Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (5): 384-392.DOI: 10.12300/j.issn.1674-5817.2022.050
• Animal Models of Human Diseases • Previous Articles Next Articles
Chen GAO()(
), Chunling FAN, Yurong LI, Wenjuan PEI, Caiping GUAN
Received:
2022-04-10
Revised:
2022-07-16
Online:
2022-10-25
Published:
2022-11-04
Contact:
Chen GAO
CLC Number:
Chen GAO, Chunling FAN, Yurong LI, Wenjuan PEI, Caiping GUAN. Changes in Expression of Monocarboxylate Transporters in the Rat Cerebral Cortex after Exercise-induced Fatigue Under Simulated High-altitude Hypoxia and its Significance[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 384-392.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.050
分组 Group | 平均运动力竭时间 Average exhaustion time /min |
---|---|
常规运动组 NE group | 124.75±9.36 #△ |
急进高原组 REIA group | 61.00±6.55* |
高原习服3 d组 3 d AA group | 66.38±4.72* |
高原习服1周组 1 week AA group | 73.13±7.02* |
高原习服2周组 2 weeks AA group | 100.25±9.74#△ |
高原抑制剂组 MTI group | 71.25±9.59* |
Table 1 Average time–to–exhaustion in rats under exercise-induced fatigue conditions
分组 Group | 平均运动力竭时间 Average exhaustion time /min |
---|---|
常规运动组 NE group | 124.75±9.36 #△ |
急进高原组 REIA group | 61.00±6.55* |
高原习服3 d组 3 d AA group | 66.38±4.72* |
高原习服1周组 1 week AA group | 73.13±7.02* |
高原习服2周组 2 weeks AA group | 100.25±9.74#△ |
高原抑制剂组 MTI group | 71.25±9.59* |
Figure 1 Western blotting analysis of MCT2 and MCT4 expressions in the cerebral motor cortex of rats in each groupNote:CG: Control group; NE group: Normal exercise group; REIA group: Rush-entry-into-altitude group; 3 d AA group: 3-day-altitude acclimatization group; 1 week AA group: 1-week-altitude acclimatization group; 2 weeks AA group: 2-week-altitude acclimatization group; MTI group: Monocarboxylate transporter inhibitor group. *P<0.05, versus CG group for MCT2 quantitative analysis; #P<0.05, versus CG group for MCT4 quantitative analysis, ANOVA with post hoc Bonferroni correction. n=3 for each group.
Figure 2 Immunohistochemical detection of MCT2 (A) and MCT4 (B) in the cerebral motor cortex of rats in each group (DAB staining, ×400)Note: A, MCT2 expression of neurons in the cerebral motor cortex of rats; B, MCT4 expression in astrocytes in the cerebral motor cortex of rats. a and a’, control group; b and b’, normal exercise group; c and c’, rush-entry-into-altitude group; d and d’, 3-day-altitude acclimatization group; e and e’, 1-week-altitude acclimatization group; f and f’, 2-week-altitude acclimatization group; g and g’, mono-carboxylate transporter inhibitor group. Scale bar = 25 μm.
