实验动物与比较医学 ›› 2022, Vol. 42 ›› Issue (3): 220-228.DOI: 10.12300/j.issn.1674-5817.2021.155
胡宇1(), 兰昀羲1, 陈晓晓1, 熊伟2, 唐宋琪3, 贾波1, 黄巍1()()
收稿日期:
2021-09-22
修回日期:
2022-01-21
出版日期:
2022-06-25
发布日期:
2022-07-01
通讯作者:
黄巍(1974—),女,教授,博士研究生导师,研究方向:方剂配伍规律的研究。E-mail: gracehw@126.com。ORCID: 0000-0003-1216-5884作者简介:
胡 宇(1998—),男,硕士研究生,研究方向:脾胃病证的方剂配伍理论与临证运用研究。E-mail: 2020ks035@stu.cdutcm.edu.cn
基金资助:
Yu HU1(), Yunxi LAN1, Xiaoxiao CHEN1, Wei XIONG2, Songqi TANG3, Bo JIA1, Wei HUANG1()()
Received:
2021-09-22
Revised:
2022-01-21
Published:
2022-06-25
Online:
2022-07-01
Contact:
HUANG Wei (ORCID: 0000-0003-1216-5884), E-mail: gracehw@126.com摘要:
作为一种炎性肠病,溃疡性结肠炎(ulcerative colitis,UC)的发病机制尚未被完全揭示,其治疗策略仍需继续探索。动物模型是疾病研究中不可或缺的工具。因此,建立与人类UC发病机制、病理表现类似的动物模型有利于对该疾病进行充分研究。本文梳理了UC动物模型的研究进展,发现化学药物诱导是迄今为止最常用的UC造模方法;基于基因组学技术的发展,基因编辑或基因敲除诱导的自发性结肠炎则是未来动物模型研究的重要方向;评价UC动物模型造模结果的指标仍需进一步探索。
中图分类号:
胡宇, 兰昀羲, 陈晓晓, 熊伟, 唐宋琪, 贾波, 黄巍. 溃疡性结肠炎动物模型研究进展[J]. 实验动物与比较医学, 2022, 42(3): 220-228.
Yu HU, Yunxi LAN, Xiaoxiao CHEN, Wei XIONG, Songqi TANG, Bo JIA, Wei HUANG. Research Progress in Animal Models of Ulcerative Colitis[J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 220-228.
造模方式 Modeling method | 动物品系 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
TNBS | SD大鼠、Wistar大鼠 | 100~120 mg/kg的TNBS融入50 %乙醇,注入大鼠结肠以诱导大鼠UC;灌肠3 d以诱导大鼠重症UC;每7 d灌肠一次,以诱发大鼠慢性UC | 结肠组织 | DAI评分、结肠组织肉眼评分、组织病理学评分 | [ |
DSS | SD大鼠 | 连续7 d自由饮用或灌胃5 %的DSS溶液 | 结肠组织 | DAI评分、大鼠结肠组织损伤大体形态学评分、组织病理学改变、组织病理学评分 | [ |
乙酸 Acetic acid | SD大鼠、Wistar大鼠 | 10%的乙酸溶液灌肠 | 外周血、结肠组织 | 组织病理学改变、组织病理学评分、TNF-α、IL-1、IL-6 | [ |
2,4-二硝基氯苯 2,4-Dichloronitrobenzene | Wistar大鼠 | 20 g/L的2,4-二硝基氯苯丙酮液滴背致敏,持续14 d。第15~18天以0.1 %的2,4-二硝基氯苯乙醇溶液0.3 mL灌肠 | 腹主动脉血、结肠组织 | 组织病理学改变、IL-4、IL-6 | [ |
TNBS+抗原 TNBS + antigen | SD大鼠、Wistar大鼠 | 以新西兰兔结肠黏膜制作抗原液,于不同时间在大鼠颈、背部皮下或足跖、腹股沟处注射抗原液致敏。后按100 mg/kg的TNBS融入50 %乙醇溶液后灌肠 | 腹主动脉血、结肠组织 | DAI评分、组织病理学改变、组织病理学评分、TNF-α | [ |
乙酸+抗原 Acetic acid + antigen | Wistar大鼠 | 取家兔新鲜结肠黏膜层制成抗原液,不同时间注射于大鼠足跖内以致敏。以5 %乙酸1 mL灌肠 | 结肠组织 | 组织病理学改变、组织病理学评分 | [ |
SD大鼠 | 灭活大肠埃希菌悬液注射于大鼠不同部位以致敏,再以5 %乙酸2 mL灌肠 | 血清、结肠组织 | DAI评分、组织病理学评分、TNF-α、IL-6 | [ | |
TNBS+DSS | Winstar大鼠 | 4 mL/kg的TNBS注入结肠。第11、16天分别予以5 % DSS溶液自由饮用24 h | 结肠组织 | DAI评分、组织病理学改变、结肠黏膜损伤指数 | [ |
2,4-二硝基氯苯+乙酸 2,4-Dichloronitrobenzene + acetic acid | Wistar大鼠 | 2 %的2,4-二硝基氯苯丙酮液滴皮肤致敏,连续14 d。第15天以0.1 % 2,4-二硝基氯苯乙醇溶液0.25 mL灌肠。第16天在同部位注入0.1 %乙酸溶液2 mL | 结肠组织 | 结肠病理学改变、MMP-1、MMP-2水平 | [ |
