Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (5): 384-392.DOI: 10.12300/j.issn.1674-5817.2022.050
• Animal Models of Human Diseases • Previous Articles Next Articles
Chen GAO(
)(
), Chunling FAN, Yurong LI, Wenjuan PEI, Caiping GUAN
Received:2022-04-10
Revised:2022-07-16
Online:2022-10-25
Published:2022-10-25
Contact:
Chen GAO
CLC Number:
Chen GAO,Chunling FAN,Yurong LI,et al. Changes in Expression of Monocarboxylate Transporters in the Rat Cerebral Cortex after Exercise-induced Fatigue Under Simulated High-altitude Hypoxia and its Significance[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 384-392. DOI: 10.12300/j.issn.1674-5817.2022.050.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.050
分组 Group | 平均运动力竭时间 Average exhaustion time /min |
|---|---|
| 常规运动组 NE group | 124.75±9.36 #△ |
| 急进高原组 REIA group | 61.00±6.55* |
| 高原习服3 d组 3 d AA group | 66.38±4.72* |
| 高原习服1周组 1 week AA group | 73.13±7.02* |
| 高原习服2周组 2 weeks AA group | 100.25±9.74#△ |
| 高原抑制剂组 MTI group | 71.25±9.59* |
Table 1 Average time–to–exhaustion in rats under exercise-induced fatigue conditions
分组 Group | 平均运动力竭时间 Average exhaustion time /min |
|---|---|
| 常规运动组 NE group | 124.75±9.36 #△ |
| 急进高原组 REIA group | 61.00±6.55* |
| 高原习服3 d组 3 d AA group | 66.38±4.72* |
| 高原习服1周组 1 week AA group | 73.13±7.02* |
| 高原习服2周组 2 weeks AA group | 100.25±9.74#△ |
| 高原抑制剂组 MTI group | 71.25±9.59* |
Figure 1 Western blotting analysis of MCT2 and MCT4 expressions in the cerebral motor cortex of rats in each groupNote:CG: Control group; NE group: Normal exercise group; REIA group: Rush-entry-into-altitude group; 3 d AA group: 3-day-altitude acclimatization group; 1 week AA group: 1-week-altitude acclimatization group; 2 weeks AA group: 2-week-altitude acclimatization group; MTI group: Monocarboxylate transporter inhibitor group. *P<0.05, versus CG group for MCT2 quantitative analysis; #P<0.05, versus CG group for MCT4 quantitative analysis, ANOVA with post hoc Bonferroni correction. n=3 for each group.
Figure 2 Immunohistochemical detection of MCT2 (A) and MCT4 (B) in the cerebral motor cortex of rats in each group (DAB staining, ×400)Note: A, MCT2 expression of neurons in the cerebral motor cortex of rats; B, MCT4 expression in astrocytes in the cerebral motor cortex of rats. a and a’, control group; b and b’, normal exercise group; c and c’, rush-entry-into-altitude group; d and d’, 3-day-altitude acclimatization group; e and e’, 1-week-altitude acclimatization group; f and f’, 2-week-altitude acclimatization group; g and g’, mono-carboxylate transporter inhibitor group. Scale bar = 25 μm.