分组 Group | 神经元组织学分级 Neuronal histological grade (count) | 平均神经元密度值 Average neuronal density/(cells·HPF-1) | |||
---|---|---|---|---|---|
0级 0 grade | Ⅰ级 Ⅰ grade | Ⅱ级 Ⅱ grade | Ⅲ级 Ⅲ grade | ||
对照组 CG | 3 | 0 | 0 | 0 | 135.88±8.59 |
常规运动组 NE group | 2 | 1 | 0 | 0 | 123.88±6.71 |
急进高原组 REIA group | 0 | 0 | 2 | 1 | 46.75±8.65* |
高原习服3 d组 3 d AA group | 0 | 0 | 3 | 0 | 54.13±11.33* |
高原习服1周组 1 week AA group | 0 | 2 | 1 | 0 | 119.50±6.99* |
高原习服2周组 2 weeks AA group | 0 | 3 | 0 | 0 | 121.75±16.00 |
高原抑制剂组 MTI group | 0 | 1 | 2 | 0 | 63.50±7.65* |
Table 2 Histological grade and average neuronal density in the cerebral motor cortex of rats under exercise-induced fatigue conditions
分组 Group | 神经元组织学分级 Neuronal histological grade (count) | 平均神经元密度值 Average neuronal density/(cells·HPF-1) | |||
---|---|---|---|---|---|
0级 0 grade | Ⅰ级 Ⅰ grade | Ⅱ级 Ⅱ grade | Ⅲ级 Ⅲ grade | ||
对照组 CG | 3 | 0 | 0 | 0 | 135.88±8.59 |
常规运动组 NE group | 2 | 1 | 0 | 0 | 123.88±6.71 |
急进高原组 REIA group | 0 | 0 | 2 | 1 | 46.75±8.65* |
高原习服3 d组 3 d AA group | 0 | 0 | 3 | 0 | 54.13±11.33* |
高原习服1周组 1 week AA group | 0 | 2 | 1 | 0 | 119.50±6.99* |
高原习服2周组 2 weeks AA group | 0 | 3 | 0 | 0 | 121.75±16.00 |
高原抑制剂组 MTI group | 0 | 1 | 2 | 0 | 63.50±7.65* |
Figure 3 Nissl staining in the cerebral motor cortex of rats under exercise-induced fatigue conditions (×200,local enlarged image×400 )Note:a, control group; b, normal exercise group; c, rush-entry-into-altitude group; d, 3-day-altitude acclimatization group; e, 1-week-altitude acclimatization group; f, 2-week-altitude acclimatization group; g, monocarboxylate transporter inhibitor group. Scale bar = 50 μm.
分组 Group | 脑组织乳酸含量 Average brain lactate content/(mmol·g-1) |
---|---|
对照组 CG | 0.163±0.011#△ |
常规运动组 NE group | 0.175±0.021#△ |
急进高原组 REIA group | 0.239±0.017*△ |
高原习服3 d组 3 d AA group | 0.247±0.012*△ |
高原习服1周组 1 week AA group | 0.397±0.017*#△ |
高原习服2周组 2 weeks AA group | 0.412±0.024*#△ |
高原抑制剂组 MTI group | 0.537±0.011*# |
Table 3 Average brain lactate content in rats under exercise-induced fatigue conditions
分组 Group | 脑组织乳酸含量 Average brain lactate content/(mmol·g-1) |
---|---|
对照组 CG | 0.163±0.011#△ |
常规运动组 NE group | 0.175±0.021#△ |
急进高原组 REIA group | 0.239±0.017*△ |
高原习服3 d组 3 d AA group | 0.247±0.012*△ |
高原习服1周组 1 week AA group | 0.397±0.017*#△ |
高原习服2周组 2 weeks AA group | 0.412±0.024*#△ |
高原抑制剂组 MTI group | 0.537±0.011*# |
1 | 邓树勋. 运动生理学[M]. 北京: 高等教育出版社, 1999. |
DENG S X. Exercise physiology[M]. Beijing: Higher Education Press, 1999. | |
2 | 高强. 疲劳及其测定(上)[J]. 中国运动医学杂志, 1985, 4(3):179-183. DOI:10.16038/j.1000-6710.1985.03.019 . |
GAO Q. Fatigue and its fatigue measurement (part one)[J]. Chin J Sports Med, 1985, 4(3):179-183. DOI:10.16038/j.1000-6710.1985.03.019 . | |
3 | 鲁建清, 满维祥, 罗荣保. 5-羟色胺与中枢运动疲劳的分析研究[J]. 湖南科技学院学报, 2010, 31(4):79-82. DOI:10.3969/j.issn.1673-2219.2010.04.023 . |
LU J Q, MAN W X, LUO R B. An analyze 5-HT, fatigue and their relationships[J]. J Hunan Univ Sci Eng, 2010, 31(4):79-82. DOI:10.3969/j.issn.1673-2219.2010.04.023 . | |
4 | GIRARD O, MILLET G P. Neuromuscular fatigue in racquet sports [J]. Neurol Clin, 2008, 26(1):181-194. DOI: 10.1016/j.ncl. 2007.11.011 . |
5 | AMANN M, DEMPSEY J A. Ensemble input of group III/IV muscle afferents to CNS: a limiting factor of central motor drive during endurance exercise from normoxia to moderate hypoxia[J]. Adv Exp Med Biol, 2016, 903:325-342. DOI:10.1007/978-1-4899-7678-9_22 . |