甲醛溶液+抗原 Formaldehyde solution +antigen | SD大鼠 | 取家兔新鲜结肠黏膜层制成抗原液,不同时间于大鼠足跖、腹股沟、腹腔及背部注射抗原液致敏。1.5 %甲醛溶液2 mL灌肠,留置1 h后用生理盐水冲洗干净,再用抗原液2 mL(含抗原8 mg), 不加佐剂灌肠 | 眼眶血、结肠组织 | 组织病理学改变、IL-4、IL-5、IL-13 | [ |
表1 常见的大鼠溃疡性结肠炎模型造模方法及评价指标
Table 1 The modeling methods and evaluation indicators of ulcerative colitis models in rats
造模方式 Modeling method | 动物品系 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
TNBS | SD大鼠、Wistar大鼠 | 100~120 mg/kg的TNBS融入50 %乙醇,注入大鼠结肠以诱导大鼠UC;灌肠3 d以诱导大鼠重症UC;每7 d灌肠一次,以诱发大鼠慢性UC | 结肠组织 | DAI评分、结肠组织肉眼评分、组织病理学评分 | [ |
DSS | SD大鼠 | 连续7 d自由饮用或灌胃5 %的DSS溶液 | 结肠组织 | DAI评分、大鼠结肠组织损伤大体形态学评分、组织病理学改变、组织病理学评分 | [ |
乙酸 Acetic acid | SD大鼠、Wistar大鼠 | 10%的乙酸溶液灌肠 | 外周血、结肠组织 | 组织病理学改变、组织病理学评分、TNF-α、IL-1、IL-6 | [ |
2,4-二硝基氯苯 2,4-Dichloronitrobenzene | Wistar大鼠 | 20 g/L的2,4-二硝基氯苯丙酮液滴背致敏,持续14 d。第15~18天以0.1 %的2,4-二硝基氯苯乙醇溶液0.3 mL灌肠 | 腹主动脉血、结肠组织 | 组织病理学改变、IL-4、IL-6 | [ |
TNBS+抗原 TNBS + antigen | SD大鼠、Wistar大鼠 | 以新西兰兔结肠黏膜制作抗原液,于不同时间在大鼠颈、背部皮下或足跖、腹股沟处注射抗原液致敏。后按100 mg/kg的TNBS融入50 %乙醇溶液后灌肠 | 腹主动脉血、结肠组织 | DAI评分、组织病理学改变、组织病理学评分、TNF-α | [ |
乙酸+抗原 Acetic acid + antigen | Wistar大鼠 | 取家兔新鲜结肠黏膜层制成抗原液,不同时间注射于大鼠足跖内以致敏。以5 %乙酸1 mL灌肠 | 结肠组织 | 组织病理学改变、组织病理学评分 | [ |
SD大鼠 | 灭活大肠埃希菌悬液注射于大鼠不同部位以致敏,再以5 %乙酸2 mL灌肠 | 血清、结肠组织 | DAI评分、组织病理学评分、TNF-α、IL-6 | [ | |
TNBS+DSS | Winstar大鼠 | 4 mL/kg的TNBS注入结肠。第11、16天分别予以5 % DSS溶液自由饮用24 h | 结肠组织 | DAI评分、组织病理学改变、结肠黏膜损伤指数 | [ |
2,4-二硝基氯苯+乙酸 2,4-Dichloronitrobenzene + acetic acid | Wistar大鼠 | 2 %的2,4-二硝基氯苯丙酮液滴皮肤致敏,连续14 d。第15天以0.1 % 2,4-二硝基氯苯乙醇溶液0.25 mL灌肠。第16天在同部位注入0.1 %乙酸溶液2 mL | 结肠组织 | 结肠病理学改变、MMP-1、MMP-2水平 | [ |
甲醛溶液+抗原 Formaldehyde solution +antigen | SD大鼠 | 取家兔新鲜结肠黏膜层制成抗原液,不同时间于大鼠足跖、腹股沟、腹腔及背部注射抗原液致敏。1.5 %甲醛溶液2 mL灌肠,留置1 h后用生理盐水冲洗干净,再用抗原液2 mL(含抗原8 mg), 不加佐剂灌肠 | 眼眶血、结肠组织 | 组织病理学改变、IL-4、IL-5、IL-13 | [ |
造模方式 Modeling method | 动物品系 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
DSS | BALB/c、 C57BL/6、Swiss、昆明小鼠 | 2%~5%的DSS溶液予以小鼠自由饮用5~7 d | 结肠、直肠组织 | DAI评分、组织病理学改变、MPO、IFN-γ、TNF-α、IL-1β、IL-4、IL-6 | [ |
C57BL/6小鼠 | 2% DSS溶液自由饮用5 d后停药14 d。给药3轮,共43 d诱导慢性UC模型 | 血液、结肠组织 | DAI评分、组织病理学评分、IFN-γ、IL-4、IL-17 | [ | |
TNBS | BALB/c小鼠 | 5 % TNBS 150 mg/kg与乙醇溶液以4︰1的比例进行混合后灌肠 | 眼眶血、结肠组织 | DAI评分、结肠黏膜肉眼评分、组织病理学评分、IL-6、IL-8、TNF-α | [ |
OXA | BALB/c小鼠 | 丙酮︰橄榄油=4︰1比例,加入200 μL 3%的噁唑酮,涂抹于小鼠背部致敏。第8天,将1%噁唑酮100 μL溶入50 %乙醇溶液,注入小鼠直肠 | 结肠组织 | DAI评分、组织病理学评分、IFN-γ、IL-4、IL-5、IL-13、IL-17A、TGF-β1 | [ |
表2 常见的小鼠溃疡性结肠炎模型造模方法及评价指标
Table 2 The modeling methods and evaluation indicators of ulcerative colitis models in mice
