Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (3): 314-322.DOI: 10.12300/j.issn.1674-5817.2022.189
• Animal Experimental Techniques and Methods • Previous Articles Next Articles
Ziyin XIA1()(), Yuanyuan CHAI1, Yunxia XU1, Qinwei YU1, Xin HUANG1, Luyong ZHANG1,2()(), Zhenzhou JIANG1()()
Received:
2022-12-14
Revised:
2023-04-13
Online:
2023-06-25
Published:
2023-07-18
Contact:
Luyong ZHANG, Zhenzhou JIANG
CLC Number:
Ziyin XIA, Yuanyuan CHAI, Yunxia XU, Qinwei YU, Xin HUANG, Luyong ZHANG, Zhenzhou JIANG. Quantification of Uric Acid of Rat Serum by Liquid Chromatography-ultraviolet Detection and Its Comparison Study[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 314-322.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.189
Figure 1 Chromatogram of uric acid specificity verificationNote: A, 10 μg/mL uric acid standard solution; B, 50 μg/mL DHBA (3,4-dihydroxybenzylamine hydrobromide ) standard solution; C, Blank biomatrix; D, Lower limit of quantitation sample; E, Rat serum (without internal standard) in the control group (intraperitoneal injection of an equal amount of 0.5% CMC-Na solution); F, Rat serum in the control group.
尿酸质量浓度 ρ/(μg·mL-1) | 批内准确度和精密度 Intra-A&P/% (n = 5) | 批间准确度和精密度 Inter-A&P/% (n = 15) | 提取回收率 Extraction recovery/% (n =5) | 稳定性 Stability (RE)/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RE | RSD | RE | RSD | RSD | 4 °C (n =5) | FTC (n = 5) | RT (n = 3) | -20 °C (n = 3) | -80 °C (n = 3) | ||||
10 | -1.99 | 2.42 | -3.67 | 5.07 | |||||||||
25 | -2.17 | 1.95 | -3.68 | 4.90 | 89.91±4.55 | 5.06 | -3.12 | -2.19 | -11.47 | -1.09 | -9.51 | ||
100 | 0.74 | 1.54 | 1.15 | 3.04 | 84.42±1.61 | 1.90 | -2.48 | -2.23 | -6.85 | -5.01 | -14.51 | ||
160 | 2.21 | 0.52 | -0.56 | 3.67 | 83.12±5.63 | 6.77 | -5.46 | -4.57 | -8.41 | -6.74 | -12.76 |
Table 1 Intra- and inter-batch accuracy and precision, extraction recovery and stability test of uric acid determination
尿酸质量浓度 ρ/(μg·mL-1) | 批内准确度和精密度 Intra-A&P/% (n = 5) | 批间准确度和精密度 Inter-A&P/% (n = 15) | 提取回收率 Extraction recovery/% (n =5) | 稳定性 Stability (RE)/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RE | RSD | RE | RSD | RSD | 4 °C (n =5) | FTC (n = 5) | RT (n = 3) | -20 °C (n = 3) | -80 °C (n = 3) | ||||
10 | -1.99 | 2.42 | -3.67 | 5.07 | |||||||||
25 | -2.17 | 1.95 | -3.68 | 4.90 | 89.91±4.55 | 5.06 | -3.12 | -2.19 | -11.47 | -1.09 | -9.51 | ||
100 | 0.74 | 1.54 | 1.15 | 3.04 | 84.42±1.61 | 1.90 | -2.48 | -2.23 | -6.85 | -5.01 | -14.51 | ||
160 | 2.21 | 0.52 | -0.56 | 3.67 | 83.12±5.63 | 6.77 | -5.46 | -4.57 | -8.41 | -6.74 | -12.76 |
Figure 3 Determination of serum uric acid concentrations in rats before and 1 h after administrationNote:(A) LC-UV method was used to detect the serum uric acid concentration of rats in the two groups before and 1 h after administration (CON, control group administered 0.5% CMC-Na solution; HUA, hyperuricemia group administered 300 mg/kg potassium oxyzate). Compared with the CON group, ???P<0.00 1; Compared to before administration, ###P<0.001. n = 6). (B-C) Serum uric acid concentration was measured using three methods before and 1 h after administration (LC-UV, liquid chromatography-ultraviolet; Kit-PTA, phosphotungstic acid method Kit; Kit-enzyme, uricase method Kit. Compared with LC-UV, ^P<0.05, ^^P<0.01, ^^^P<0.00 1. n = 6).