6 | DAVIS J M, ALDERSON N L, WELSH R S. Serotonin and central nervous system fatigue: nutritional considerations[J]. Am J Clin Nutr, 2000, 72(2):573S-578S. DOI:10.1093/ajcn/72.2.573S . |
7 | 刘红平, 杨国愉, 张晶轩, 等. 急进高原驻训军人躯体-脑力疲劳追踪研究[J]. 西北国防医学杂志, 2017, 38(9):565-569. DOI:10.16021/j.cnki.1007-8622.2017.09.002 . |
LIU H P, YANG G Y, ZHANG J X, et al. Investigation of physical-mental fatigue on armymen acutely entering in plateau[J]. Med J Natl Defending Forces Northwest China, 2017, 38(9):565-569. DOI:10.16021/j.cnki.1007-8622.2017.09.002 . | |
8 | 陶文迪, 田秀玉, 李茂星, 等. 黄芪水提取物对高原缺氧大鼠运动能力的影响[J]. 解放军医药杂志, 2019, 31(12):12-18. DOI:10.3969/j.issn.2095-140X.2019.12.003 . |
TAO W D, TIAN X Y, LI M X, et al. Effect of Astragalus membranaceus aqueous extract on ability of plateau hypoxia exercise in rats[J]. Med & Pharm J Chin People's Liberation Army, 2019, 31(12):12-18. DOI:10.3969/j.issn.2095-140X.2019.12.003 . | |
9 | DHILLON H S, CARMAN H M, ZHANG D, et al. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus[J]. J Neurotrauma, 1999, 16(6):455-469. DOI:10.1089/neu.1999.16.455 . |
10 | 王静, 刘洪涛. 脑乳酸对运动性中枢疲劳的作用及影响[J]. 中国临床康复, 2004, 8(22):4572-4573. DOI:10.3321/j.issn: 1673-8225.2004.22.102 . |
WANG J, LIU H T. Effect of brain lactic acid on exercise-induced central fatigue[J]. Chin J Clin Rehabil, 2004, 8(22):4572-4573. DOI:10.3321/j.issn: 1673-8225.2004.22.102 . | |
11 | 杨东升, 刘晓莉, 乔德才. "乳酸穿梭"背景下的运动性疲劳中枢机制研究新进展[J]. 中国康复医学杂志, 2012,27(3):285-288. DOI:10.3969/j.issn.1001-1242.2012.03.024 . |
YANG D S, LIU X L, QIAO D C. New progress of research on central mechanism of exercise-induced fatigue under the background of lactic acid shuttle[J]. Chin J Rehabil Med, 2012, 27(3):285-288. DOI:10.3969/j.issn.1001-1242.2012.03.024 . | |
12 | PELLERIN L, MAGISTRETTI P J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization[J]. Proc Natl Acad Sci USA, 1994, 91(22):10625-10629. DOI:10.1073/pnas. 91.22.10625 . |
13 | SCHURR A. Glycolysis paradigm shift dictates a reevaluation of glucose and oxygen metabolic rates of activated neural tissue[J]. Front Neurosci, 2018, 12:700. DOI:10.3389/fnins. 2018.00700 . |
14 | GAO C, ZHOU L Y, ZHU W X, et al. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures[J]. Neurosci Lett, 2015, 594:99-104. DOI:10.1016/j.neulet.2015.03.062 . |
15 | HALESTRAP A P. The SLC16 gene family - Structure, role and regulation in health and disease[J]. Mol Aspects Med, 2013, 34(2-3):337-349. DOI:10.1016/j.mam.2012.05.003 . |
16 | GAO C, ZHU W X, TIAN L Z, et al. MCT4-Mediated Expression of EAAT1 is Involved in the Resistance to Hypoxia Injury in Astrocyte-Neuron co-Cultures[J]. Neurochem Res, 2015, 40(4):818-828. DOI:10.1007/s11064-015-1532-2 . |
17 | BEDFORD T G, TIPTON C M, WILSON N C, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. J Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6):1278-1283. DOI:10.1152/jappl.1979.47.6.1278 . |
18 | 胡琰茹, 乔德才, 刘晓莉. 力竭运动过程中大鼠苍白球内侧部对皮层的调控作用[J]. 中国运动医学杂志, 2013, 32(5):420-425, 419. DOI:10.16038/j.1000-6710.2013.05.001 . |
HU Y R, QIAO D C, LIU X L. Modulatory effect of the internal segment of globus pallidus on motor cortex activity during exhaustive exercise[J]. Chin J Sports Med, 2013, 32(5):420-425, 419. DOI:10.16038/j.1000-6710.2013.05.001 . | |