造模方式 Modeling method | 动物品系 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
DSS | BALB/c、 C57BL/6、Swiss、昆明小鼠 | 2%~5%的DSS溶液予以小鼠自由饮用5~7 d | 结肠、直肠组织 | DAI评分、组织病理学改变、MPO、IFN-γ、TNF-α、IL-1β、IL-4、IL-6 | [ |
C57BL/6小鼠 | 2% DSS溶液自由饮用5 d后停药14 d。给药3轮,共43 d诱导慢性UC模型 | 血液、结肠组织 | DAI评分、组织病理学评分、IFN-γ、IL-4、IL-17 | [ | |
TNBS | BALB/c小鼠 | 5 % TNBS 150 mg/kg与乙醇溶液以4︰1的比例进行混合后灌肠 | 眼眶血、结肠组织 | DAI评分、结肠黏膜肉眼评分、组织病理学评分、IL-6、IL-8、TNF-α | [ |
OXA | BALB/c小鼠 | 丙酮︰橄榄油=4︰1比例,加入200 μL 3%的噁唑酮,涂抹于小鼠背部致敏。第8天,将1%噁唑酮100 μL溶入50 %乙醇溶液,注入小鼠直肠 | 结肠组织 | DAI评分、组织病理学评分、IFN-γ、IL-4、IL-5、IL-13、IL-17A、TGF-β1 | [ |
造模方式 Modeling method | 动物种类 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
DSS | 猕猴 | 0.25%~1%的DSS溶液自由饮用10 d或14 d,持续6~8个周期,以诱导急性或慢性UC | 结肠组织 | 体质量变化、肠道蛋白质组学分析 | [ |
乙酸 Acetic acid | 新西兰白兔 | 5%乙酸2 mL一次性灌肠 | 结肠组织 | DAI评分、组织病理学改变 | [ |
乙酸+抗原 Acetic acid + antigen | 新西兰白兔 | 在实验兔腹部皮下及足底分别注射2%结晶卵蛋白 1.5 mL。之后每日1次用 1%甲醛溶液加2%乙酸混合液4 mL灌肠,共3次 | 结肠组织 | 组织病理学改变 | [ |
表3 其他动物溃疡性结肠炎造模方法与评价指标
Table 3 The modeling methods and evaluation indicators of ulcerative colitis models in the other animals
造模方式 Modeling method | 动物种类 Animal | 造模过程 Modeling process | 采样部位 Sample site | 评价指标 Evaluation index | 参考文献 Reference |
---|---|---|---|---|---|
DSS | 猕猴 | 0.25%~1%的DSS溶液自由饮用10 d或14 d,持续6~8个周期,以诱导急性或慢性UC | 结肠组织 | 体质量变化、肠道蛋白质组学分析 | [ |
乙酸 Acetic acid | 新西兰白兔 | 5%乙酸2 mL一次性灌肠 | 结肠组织 | DAI评分、组织病理学改变 | [ |
乙酸+抗原 Acetic acid + antigen | 新西兰白兔 | 在实验兔腹部皮下及足底分别注射2%结晶卵蛋白 1.5 mL。之后每日1次用 1%甲醛溶液加2%乙酸混合液4 mL灌肠,共3次 | 结肠组织 | 组织病理学改变 | [ |
分值 Score | 体质量 Weight | 大便形状 Stool form | 血便 Bloody stool |
---|---|---|---|
0 | 无下降 | 正常 | 大便隐血阴性 |
1 | 下降1%~5% | 轻微软便 | 大便隐血阳性 |
2 | 下降6%~10% | 明显软便 | 肉眼可见轻微便血 |
3 | 下降11%~15% | 腹泻 | 肉眼可见明显便血 |
4 | 下降≥15% |
表4 溃疡性结肠炎动物模型的疾病活动指数评分方法
Table 4 The disease activity index (DAI) scoring method for animal models of ulcerative colitis
分值 Score | 体质量 Weight | 大便形状 Stool form | 血便 Bloody stool |
---|---|---|---|
0 | 无下降 | 正常 | 大便隐血阴性 |
1 | 下降1%~5% | 轻微软便 | 大便隐血阳性 |
2 | 下降6%~10% | 明显软便 | 肉眼可见轻微便血 |
3 | 下降11%~15% | 腹泻 | 肉眼可见明显便血 |
4 | 下降≥15% |
分数 Score | 炎性反应程度 Inflammation level | 病变深度 Lesion depth | 隐窝损伤 Crypt damage | 损伤范围 Lesion range |
---|---|---|---|---|
0 | 无炎症 | 无病变 | 无损伤 | 无损伤 |
1 | 轻微炎症 | 至黏膜层 | 基部1/3受损 | 1%~25% |
2 | 中度炎症 | 至黏膜层和黏膜下层 | 基部2/3受损 | 26%~50% |
3 | 严重炎症 | 穿透肠壁 | 仅上皮细胞完好 | 51%~75% |
4 | 隐窝、上皮细胞全部丢失 | 76%~100% |