取样时间/h Time/h | 加样质量浓度/(μg·mL-1) ρ/(μg·mL-1) | 加样回收率/% Recovery of spiked samples/% | ||
---|---|---|---|---|
LC-UV | 磷钨酸法 Kit-PTA | 尿酸酶法 Kit-enzyme | ||
0a | 10 | 99.97±6.86 | 118.83±21.22 | 60.05±11.2 |
25 | 95.90±4.54 | 117.90±8.48 | 84.31±4.31 | |
1a | 10 | 98.18±3.23 | 125.00±5.34 | 27.37±8.62 |
25 | 99.64±0.99 | 112.96±3.85 | 43.55±5.38 |
Table 2 Comparison of the spiked recovery of LC-UV method and commercially available kits
取样时间/h Time/h | 加样质量浓度/(μg·mL-1) ρ/(μg·mL-1) | 加样回收率/% Recovery of spiked samples/% | ||
---|---|---|---|---|
LC-UV | 磷钨酸法 Kit-PTA | 尿酸酶法 Kit-enzyme | ||
0a | 10 | 99.97±6.86 | 118.83±21.22 | 60.05±11.2 |
25 | 95.90±4.54 | 117.90±8.48 | 84.31±4.31 | |
1a | 10 | 98.18±3.23 | 125.00±5.34 | 27.37±8.62 |
25 | 99.64±0.99 | 112.96±3.85 | 43.55±5.38 |
检测方法 Method | 原理 Principle | 特点 Features | 局限性 Limitations |
---|---|---|---|
磷钨酸法 Phosphotungstic acid method | 尿酸在碱性溶液中与磷钨酸反应,生成尿囊素、二氧化碳和钨蓝,钨蓝的生成量与尿酸含量成正比 | 操作简单,检测时间短,成本低,可用于自动化分析 | 特异性差,准确度低,检测结果易受血清中其他还原性物质影响 |
液相色谱-紫外检测法 LC-UV | 溶于流动相中的各组分经过固定相时,由于与固定相发生作用的大小不同,导致其保留时间不同 | 专属性强,准确度高,线性范围广,色谱柱可反复使用 | 成本较高、检测时间较长 |
尿酸酶法 Uricase method | 尿酸在尿酸酶的作用下生成尿囊素、二氧化碳和过氧化氢,过氧化氢与显色剂反应显色 | 操作简单,检测时间短,成本低,可用于自动化分析 | 尿酸酶的活性易被血清中氧嗪酸钾抑制,准确度低 |
Table 3 Comparison of liquid chromatography-ultraviolet (LC-UV) method with phosphotungstic acid method and uricase method for determining serum uric acid
检测方法 Method | 原理 Principle | 特点 Features | 局限性 Limitations |
---|---|---|---|
磷钨酸法 Phosphotungstic acid method | 尿酸在碱性溶液中与磷钨酸反应,生成尿囊素、二氧化碳和钨蓝,钨蓝的生成量与尿酸含量成正比 | 操作简单,检测时间短,成本低,可用于自动化分析 | 特异性差,准确度低,检测结果易受血清中其他还原性物质影响 |
液相色谱-紫外检测法 LC-UV | 溶于流动相中的各组分经过固定相时,由于与固定相发生作用的大小不同,导致其保留时间不同 | 专属性强,准确度高,线性范围广,色谱柱可反复使用 | 成本较高、检测时间较长 |
尿酸酶法 Uricase method | 尿酸在尿酸酶的作用下生成尿囊素、二氧化碳和过氧化氢,过氧化氢与显色剂反应显色 | 操作简单,检测时间短,成本低,可用于自动化分析 | 尿酸酶的活性易被血清中氧嗪酸钾抑制,准确度低 |
1 | 孙琳, 王桂侠, 郭蔚莹. 高尿酸血症研究进展[J]. 中国老年学杂志, 2017, 37(4):1034-1038. DOI: 10.3969/j.issn.1005-9202.2017.04.112 . |
SUN L, WANG G X, GUO W Y. Research progress of hyperuricemia[J]. Chin J Gerontol, 2017, 37(4):1034-1038. DOI: 10.3969/j.issn.1005-9202.2017.04.112 . | |
2 | FATHALLAH-SHAYKH S A, CRAMER M T. Uric acid and the kidney[J]. Pediatr Nephrol, 2014, 29(6):999-1008. DOI: 10.1007/s00467-013-2549-x . |
3 | XU C F, YU C H, XU L, et al. High serum uric acid increases the risk for nonalcoholic fatty liver disease: a prospective observational study[J]. PLoS One, 2010, 5(7): e11578. DOI: 10.1371/journal.pone.0011578 . |
4 | LIU J, XU C F, YING L M, et al. Relationship of serum uric acid level with non-alcoholic fatty liver disease and its inflammation progression in non-obese adults[J]. Hepatol Res, 2017, 47(3): E104-E112. DOI: 10.1111/hepr.12734 . |
5 | PERTICONE M, TRIPEPI G, MAIO R, et al. Risk reclassification ability of uric acid for cardiovascular outcomes in essential hypertension[J]. Int J Cardiol, 2017, 243:473-478. DOI: 10.1016/j.ijcard.2017.05.051 . |
6 | PRASAD M, MATTESON E L, HERRMANN J, et al. Uric acid is associated with inflammation, coronary microvascular dysfunction, and adverse outcomes in postmenopausal women[J]. Hypertension, 2017, 69(2):236-242. DOI: 10.1161/HYPERTENSIONAHA.116.08436 . |
7 | KUBOTA Y, MCADAMS-DEMARCO M, FOLSOM A R. Serum uric acid, gout, and venous thromboembolism: the atherosclerosis risk in communities study[J]. Thromb Res, 2016, 144:144-148. DOI: 10.1016/j.thromres.2016.06.020 . |