19 | SCHURR A, PAYNE R S, MILLER J J, et al. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia[J]. Brain Res, 2001, 895(1-2):268-272. DOI:10.1016/S0006-8993(01)02082-0 . |
20 | GAO C, WANG C, LIU B, et al. Intermittent hypoxia preconditioning-induced epileptic tolerance by upregulation of monocarboxylate transporter 4 expression in rat hippocampal astrocytes[J]. Neurochem Res, 2014, 39(11):2160-2169. DOI:10.1007/s11064-014-1411-2 . |
21 | LI D Y, LIU X Y, LIU T M, et al. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes[J]. Glia, 2020, 68(5):878-897. DOI:10.1002/glia.23734 . |
22 | GAO C, LI Z Y, BAI J, et al. Involvement of monocarboxylate transporters in the cross-tolerance between epilepsy and cerebral infarction: a promising choice towards new treatments[J]. Neurosci Lett, 2019, 707:134305. DOI:10.1016/j.neulet.2019.134305 . |
23 | 高晨, 白洁, 雷鹏, 等. 低氧预处理对氯化锂-匹鲁卡品致痫大鼠的保护作用[J]. 中华实验外科杂志, 2018, 35(1):111-115. DOI:10.3760/cma.j.issn.1001-9030.2018.01.037 . |
GAO C, BAI J, LEI P, et al. The protective effect of hypoxia preconditioning on epilepsy induced by lithium-pilocarpine in rats[J]. Chin J Exp Surg, 2018, 35(1):111-115. DOI:10.3760/cma.j.issn.1001-9030.2018.01.037 . | |
24 | ZHANG L S, LI J, LIN A N. Assessment of neurodegeneration and neuronal loss in aged 5XFAD mice[J]. STAR Protoc, 2021, 2(4):100915. DOI:10.1016/j.xpro.2021.100915 . |
25 | 武柠子, 马慧萍, 王昕, 等. 模拟高原缺氧环境对大鼠心、脑组织损伤的研究[J]. 药学实践杂志, 2018, 36(3):250-254. DOI:10.3969/j.issn.1006-0111.2018.03.013 . |
WU N Z, MA H P, WANG X, et al. Study on myocardium and brain damage in rats by simulating high altitude[J]. J Pharm Pract, 2018, 36(3):250-254. DOI:10.3969/j.issn.1006-0111.2018.03.013 . | |
26 | 高钰琪. 高原军事医学[M]. 重庆: 重庆出版社, 2005: 180-220. |
GAO Y Q. High altitude military medicine[M]. Chongqing: Chongqing Publishing House, 2005: 180-220. | |
27 | 程泽鹏, 冯钰, 史仍飞. 运动过程中单羧酸转运蛋白(MCTs)作用的研究进展[J]. 军事体育学报, 2017, 36(3):89-94. DOI:10.3969/j.issn.1671-1300.2017.03.025 . |
CHENG Z P, FENG Y, SHI R F. Research on MCTs function during the exercise[J]. J Mil Phys Educ Sports, 2017, 36(3):89-94. DOI:10.3969/j.issn.1671-1300.2017.03.025 . | |
28 | 高晨, 王菀, 李玉荣, 等. 运动疲劳状态下大鼠脑皮层单羧酸转运蛋白表达的变化及意义[J]. 实验动物与比较医学, 2022, 42(1):42-47. DOI:10.12300/j.issn.1674-5817.2021-053 . |
GAO C, WANG W, LI Y R, et al. Expression and significance of monocarboxylate transporters in cortex of rats after exercise-induced fatigue[J]. Lab Animal Comp Med, 2022, 42(1):42-47. DOI:10.12300/j.issn.1674-5817.2021-053 . | |
29 | ÓRDENES P, VILLAR P S, TARIFEÑO-SALDIVIA E, et al. Lactate activates hypothalamic POMC neurons by intercellular signaling[J]. Sci Rep, 2021, 11:21644. DOI:10.1038/s41598-021-00947-7 . |
31 | GUAN X W, MORRIS M E. In vitro and In vivo efficacy of AZD3965 and alpha-cyano-4-hydroxycinnamic acid in the murine 4T1 breast tumor model[J]. AAPS J, 2020, 22(4):84. DOI:10.1208/s12248-020-00466-9 . |
32 | YU J T, WEI Z X, LI Q, et al. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform[J]. Adv Sci (Weinh), 2021, 8(19): e2101467. DOI:10.1002/advs.202101467 . |
33 | GARCIA C K, BROWN M S, PATHAK R K, et al. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1[J]. J Biol Chem, 1995, 270(4):1843-1849. DOI:10.1074/jbc.270.4.1843 . |
34 | BRÖER S, BRÖER A, SCHNEIDER H P, et al. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes[J]. Biochem J, 1999, 341(Pt 3):529-535. DOI:10.1042/0264-6021:3410529 . |