表5 溃疡性结肠炎动物模型的组织病理学评分方法
Table 5 The histopathological scoring method for animal models of ulcerative colitis
分数 Score | 炎性反应程度 Inflammation level | 病变深度 Lesion depth | 隐窝损伤 Crypt damage | 损伤范围 Lesion range |
---|---|---|---|---|
0 | 无炎症 | 无病变 | 无损伤 | 无损伤 |
1 | 轻微炎症 | 至黏膜层 | 基部1/3受损 | 1%~25% |
2 | 中度炎症 | 至黏膜层和黏膜下层 | 基部2/3受损 | 26%~50% |
3 | 严重炎症 | 穿透肠壁 | 仅上皮细胞完好 | 51%~75% |
4 | 隐窝、上皮细胞全部丢失 | 76%~100% |
1 | UNGARO R, MEHANDRU S, ALLEN P B, et al. Ulcerative colitis[J]. Lancet, 2017, 389(10080):1756-1770. DOI:10.1016/S0140-6736(16)32126-2 . |
2 | BERNSTEIN C N, FRIED M, KRABSHUIS J H, 等. 2010年世界胃肠病学组织关于炎症性肠病诊断和治疗的实践指南[J]. 胃肠病学, 2010, 15(9):548-558. DOI:10.3969/j.issn.1008-7125.2010.09.011 . |
BERNSTEIN C N, FRIED M, KRABSHUIS J H, et al. 2010 World Gastroenterology Organization practice guidelines for the diagnosis and treatment of inflammatory bowel disease[J]. Chin J Gsatroenterol, 2010,15(09):548-558. DOI:10.3969/j.issn.1008-7125.2010.09.011 . | |
3 | 张丽瑶, 陈敏. 溃疡性结肠炎动物模型研究进展[J]. 内蒙古中医药, 2021, 40(6):158-161. DOI:10.16040/j.cnki.cn15-1101.2021.06.090 . |
ZHANG L Y, CHEN M. Research progress of ulcerative colitis animal model[J]. Inn Mong J Tradit Chin Med, 2021, 40(6):158-161. DOI:10.16040/j.cnki.cn15-1101.2021.06.090 . | |
4 | CHANG J T. Pathophysiology of inflammatory bowel diseases[J]. N Engl J Med, 2020, 383(27):2652-2664. DOI:10.1056/NEJMra2002697 . |
5 | MARTÍN R, CHAIN F, MIQUEL S, et al. Using murine colitis models to analyze probiotics-host interactions[J]. FEMS Microbiol Rev, 2017, 41(Supp_1): S49-S70. DOI:10.1093/femsre/fux035 . |
6 | 石磊, 李军祥, 史瑞, 等. 溃疡性结肠炎的动物模型研究进展[J]. 解放军医药杂志, 2020, 32(12):107-112. DOI:10.3969/j.issn.2095-140X.2020.12.025 . |
SHI L, LI J X, SHI R, et al. Research progress of animal model of ulcerative colitis[J]. Med Pharm J Chin People Liber Army, 2020, 32(12):107-112. DOI:10.3969/j.issn.2095-140X.2020.12.025 . | |
7 | 杨敏杰, 刘伟, 涂宏飞, 等. 藏红花素保护溃疡性结肠炎模型大鼠的作用及相关机制[J]. 中国组织工程研究, 2020, 24(29):4673-4679. DOI:10.3969/j.issn.2095-4344.2817 . |
YANG M J, LIU W, TU H F, et al. Protective effect of crocin in ulcerative colitis rats and its related mechanism[J]. Chin J Tissue Eng Res, 2020, 24(29):4673-4679. DOI:10.3969/j.issn.2095-4344.2817 . | |
8 | 李海龙, 程小丽, 董晓丽, 等. NF-κB和ICAM-1在溃疡性结肠炎大鼠结肠中表达及中药干预的影响[J]. 中国老年学杂志, 2011, 31(9):1594-1596. DOI:10.3969/j.issn.1005-9202.2011.09.043 . |