分组 Group | 神经元组织学分级 Neuronal histological grade (count) | 平均神经元密度值 Average neuronal density/(cells·HPF-1) | |||
|---|---|---|---|---|---|
0级 0 grade | Ⅰ级 Ⅰ grade | Ⅱ级 Ⅱ grade | Ⅲ级 Ⅲ grade | ||
| 对照组 CG | 3 | 0 | 0 | 0 | 135.88±8.59 |
| 常规运动组 NE group | 2 | 1 | 0 | 0 | 123.88±6.71 |
| 急进高原组 REIA group | 0 | 0 | 2 | 1 | 46.75±8.65* |
| 高原习服3 d组 3 d AA group | 0 | 0 | 3 | 0 | 54.13±11.33* |
| 高原习服1周组 1 week AA group | 0 | 2 | 1 | 0 | 119.50±6.99* |
| 高原习服2周组 2 weeks AA group | 0 | 3 | 0 | 0 | 121.75±16.00 |
| 高原抑制剂组 MTI group | 0 | 1 | 2 | 0 | 63.50±7.65* |
Table 2 Histological grade and average neuronal density in the cerebral motor cortex of rats under exercise-induced fatigue conditions
分组 Group | 神经元组织学分级 Neuronal histological grade (count) | 平均神经元密度值 Average neuronal density/(cells·HPF-1) | |||
|---|---|---|---|---|---|
0级 0 grade | Ⅰ级 Ⅰ grade | Ⅱ级 Ⅱ grade | Ⅲ级 Ⅲ grade | ||
| 对照组 CG | 3 | 0 | 0 | 0 | 135.88±8.59 |
| 常规运动组 NE group | 2 | 1 | 0 | 0 | 123.88±6.71 |
| 急进高原组 REIA group | 0 | 0 | 2 | 1 | 46.75±8.65* |
| 高原习服3 d组 3 d AA group | 0 | 0 | 3 | 0 | 54.13±11.33* |
| 高原习服1周组 1 week AA group | 0 | 2 | 1 | 0 | 119.50±6.99* |
| 高原习服2周组 2 weeks AA group | 0 | 3 | 0 | 0 | 121.75±16.00 |
| 高原抑制剂组 MTI group | 0 | 1 | 2 | 0 | 63.50±7.65* |
Figure 3 Nissl staining in the cerebral motor cortex of rats under exercise-induced fatigue conditions (×200,local enlarged image×400 )Note:a, control group; b, normal exercise group; c, rush-entry-into-altitude group; d, 3-day-altitude acclimatization group; e, 1-week-altitude acclimatization group; f, 2-week-altitude acclimatization group; g, monocarboxylate transporter inhibitor group. Scale bar = 50 μm.
分组 Group | 脑组织乳酸含量 Average brain lactate content/(mmol·g-1) |
|---|---|
| 对照组 CG | 0.163±0.011#△ |
| 常规运动组 NE group | 0.175±0.021#△ |
| 急进高原组 REIA group | 0.239±0.017*△ |
| 高原习服3 d组 3 d AA group | 0.247±0.012*△ |
| 高原习服1周组 1 week AA group | 0.397±0.017*#△ |
| 高原习服2周组 2 weeks AA group | 0.412±0.024*#△ |
| 高原抑制剂组 MTI group | 0.537±0.011*# |
Table 3 Average brain lactate content in rats under exercise-induced fatigue conditions
分组 Group | 脑组织乳酸含量 Average brain lactate content/(mmol·g-1) |
|---|---|
| 对照组 CG | 0.163±0.011#△ |
| 常规运动组 NE group | 0.175±0.021#△ |
| 急进高原组 REIA group | 0.239±0.017*△ |
| 高原习服3 d组 3 d AA group | 0.247±0.012*△ |
| 高原习服1周组 1 week AA group | 0.397±0.017*#△ |
| 高原习服2周组 2 weeks AA group | 0.412±0.024*#△ |
| 高原抑制剂组 MTI group | 0.537±0.011*# |
| 1 | 邓树勋. 运动生理学[M]. 北京: 高等教育出版社, 1999. |
| DENG S X. Exercise physiology[M]. Beijing: Higher Education Press, 1999. | |
| 2 | 高强. 疲劳及其测定(上)[J]. 中国运动医学杂志, 1985, 4(3):179-183. DOI:10.16038/j.1000-6710.1985.03.019 . |
| GAO Q. Fatigue and its fatigue measurement (part one)[J]. Chin J Sports Med, 1985, 4(3):179-183. DOI:10.16038/j.1000-6710.1985.03.019 . | |
| 3 | 鲁建清, 满维祥, 罗荣保. 5-羟色胺与中枢运动疲劳的分析研究[J]. 湖南科技学院学报, 2010, 31(4):79-82. DOI:10.3969/j.issn.1673-2219.2010.04.023 . |
