刘佳, 李娟, 王学伟, 等. 云南省实验动物现状中存在的问题及解决策略[J]. 世界最新医学信息文摘, 2016, 16(86):58-59. [3] 涂文姬, 吴志晖, 肖军, 等. 云南省人工繁育野生动物产业类型调查分析[J]. 林业调查规划, 2018, 43(5):128-133. [4] 刘妮妮, 陈庆云. 抓住机遇发展云南实验动物产业[J]. 2011, 24(6):57-59. DOI:10.3969/j.issn.1004-1168.2011.06.021. [5] 龙云锋. 不断加强实验动物管理助推生物医药产业发展[J]. 云南科技管理, 2015, 28(3):32-35. DOI:10.3969/j.issn.1004-1168.2015.03.009. [6] 龙云锋. 云南省实验动物现状与加快发展的思考[J]. 云南科技管理, 2016, 29(1):16-19. [7] ZHOU Y, LI J X, JIN P F, et al.Enterovirus 71: a whole virion inactivated Enterovirus 71 vaccine[J]. Expert Rev Vaccines, 2016, 15(7):803-813. DOI:10.1080/14760584.2016.1191357. [8] ZHANG Y, WANG L, LIAO Y, et al.Similar protective immunity induced by an inactivated Enterovirus 71 (EV71) vaccine in neonatal rhesus macaques and children[J]. Vaccine, 2015, 33(46):6290-6297. DOI:10.1016/j.vaccine.2015.09.047. [9] XIANG L F, YIN Y, ZHENG Y, et al.A developmental landscape of 3D-cultured human pre-gastrulation embryos[J]. Nature, 2020, 577(7791):537-542. DOI:10.1038/s41586-019-1875-y. [10] NIU Y Y, SUN N Q, LI C, et al. Dissecting primate early post-implantation development using long-term in vitro embryo culture[J]. Science, 2019, 366(6467): eaaw5754. DOI:10.1126/science.aaw5754. [11] CHEN Y, YU J, NIU Y, et al. Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys[J]. Cell, 2017, 169(5):945-955.e10. DOI:10.1016/j.cell.2017.04.035. [12] CHEN Y C, ZHENG Y H, KANG Y, et al.Functional disruption of the dystrophin gene in rhesus monkey using CRISPR/Cas9[J]. Hum Mol Genet, 2015, 24(13):3764-3774. DOI:10.1093/hmg/ddv120. [13] NIU Y, SHEN B, CUI Y, et al.Generation of gene-modified cynomolgus monkey via Cas9/RNA-mediated gene targeting in one-cell embryos[J]. Cell, 2014, 156(4):836-843. DOI:10.1016/j.cell.2014.01.027. [14] HE Y X, LUO X, ZHOU B, et al.Long-read assembly of the Chinese rhesus macaque genome and identification of ape-specific structural variants[J]. Nat Commun, 2019, 10(1):1-14. DOI:10.1038/s41467-019-12174-w. [15] SAMUELS B C, SIEGWART J T, ZHAN W, et al.A novel tree shrew (Tupaia belangeri) model of Glaucoma[J]. Invest Ophthalmol Vis Sci, 2018, 59(7):3136-3143. DOI:10.1167/iovs.18-24261. [16] 王文广, 黄晓燕, 徐娟, 等. EV71可感染幼龄中缅树鼩[J]. 动物学研究, 2012, 33(1):7-13. [17] XIAO J, LIU R, CHEN C S.Tree shrew (Tupaia belangeri) as a novel laboratory disease animal model[J]. Zool Res, 2017, 38(3):127-137. DOI:10.24272/j.issn.2095-8137.2017.033. [18] JIA J, WANG W, KUANG D, et al.mRNA profiling reveals response regulators of decreased fungal keratitis symptoms in a tree shrew model[J]. Gene, 2020, 737:144450. DOI:10.1016/j.gene.2020.144450. [19] XU S, LI X Y, YANG J Y, et al.Comparative pathogenicity and transmissibility of pandemic H1N1, avian H5N1, and human H7N9 influenza viruses in tree shrews[J]. Front Microbiol, 2019, 10:2955. DOI:10.3389/fmicb.2019.02955. [20] ZHENG H, NIU S, ZHAO H, et al.Donepezil improves the cognitive impairment in a tree shrew model of Alzheimer's disease induced by amyloid-β1-40 via activating the BDNF/TrkB signal pathway[J]. Metab Brain Dis, 2018, 33(6):1961-1974. DOI:10.1007/s11011-018-0303-6. [21] TU Q, YANG D, ZHANG X N, et al.A novel pancreatic cancer model originated from transformation of acinar cells in adult tree shrew, a primate-like animal[J]. Dis Model Mech, 2019: dmm038703. DOI:10.1242/dmm.038703. [22] LI J, WANG W, TONG P, et al.Autophagy induction by HIV-tat and methamphetamine in primary midbrain neuronal cells of tree shrews via the mTOR signaling and ATG5/ATG7 pathway[J]. Front Neurosci, 2018, 12:921. DOI:10.3389/fnins.2018.00921. [23] FENG Y, FENG Y M, LU C, et al.Tree shrew, a potential animal model for hepatitis C, supports the nfection and replication of HCV in vitro and in vivo[J]. J Gen Virol, 2017, 98(8):2069-2078. DOI:10.1099/jgv.0.000869. [24] FAN Y, HUANG Z Y, CAO C C, et al.Genome of the Chinese tree shrew[J]. Nat Commun, 2013, 4:1426. DOI:10.1038/ncomms2416. [25] LI C H, YAN L Z, BAN W Z, et al.Long-term propagation of tree shrew spermatogonial stem cells in culture and successful generation of transgenic offspring[J]. Cell Res, 2017, 27(2):241-252. DOI:10.1038/cr.2016.156. [26] NIU D, WEI H J, LIN L, et al.Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9[J]. Science, 2017, 357(6357):1303-1307. DOI:10.1126/science.aan4187. [27] YU H H, ZHAO H, QING Y B, et al.Porcine zygote injection with Cas9/sgRNA results in DMD-modified pig with muscle dystrophy[J]. Int J Mol Sci, 2016, 17(10):1668. DOI:10.3390/ijms17101668. [28] SHEN Y F, XU K X, YUAN Z M, et al.Efficient generation of P53 biallelic knockout Diannan miniature pigs via TALENs and somatic cell nuclear transfer[J]. J Transl Med, 2017, 15(1):1-11. DOI:10.1186/s12967-017-1327-0. [29] YAN S, TU Z C, LIU Z M, et al. A huntingtin knockin pig model recapitulates features of selective neurodegeneration in Huntington's disease[J]. Cell, 2018, 173(4):989-1002.e13. DOI:10.1016/j.cell. 2018. 03.005. [30] 贺争鸣. 基于能力提升的我国实验动物资源发展愿景[J]. 实验动物与比较医学, 2021, 41(2):85-90.DOI: 10.12300/j.issn.1674-5817.2021.042. [31] 贺争鸣, 陈振文, 代解杰, 等. 实验动物品种增量建设与野生动物科学利用现状与建议[J]. 中国科技资源导刊, 2021, 53(2):50-58. [32] 王锡乐, 巩薇, 胡建武, 等. 我国实验动物科技工作发展的政策支撑与思考[J]. 实验动物科学, 2020, 37(4):64-68. |