LI H L, CHENG X L, DONG X L, et al. The expression of NF-κB and ICAM-1 in the colon of ulcerative colitis rats and the effect of traditional Chinese medicine intervention[J]. Chin J Gerontol, 2011, 31(9):1594-1596. DOI:10.3969/j.issn.1005-9202.2011.09.043 | |
9 | 孙载鑫, 李欣, 武喜健, 等. UC模型大鼠造模方法建立和探讨[J]. 齐齐哈尔医学院学报, 2015, 36(12):1717-1718, 1719. |
SUN Z X, LI X, WU X J, et al. Establishment and discussion of UC model rat model method[J]. J Qiqihar Med Univ, 2015, 36(12):1717-1718, 1719. | |
10 | 王宝家, 杨宇, 唐洪屈, 等. TGF-β1/Smads信号蛋白在溃疡性结肠炎大鼠肺损害中的表达及意义[J]. 中华中医药杂志, 2014, 29(12):3966-3969. |
WANG B J, YANG Y, TANG H Q, et al. Expression and significance of TGF-β1/Smads signal proteins in rats with lung injury induced by ulcerative colitis[J]. China J Tradit Chin Med Pharm, 2014, 29(12):3966-3969. | |
11 | 焦文超, 罗慧, 苏聪平, 等. 3种溃疡性结肠炎动物模型的对比[J]. 中华中医药杂志, 2020, 35(11):5821-5823. |
JIAO W C, LUO H, SU C P, et al. Comparison of three animal models of ulcerative colitis[J]. China J Tradit Chin Med Pharm, 2020, 35(11):5821-5823. | |
12 | LOW D, NGUYEN D D, MIZOGUCHI E. Animal models of ulcerative colitis and their application in drug research[J]. Drug Des Devel Ther, 2013, 7:1341-1357. DOI:10.2147/DDDT.S40107 . |
13 | KOJIMA R, KURODA S, OHKISHI T, et al. Oxazolone-induced colitis in BALB/C mice: a new method to evaluate the efficacy of therapeutic agents for ulcerative colitis[J]. J Pharmacol Sci, 2004, 96(3):307-313. DOI:10.1254/jphs.fp0040214 . |
14 | 刘亚, 李兴广. 常用溃疡性结肠炎动物模型的探讨及比较[J]. 价值工程, 2012, 31(1):290-291. DOI:10.14018/j.cnki.cn13-1085/n.2012.01.104 . |
LIU Y, LI X G. Discussion and comparison on theory of several ulcerative colitis animal models[J]. Value Eng, 2012, 31(1):290-291. DOI:10.14018/j.cnki.cn13-1085/n.2012.01.104 . | |
15 | 刘佳丽, 杨坤, 徐爱玲, 等. 不同造模次数对2, 4, 6-三硝基苯磺酸/乙醇诱导重症溃疡性结肠炎模型大鼠的影响[J]. 中国组织工程研究, 2019, 23(27):4363-4368. DOI:10.3969/j.issn.2095-4344.1386 . |
LIU J L, YANG K, XU A L, et al. Effect of different modeling times on the rat models of severe ulcerative colitis induced by 2, 4, 6-trinitrobenzene sulfonic acid/ethanol[J]. Chin J Tissue Eng Res, 2019, 23(27):4363-4368. DOI:10.3969/j.issn.2095-4344.1386 . | |
16 | 安贺军, 王新月, 于玫, 等. 抗溃结复发方对UC模型大鼠结肠黏膜形态的影响[J]. 辽宁中医药大学学报, 2011, 13(6):24-26. DOI:10.13194/j.jlunivtcm.2011.06.26.anhj.118 . |
AN H J, WANG X Y, YU M, et al. Influence of ulcerative colitis contra-relepse prescription in colon tissue pathological change of ulcerative colitis model in rat[J]. J Liaoning Univ Tradit Chin Med, 2011, 13(6):24-26. DOI:10.13194/j.jlunivtcm.2011.06.26.anhj.118 . | |