| LU J Q, MAN W X, LUO R B. An analyze 5-HT, fatigue and their relationships[J]. J Hunan Univ Sci Eng, 2010, 31(4):79-82. DOI:10.3969/j.issn.1673-2219.2010.04.023 . | |
| 4 | GIRARD O, MILLET G P. Neuromuscular fatigue in racquet sports [J]. Neurol Clin, 2008, 26(1):181-194. DOI: 10.1016/j.ncl. 2007.11.011 . |
| 5 | AMANN M, DEMPSEY J A. Ensemble input of group III/IV muscle afferents to CNS: a limiting factor of central motor drive during endurance exercise from normoxia to moderate hypoxia[J]. Adv Exp Med Biol, 2016, 903:325-342. DOI:10.1007/978-1-4899-7678-9_22 . |
| 6 | DAVIS J M, ALDERSON N L, WELSH R S. Serotonin and central nervous system fatigue: nutritional considerations[J]. Am J Clin Nutr, 2000, 72(2):573S-578S. DOI:10.1093/ajcn/72.2.573S . |
| 7 | 刘红平, 杨国愉, 张晶轩, 等. 急进高原驻训军人躯体-脑力疲劳追踪研究[J]. 西北国防医学杂志, 2017, 38(9):565-569. DOI:10.16021/j.cnki.1007-8622.2017.09.002 . |
| LIU H P, YANG G Y, ZHANG J X, et al. Investigation of physical-mental fatigue on armymen acutely entering in plateau[J]. Med J Natl Defending Forces Northwest China, 2017, 38(9):565-569. DOI:10.16021/j.cnki.1007-8622.2017.09.002 . | |
| 8 | 陶文迪, 田秀玉, 李茂星, 等. 黄芪水提取物对高原缺氧大鼠运动能力的影响[J]. 解放军医药杂志, 2019, 31(12):12-18. DOI:10.3969/j.issn.2095-140X.2019.12.003 . |
| TAO W D, TIAN X Y, LI M X, et al. Effect of Astragalus membranaceus aqueous extract on ability of plateau hypoxia exercise in rats[J]. Med & Pharm J Chin People's Liberation Army, 2019, 31(12):12-18. DOI:10.3969/j.issn.2095-140X.2019.12.003 . | |
| 9 | DHILLON H S, CARMAN H M, ZHANG D, et al. Severity of experimental brain injury on lactate and free fatty acid accumulation and Evans blue extravasation in the rat cortex and hippocampus[J]. J Neurotrauma, 1999, 16(6):455-469. DOI:10.1089/neu.1999.16.455 . |
| 10 | 王静, 刘洪涛. 脑乳酸对运动性中枢疲劳的作用及影响[J]. 中国临床康复, 2004, 8(22):4572-4573. DOI:10.3321/j.issn: 1673-8225.2004.22.102 . |
| WANG J, LIU H T. Effect of brain lactic acid on exercise-induced central fatigue[J]. Chin J Clin Rehabil, 2004, 8(22):4572-4573. DOI:10.3321/j.issn: 1673-8225.2004.22.102 . | |
| 11 | 杨东升, 刘晓莉, 乔德才. "乳酸穿梭"背景下的运动性疲劳中枢机制研究新进展[J]. 中国康复医学杂志, 2012,27(3):285-288. DOI:10.3969/j.issn.1001-1242.2012.03.024 . |
| YANG D S, LIU X L, QIAO D C. New progress of research on central mechanism of exercise-induced fatigue under the background of lactic acid shuttle[J]. Chin J Rehabil Med, 2012, 27(3):285-288. DOI:10.3969/j.issn.1001-1242.2012.03.024 . | |
| 12 | PELLERIN L, MAGISTRETTI P J. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization[J]. Proc Natl Acad Sci USA, 1994, 91(22):10625-10629. DOI:10.1073/pnas. 91.22.10625 . |
| 13 | SCHURR A. Glycolysis paradigm shift dictates a reevaluation of glucose and oxygen metabolic rates of activated neural tissue[J]. Front Neurosci, 2018, 12:700. DOI:10.3389/fnins. 2018.00700 . |