8 | KANBAY M, JENSEN T, SOLAK Y, et al. Uric acid in metabolic syndrome: from an innocent bystander to a central player[J]. Eur J Intern Med, 2016, 29:3-8. DOI: 10.1016/j.ejim.2015.11.026 . |
9 | SHARAF EL DIN U A A, SALEM M M, ABDULAZIM D O. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review[J]. J Adv Res, 2017, 8(5):537-548. DOI: 10.1016/j.jare.2016.11.004 . |
10 | BORGHI C, AGABITI-ROSEI E, JOHNSON R J, et al. Hyperuricaemia and gout in cardiovascular, metabolic and kidney disease[J]. Eur J Intern Med, 2020, 80:1-11. DOI: 10.1016/j.ejim.2020.07.006 . |
11 | 周子正, 徐琳, 高建东. 高尿酸血症动物模型研究进展[J]. 医学综述, 2020, 26(8): 1462-1466. DOI: 10.3969/j.issn.1006-2084.2020.08.002 . |
ZHOU Z Z, XU L, GAO J D. Research progress of hyperuricemia animal model[J]. Med Recapitul, 2020, 26(8): 1462-1466. DOI: 10.3969/j.issn.1006-2084.2020.08.002 . | |
12 | 王璟. 检测血尿酸的方法比较及进展[J]. 糖尿病临床, 2014, 8(8):362-363. DOI: 10.3969/j.issn.1672-7851.2014.08.005 . |
WANG J. Comparison and progress of methods for detecting serum uric acid[J]. Clin J Diabetes World, 2014, 8(8):362-363. DOI: 10.3969/j.issn.1672-7851.2014.08.005 . | |
13 | WANG Q W, WEN X, KONG J M. Recent progress on uric acid detection: a review[J]. Crit Rev Anal Chem, 2020, 50(4):359-375. DOI: 10.1080/10408347.2019.1637711 . |
14 | GUMUSTAS M, KURBANOGLU S, USLU B, et al. UPLC versus HPLC on drug analysis: advantageous, applications and their validation parameters[J]. Chromatographia, 2013, 76(21):1365-1427. DOI: 10.1007/s10337-013-2477-8 . |
15 | WEN S S, ZHANG Z X, CHEN X P, et al. An improved UPLC method for determining uric acid in rat serum and comparison study with commercial colorimetric kits[J]. Acta Chromatogr, 2019, 31(3):201-205. DOI: 10.1556/1326.2018.00449 . |
16 | 江民川, 赵阳, 马芳芳, 等. 尿酸检测方法的研究进展[J]. 化工科技, 2021, 29(3):75-79. DOI: 10.3969/j.issn.1008-0511.2021.03.014 |
JIANG M C, ZHAO Y, MA F F, et al. Research progress on uric acid detection methods[J]. Sci Technol Chem Ind, 2021, 29(3):75-79. DOI: 10.3969/j.issn.1008-0511.2021.03.014 . | |
17 | ZHAO J X. A simple, rapid and reliable high performance liquid chromatography method for the simultaneous determination of creatinine and uric acid in plasma and urine[J]. Anal Methods, 2013, 5(23):6781-6787. DOI: 10.1039/C3AY41061G . |
18 | BUSZEWSKI B, NOGA S. Hydrophilic interaction liquid chromatography (HILIC)—a powerful separation technique[J]. Anal Bioanal Chem, 2012, 402(1):231-247. DOI: 10.1007/s00216-011-5308-5 . |
19 | 张海晨, 李水军, 孙贺伟, 等. 液相色谱-串联质谱法测定尿酸及与常规检测方法的比较[J]. 检验医学, 2015, 30(5):422-426. DOI: 10.3969/j.issn.1673-8640.2015.05.004 . |
ZHANG H C, LI S J, SUN H W, et al. Liquid chromatography-tandem mass spectrometry for uric acid and its comparison with clinical routine determination method[J]. Lab Med, 2015, 30(5):422-426. DOI: 10.3969/j.issn.1673-8640.2015.05.004 . | |
20 | 刘旭圆, 商倩, 李川, 等. HPLC法用于小鼠高尿酸模型中血尿酸测定及相关药物评价[J]. 药物评价研究, 2017, 40(3):319-323. DOI: 10.7501/j.issn.1674-6376.2017.03.006 . |
LIU X Y, SHANG Q, LI C, et al. HPLC method for determination of uric acid in plasma of hyperuricemia model mice[J]. Drug Eval Res, 2017, 40(3):319-323. DOI: 10.7501/j.issn.1674-6376.2017.03.006 . | |
21 | MCCALLEY D V. Managing the column equilibration time in hydrophilic interaction chromatography[J]. J Chromatogr A, 2020, 1612:460655. DOI: 10.1016/j.chroma.2019.460655 . |