17 | 惠毅, 闫曙光, 李京涛, 等. 大鼠慢性溃疡性结肠炎模型建立方法探讨[J]. 辽宁中医药大学学报, 2013, 15(10):62-65. DOI:10.13194/j.issn.1673-842x.2013.10.074 . |
HUI Y, YAN S G, LI J T, et al. Discussion on establishment method of rats model of chronic ulcerative colitis[J]. J Liaoning Univ Tradit Chin Med, 2013, 15(10):62-65. DOI:10.13194/j.issn.1673-842x.2013.10.074 . | |
18 | MARTIN J C, BÉRIOU G, JOSIEN R. Dextran sulfate sodium (DSS)-induced acute colitis in the rat[J]. Methods Mol Biol, 2016, 1371:197-203. DOI:10.1007/978-1-4939-3139-2_12 . |
19 | 杨永刚, 王丹丹, 张艳秋, 等. 基于线粒体膜电位改变的猴头菇子实体多糖抗溃疡性结肠炎作用机制探讨[J]. 时珍国医国药, 2020, 31(1):27-29. |
YANG Y G, WANG D D, ZHANG Y Q, et al. Mechanism of Hericium erinaceus fruiting body polysaccharide against ulcerative colitis based on mitochondrial membrane potential change[J]. Lishizhen Med Mater Med Res, 2020, 31(1):27-29. DOI:10.3969/j.issn.1008-0805.2020.01.008 . | |
20 | CATINEAN A, NEAG M A, KRISHNAN K, et al. Probiotic Bacillus spores together with amino acids and immunoglobulins exert protective effects on a rat model of ulcerative colitis[J]. Nutrients, 2020, 12(12):3607. DOI:10.3390/nu12123607 . |
21 | BAHRAMI G, MALEKSHAHI H, MIRAGHAEE S, et al. Improving animal model of induced colitis by acetic acid in terms of fibrosis and inflammation incidence in the colon[J]. J Invest Surg, 2022, 35(1):214-222. DOI:10.1080/08941939. 2020.1821844 . |
22 | BOSHAGH M A, FOROUTAN P, MOLOUDI M R, et al. ELR positive CXCL chemokines are highly expressed in an animal model of ulcerative colitis[J]. J Inflamm Res, 2019, 12:167-174. DOI:10.2147/JIR.S203714 . |
23 | 马明江, 鲍秀琦. 5-ASA对大鼠溃疡性结肠炎NF-κB表达的影响[J]. 黑龙江医药科学, 2013, 36(1):7-8. DOI:10.3969/j.issn.1008-0104.2013.01.004 . |
MA M J, BAO X Q. The influence of 5-ASA on the expression of NF-κ B in ulcerative colitis of rats[J]. Heilongjiang Med Pharm, 2013, 36(1):7-8. DOI:10.3969/j.issn.1008-0104.2013.01.004 . | |
24 | 康宜兵, 吕永慧, 吴宇金, 等. 免疫复合型溃疡性结肠炎大鼠模型的实验研究[J]. 云南中医中药杂志, 2015, 36(10):55-57. DOI:10.16254/j.cnki.53-1120/r.2015.10.029 . |
KANG Y B, LV Y H, WU Y J, et al. An experimental study of immune complexes ulcerative colitis rat model[J]. Yunnan J Tradit Chin Med Mater Med, 2015, 36(10):55-57. DOI:10.16254/j.cnki.53-1120/r.2015.10.029 . | |