35 | ERLICHMAN J S, HEWITT A, DAMON T L, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis[J]. J Neurosci, 2008, 28(19):4888-4896. DOI:10.1523/JNEUROSCI.5430-07.2008 . |
36 | PARKIN G M, UDAWELA M, GIBBONS A, et al. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders[J]. World J Psychiatry, 2018, 8(2):51-63. DOI:10.5498/wjp.v8.i2.51 . |
[1] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[2] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[3] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[4] | Ziyin XIA, Yuanyuan CHAI, Yunxia XU, Qinwei YU, Xin HUANG, Luyong ZHANG, Zhenzhou JIANG. Quantification of Uric Acid of Rat Serum by Liquid Chromatography-ultraviolet Detection and Its Comparison Study [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 314-322. |
[5] | Ying TAN, Wenping LIAO, Qilong GAO, Yong LI, Xinhui SHI, Jingkun WANG. Physiological Indexes and Histopathology Analysis of Sodium Iodate-Induced Retinitis Pigmentosa in Rats [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 124-135. |
[6] | Jian GE, Jingfen SUN, Yongjie WU. Taurine Has no Protective Effect on Rat Corneal Endothelial Cells Injured by Benzalkonium Chloride [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 39-43. |
[7] | Qin XU, Yan NI, Wenhui SHI, Jianying LI, Jiangwei LIU, Hongqiong ZHAO, Xinming XU. Analysis on Ileum and Colon Microflora of SPF Male SD Rats based on High-throughput Sequencing [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 53-60. |
[8] | Bin WU, Xu WANG, Dongxu FU, Yujun ZHU, Jinlu HUANG, Shunxing ZHU. Effect of the Traditional Chinese Medicine Shuganjieyu Formula on Constipation Type Irritable Bowel Syndrome and Brain-gut Axis in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(6): 551-559. |
[9] | Bingxin XU, Kaijian FAN, Tingyu WANG, Huijin CHEN. Effect of Dexamethasone on Cartilage Degeneration in Rats with Collagen-induced Arthritis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 416-422. |
[10] | Huiyan QIN, Huafeng CHEN, Hui YANG, Hailan LUO, Weizhong FU, Qingbo LI, Jiehong ZHANG. The Capacity of Silkworm Cocoon Water to Mitigate the Level of Oxidative Stress in Aged Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 393-400. |
[11] | Xiaorui ZHANG, Jing CAO, Qianqian WU, Jijun LIU, Guoyuan CHEN, Baojin WU. Effects of Probucol Formulations on Mesenteric Lymphatic Trans-port Efficiency and Pharmacokinetics in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 275-283. |
[12] | Sijia ZHAO, Xinyu HE, Quan JING, Lin MA, Chunlan GUO, Kuo WAN. Evaluation of Pain in Acute Pulpitis Hyperalgesia Model Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 333-341. |
[13] | Yiru WANG, Xiaoying JIANG, Ruoxi DONG, Yibin PAN, Xianghui HAN, Yongqing CAO. Modified Method for Inducing Acute Intestinal Fibrosis in Rats Using 2,4,6-Trinitrobenzene Sulfonic Acid [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 284-293. |
[14] | Xiaorui ZHANG, Jing CAO, Qianqian WU, Kang KANG, Guoyuan CHEN, Baojin WU. A Preliminary Method for Continuous Drainage of Mesenteric Lymph Fluid in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 267-274. |
[15] | Dingshan FENG, Yeyu HUANG, Xiaoxin ZHANG, Aiqin WU, Zhan WANG, Linliang SU. Effects of Storage Time on Electrolyte Content and pH Value in Rat Serum Samples [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 301-305. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||