| 14 | GAO C, ZHOU L Y, ZHU W X, et al. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures[J]. Neurosci Lett, 2015, 594:99-104. DOI:10.1016/j.neulet.2015.03.062 . |
| 15 | HALESTRAP A P. The SLC16 gene family - Structure, role and regulation in health and disease[J]. Mol Aspects Med, 2013, 34(2-3):337-349. DOI:10.1016/j.mam.2012.05.003 . |
| 16 | GAO C, ZHU W X, TIAN L Z, et al. MCT4-Mediated Expression of EAAT1 is Involved in the Resistance to Hypoxia Injury in Astrocyte-Neuron co-Cultures[J]. Neurochem Res, 2015, 40(4):818-828. DOI:10.1007/s11064-015-1532-2 . |
| 17 | BEDFORD T G, TIPTON C M, WILSON N C, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. J Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6):1278-1283. DOI:10.1152/jappl.1979.47.6.1278 . |
| 18 | 胡琰茹, 乔德才, 刘晓莉. 力竭运动过程中大鼠苍白球内侧部对皮层的调控作用[J]. 中国运动医学杂志, 2013, 32(5):420-425, 419. DOI:10.16038/j.1000-6710.2013.05.001 . |
| HU Y R, QIAO D C, LIU X L. Modulatory effect of the internal segment of globus pallidus on motor cortex activity during exhaustive exercise[J]. Chin J Sports Med, 2013, 32(5):420-425, 419. DOI:10.16038/j.1000-6710.2013.05.001 . | |
| 19 | SCHURR A, PAYNE R S, MILLER J J, et al. Blockade of lactate transport exacerbates delayed neuronal damage in a rat model of cerebral ischemia[J]. Brain Res, 2001, 895(1-2):268-272. DOI:10.1016/S0006-8993(01)02082-0 . |
| 20 | GAO C, WANG C, LIU B, et al. Intermittent hypoxia preconditioning-induced epileptic tolerance by upregulation of monocarboxylate transporter 4 expression in rat hippocampal astrocytes[J]. Neurochem Res, 2014, 39(11):2160-2169. DOI:10.1007/s11064-014-1411-2 . |
| 21 | LI D Y, LIU X Y, LIU T M, et al. Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes[J]. Glia, 2020, 68(5):878-897. DOI:10.1002/glia.23734 . |
| 22 | GAO C, LI Z Y, BAI J, et al. Involvement of monocarboxylate transporters in the cross-tolerance between epilepsy and cerebral infarction: a promising choice towards new treatments[J]. Neurosci Lett, 2019, 707:134305. DOI:10.1016/j.neulet.2019.134305 . |
| 23 | 高晨, 白洁, 雷鹏, 等. 低氧预处理对氯化锂-匹鲁卡品致痫大鼠的保护作用[J]. 中华实验外科杂志, 2018, 35(1):111-115. DOI:10.3760/cma.j.issn.1001-9030.2018.01.037 . |
| GAO C, BAI J, LEI P, et al. The protective effect of hypoxia preconditioning on epilepsy induced by lithium-pilocarpine in rats[J]. Chin J Exp Surg, 2018, 35(1):111-115. DOI:10.3760/cma.j.issn.1001-9030.2018.01.037 . | |
| 24 | ZHANG L S, LI J, LIN A N. Assessment of neurodegeneration and neuronal loss in aged 5XFAD mice[J]. STAR Protoc, 2021, 2(4):100915. DOI:10.1016/j.xpro.2021.100915 . |
| 25 | 武柠子, 马慧萍, 王昕, 等. 模拟高原缺氧环境对大鼠心、脑组织损伤的研究[J]. 药学实践杂志, 2018, 36(3):250-254. DOI:10.3969/j.issn.1006-0111.2018.03.013 . |
| WU N Z, MA H P, WANG X, et al. Study on myocardium and brain damage in rats by simulating high altitude[J]. J Pharm Pract, 2018, 36(3):250-254. DOI:10.3969/j.issn.1006-0111.2018.03.013 . | |