25 | 杨霞, 刘俊, 任宏宇. 益生菌对实验性结肠炎大鼠Toll样受体4表达的影响[J]. 临床消化病杂志, 2012, 24(4):198-201. DOI:10.3870/lcxh.j.issn.1005-541X.2012.04.02 . |
YANG X, LIU J, REN H. Effect of probiotic on the expression of TLR4 in the experimental colitis rat[J]. Chin J Clin Gastroenterol, 2012, 24(4):198-201.DOI:10.3870/lcxh.j.issn.1005-541X.2012.04.02 . | |
26 | 李霞, 金纯, 金照, 等. 溃疡性结肠炎模型的建立与评价[J]. 温州医学院学报, 2011, 41(2):116-121. DOI:10.13771/j.cnki.33-1386/r.2011.02.009 . |
LI X, JIN C, JIN Z, et al. Establishment and assessment of the ulcerative colitis models in rat[J]. J Wenzhou Med Coll, 2011, 41(2):116-121. DOI:10.13771/j.cnki.33-1386/r.2011.02.009 . | |
27 | 孙晓萍, 侯丽娟, 王晓红, 等. 大鼠慢性溃疡性结肠炎模型的建立及操作规范探讨[J]. 天津中医药, 2012, 29(3):270-273. |
SUN X P, HOU L J, WANG X H, et al. Reproducing chronic ulcerative colitis in rats and its procedure conformity[J]. Tianjin J Tradit Chin Med, 2012, 29(3):270-273. | |
28 | 王海强, 郑丽红, 刘朝霞, 等. 肠愈宁颗粒对溃疡性结肠炎大鼠抑制因子MMP-1、MMP-2表达影响的实验研究[J]. 中医药学报, 2016, 44(5):53-55. DOI:10.19664/j.cnki.1002-2392.2016.05.015 . |
WANG H Q, ZHENG L H, LIU C /Z)X, et al. Experimental study on the effect of changyuning granule on the expression of inhibitors MMP-1 and MMP-2 in ulcerative colitis rats[J]. Acta Chin Med Pharmacol, 2016, 44(5):53-55. DOI:10.19664/j.cnki.1002-2392.2016.05.015 . | |
29 | 吴先哲, 熊益群, 邢国良. 黄芪多糖对溃疡性结肠炎大鼠血清IL -4、IL -5和IL -13水平的影响[J]. 贵阳中医学院学报, 2011, 33(4):23-25. DOI:10.3969/j.issn.1002-1108.2011.04.10 . |
WU X Z, XIONG Y Q, XING G L. Effect of Astragalus polysaccharide on serum IL-4, IL-5 and IL-13 levels in rats with ulcerative colitis[J]. J Guiyang Coll Tradit Chin Med, 2011, 33(4):23-25. DOI:10.3969/j.issn.1002-1108.2011.04.10 . | |
30 | DE SANTIS S, KUNDE D, GALLEGGIANTE V, et al. TNFα deficiency results in increased IL-1β in an early onset of spontaneous murine colitis[J]. Cell Death Dis, 2017, 8(8): e2993. DOI:10.1038/cddis.2017.397 . |
31 | 陈声波, 刘逸, 智发朝, 等. MAWBP在急性溃疡性结肠炎模型中的作用[J]. 现代消化及介入诊疗, 2016, 21(3):375-378. DOI:10.3969/j.issn.1672-2159.2016.03.001 . |
CHEN S B, LIU Y, ZHI F C, et al. The effect of MAWBP on acute colitis model in mice[J]. Mod Dig Interv, 2016, 21(3):375-378. DOI:10.3969/j.issn.1672-2159.2016.03.001 . | |
32 | GANCARCIKOVA S, LAUKO S, HRCKOVA G, et al. Innovative animal model of DSS-induced ulcerative colitis in pseudo germ-free mice[J]. Cells, 2020, 9(12):2571. DOI:10.3390/cells9122571 . |