[1] | Liya ZHAO, Liju NI, Caiqin ZHANG, Jianping TANG, Yangzheng YAO, Yanyan NIE, Xiaoxue GU, Ying ZHAO. Establishing a Genetic Detection Protocol of Single Nucleotide Polymorphisms Panels in Inbred Rats Based on Multiplex PCR-LDR [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 548-558. |
[2] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[3] | Ying TAN, Wenping LIAO, Qilong GAO, Yong LI, Xinhui SHI, Jingkun WANG. Physiological Indexes and Histopathology Analysis of Sodium Iodate-Induced Retinitis Pigmentosa in Rats [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 124-135. |
[4] | Jian GE, Jingfen SUN, Yongjie WU. Taurine Has no Protective Effect on Rat Corneal Endothelial Cells Injured by Benzalkonium Chloride [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 39-43. |
[5] | Qin XU, Yan NI, Wenhui SHI, Jianying LI, Jiangwei LIU, Hongqiong ZHAO, Xinming XU. Analysis on Ileum and Colon Microflora of SPF Male SD Rats based on High-throughput Sequencing [J]. Laboratory Animal and Comparative Medicine, 2023, 43(1): 53-60. |
[6] | Bin WU, Xu WANG, Dongxu FU, Yujun ZHU, Jinlu HUANG, Shunxing ZHU. Effect of the Traditional Chinese Medicine Shuganjieyu Formula on Constipation Type Irritable Bowel Syndrome and Brain-gut Axis in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(6): 551-559. |
[7] | Chen GAO, Chunling FAN, Yurong LI, Wenjuan PEI, Caiping GUAN. Changes in Expression of Monocarboxylate Transporters in the Rat Cerebral Cortex after Exercise-induced Fatigue Under Simulated High-altitude Hypoxia and its Significance [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 384-392. |
[8] | Bingxin XU, Kaijian FAN, Tingyu WANG, Huijin CHEN. Effect of Dexamethasone on Cartilage Degeneration in Rats with Collagen-induced Arthritis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 416-422. |
[9] | Huiyan QIN, Huafeng CHEN, Hui YANG, Hailan LUO, Weizhong FU, Qingbo LI, Jiehong ZHANG. The Capacity of Silkworm Cocoon Water to Mitigate the Level of Oxidative Stress in Aged Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 393-400. |
[10] | Xiaorui ZHANG, Jing CAO, Qianqian WU, Jijun LIU, Guoyuan CHEN, Baojin WU. Effects of Probucol Formulations on Mesenteric Lymphatic Trans-port Efficiency and Pharmacokinetics in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 275-283. |
[11] | Sijia ZHAO, Xinyu HE, Quan JING, Lin MA, Chunlan GUO, Kuo WAN. Evaluation of Pain in Acute Pulpitis Hyperalgesia Model Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 333-341. |
[12] | Yiru WANG, Xiaoying JIANG, Ruoxi DONG, Yibin PAN, Xianghui HAN, Yongqing CAO. Modified Method for Inducing Acute Intestinal Fibrosis in Rats Using 2,4,6-Trinitrobenzene Sulfonic Acid [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 284-293. |
[13] | Xiaorui ZHANG, Jing CAO, Qianqian WU, Kang KANG, Guoyuan CHEN, Baojin WU. A Preliminary Method for Continuous Drainage of Mesenteric Lymph Fluid in Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 267-274. |
[14] | Dingshan FENG, Yeyu HUANG, Xiaoxin ZHANG, Aiqin WU, Zhan WANG, Linliang SU. Effects of Storage Time on Electrolyte Content and pH Value in Rat Serum Samples [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 301-305. |
[15] | Xiao LU, Lin ZHANG, Hui JI, Shanxiang JIANG. Efficacy of DZ1462, a Novel Sodium-phosphate Transporter Inhibitor, on 5/6 Nephrectomy-induced Hyperphosphatemia Model Rats [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 187-193. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||