| 26 | 高钰琪. 高原军事医学[M]. 重庆: 重庆出版社, 2005: 180-220. |
| GAO Y Q. High altitude military medicine[M]. Chongqing: Chongqing Publishing House, 2005: 180-220. | |
| 27 | 程泽鹏, 冯钰, 史仍飞. 运动过程中单羧酸转运蛋白(MCTs)作用的研究进展[J]. 军事体育学报, 2017, 36(3):89-94. DOI:10.3969/j.issn.1671-1300.2017.03.025 . |
| CHENG Z P, FENG Y, SHI R F. Research on MCTs function during the exercise[J]. J Mil Phys Educ Sports, 2017, 36(3):89-94. DOI:10.3969/j.issn.1671-1300.2017.03.025 . | |
| 28 | 高晨, 王菀, 李玉荣, 等. 运动疲劳状态下大鼠脑皮层单羧酸转运蛋白表达的变化及意义[J]. 实验动物与比较医学, 2022, 42(1):42-47. DOI:10.12300/j.issn.1674-5817.2021-053 . |
| GAO C, WANG W, LI Y R, et al. Expression and significance of monocarboxylate transporters in cortex of rats after exercise-induced fatigue[J]. Lab Animal Comp Med, 2022, 42(1):42-47. DOI:10.12300/j.issn.1674-5817.2021-053 . | |
| 29 | ÓRDENES P, VILLAR P S, TARIFEÑO-SALDIVIA E, et al. Lactate activates hypothalamic POMC neurons by intercellular signaling[J]. Sci Rep, 2021, 11:21644. DOI:10.1038/s41598-021-00947-7 . |
| 31 | GUAN X W, MORRIS M E. In vitro and In vivo efficacy of AZD3965 and alpha-cyano-4-hydroxycinnamic acid in the murine 4T1 breast tumor model[J]. AAPS J, 2020, 22(4):84. DOI:10.1208/s12248-020-00466-9 . |
| 32 | YU J T, WEI Z X, LI Q, et al. Advanced cancer starvation therapy by simultaneous deprivation of lactate and glucose using a MOF nanoplatform[J]. Adv Sci (Weinh), 2021, 8(19): e2101467. DOI:10.1002/advs.202101467 . |
| 33 | GARCIA C K, BROWN M S, PATHAK R K, et al. cDNA cloning of MCT2, a second monocarboxylate transporter expressed in different cells than MCT1[J]. J Biol Chem, 1995, 270(4):1843-1849. DOI:10.1074/jbc.270.4.1843 . |
| 34 | BRÖER S, BRÖER A, SCHNEIDER H P, et al. Characterization of the high-affinity monocarboxylate transporter MCT2 in Xenopus laevis oocytes[J]. Biochem J, 1999, 341(Pt 3):529-535. DOI:10.1042/0264-6021:3410529 . |
| 35 | ERLICHMAN J S, HEWITT A, DAMON T L, et al. Inhibition of monocarboxylate transporter 2 in the retrotrapezoid nucleus in rats: a test of the astrocyte-neuron lactate-shuttle hypothesis[J]. J Neurosci, 2008, 28(19):4888-4896. DOI:10.1523/JNEUROSCI.5430-07.2008 . |
| 36 | PARKIN G M, UDAWELA M, GIBBONS A, et al. Glutamate transporters, EAAT1 and EAAT2, are potentially important in the pathophysiology and treatment of schizophrenia and affective disorders[J]. World J Psychiatry, 2018, 8(2):51-63. DOI:10.5498/wjp.v8.i2.51 . |
| [1] | QIN Chao, LI Shuangxing, ZHAO Tingting, JIANG Chenchen, ZHAO Jing, YANG Yanwei, LIN Zhi, WANG Sanlong, WEN Hairuo. Study on the 90-day Feeding Experimental Background Data of SD Rats for Drug Safety Evaluation [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 439-448. |
| [2] | LIU Liyu, JI Bo, LIU Xiaoxuan, FANG Yang, ZHANG Ling, GUO Tingting, QUAN Ye, LI Hewen, LIU Yitian. Exploration of Rat Fetal Lung Tissue Fixation Methods [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 432-438. |
| [3] | LIU Zhiwei, YANG Ran, LIAN Hao, ZHANG Yu, JIN Lilun. Cartilage Protection and Anti-Inflammatory Effects of Fraxetin on Monosodium Iodoacetate-Induced Rat Model of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 259-268. |
| [4] | JIANG Meng, HAO Shulan, TONG Liguo, ZHONG Qiming, GAO Zhenfei, WANG Yonghui, WANG Xixing, JI Haijie. Dynamic Evaluation of Vinorelbine-Induced Phlebitis of Dorsalis Pedis Vein in a Rat Model [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 251-258. |
| [5] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [6] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [7] | HE Yuxin, BAI Zhenzhong, XUE Hua, GUO Zixu, CAO Xuefeng. Analysis of Kidney Differential Metabolites and Hypoxia Adaptation Mechanism of Plateau Pikas Based on UHPLC-QE-MS [J]. Laboratory Animal and Comparative Medicine, 2025, 45(1): 3-12. |
| [8] | YIN Yulian, MA Lina, TU Siyuan, CHEN Ling, YE Meina, CHEN Hongfeng. Establishment and Evaluation of a Rat Model of Non-Puerperal Mastitis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 587-596. |
| [9] | YANG Jin, YU Shiya, LIN Nan, FANG Yongchao, ZHAO Hu, QIU Jinwei, LIN Hongming, CHEN Huiyan, WANG Yu, WU Weihang. Effect of Modified Duodenal Exclusion Surgery on Glucose Metabolism in Rats with Type 2 Diabetes Mellitus [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 523-530. |
| [10] | QI Longju, CHEN Shiyuan, LIAO Zehua, SHI Yuanhu, SUN Yuyu, WANG Qinghua. Transcriptomic Analysis of Menstrual Blood-Derived Stem Cells Transplantation Combined with Exercise Training in Promoting Spinal Cord Injury Recovery in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 531-542. |
| [11] | ZHANG Naiqun, YUAN Piaopiao, CAO Linrong, YING Na, YANG Taotao. Application of PNR Detection in the Diagnosis and Drug-efficacy Evaluation of Diabetic Kidney Disease in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 543-549. |
| [12] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
| [13] | XIAO Pan, WANG Hongyi, LU Lu, ZHANG Mei, CHEN Keming, SHEN Dongshuai, NIU Tingxian. Screening of Hypoxia-Sensitive and Hypoxia-Tolerant Wistar Rats and Preliminary Exploration of Hypoxia Sensitivity in Their G1 Generation [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 374-383. |
| [14] | Xiaoyu ZHU, Hantao YUAN, Sibo LI. MicroRNA-887-3p Inhibited MDM4 Expression and Proliferation but Promoted Apoptosis of Intervertebral Disc Annulus Fibrosus Cells in Rats [J]. Laboratory Animal and Comparative Medicine, 2024, 44(3): 270-278. |
| [15] | Jinhua HU, Jingjie HAN, Min JIN, Bin HU, Yuefen LOU. Effects of Puerarin on Bone Density in Rats and Mice: A Meta-analysis [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 149-161. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||