33 | TIAGO F C P, PORTO B A A, RIBEIRO N S, et al. Effect of Saccharomyces cerevisiae strain UFMG A-905 in experimental model of inflammatory bowel disease[J]. Benef Microbes, 2015, 6(6):807-815. DOI:10.3920/BM2015.0018 . |
34 | 陈晶, 李巧霞, 李玮, 等. Allicin对DSS诱导的小鼠结肠炎的治疗作用及可能机制[J]. 中国免疫学杂志, 2016, 32(7):1039-1041, 1049. DOI:10.3969/j.issn.1000-484X.2016.07.024 . |
CHEN J, LI Q X, LI W, et al. Therapeutical effect of Allicin for colitis mice induced by DSS and its possible mechanisms[J]. Chin J Immunol, 2016, 32(7):1039-1041, 1049. DOI:10.3969/j.issn.1000-484X.2016.07.024 . | |
35 | CHEN Y R, ZHANG P, CHEN W R, et al. Ferroptosis mediated DSS-induced ulcerative colitis associated with Nrf2/HO-1 signaling pathway[J]. Immunol Lett, 2020, 225:9-15. DOI:10.1016/j.imlet.2020.06.005 . |
36 | KIM J J, SHAJIB M S, MANOCHA M M, et al. Investigating intestinal inflammation in DSS-induced model of IBD[J]. J Vis Exp, 2012(60):3678. DOI:10.3791/3678 . |
37 | NUNES N S, CHANDRAN P, SUNDBY M, et al. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway[J]. EBioMedicine, 2019, 45:495-510. DOI:10.1016/j.ebiom.2019.06.033 . |
38 | HUANG X L, ZHANG X, FEI X Y, et al. Faecalibacterium prausnitzii supernatant ameliorates dextran sulfate sodium induced colitis by regulating Th17 cell differentiation[J]. World J Gastroenterol, 2016, 22(22):5201-5210. DOI:10.3748/wjg.v22.i22.5201 . |
39 | SHAO J X, LIU Z H, WANG L, et al. Screening of the optimized prescription from Suqingwan in terms of its therapeutic effect on DSS-induced ulcerative colitis by its regulation of inflammatory and oxidative mediators[J]. J Ethnopharmacol, 2017, 202:54-62. DOI:10.1016/j.jep.2017.03.006 . |
40 | MEURER M C, MEES M, MARIANO L N B, et al. Hydroalcoholic extract of Tagetes erecta L. flowers, rich in the carotenoid lutein, attenuates inflammatory cytokine secretion and improves the oxidative stress in an animal model of ulcerative colitis[J]. Nutr Res, 2019, 66:95-106. DOI:10.1016/j.nutres.2019.03.005 . |
41 | CORDEIRO N, FREITAS R H C N, FRAGA C A M, et al. Therapeutic effects of anti-inflammatory N-acylhydrazones in the resolution of experimental colitis[J]. J Pharmacol Exp Ther, 2020, 374(3):420-427. DOI:10.1124/jpet.120.000074 . |
42 | LI Y H, XIAO H T, HU D D, et al. Berberine ameliorates chronic relapsing dextran sulfate sodium-induced colitis in C57BL/6 mice by suppressing Th17 responses[J]. Pharmacol Res, 2016, 110:227-239. DOI:10.1016/j.phrs.2016.02.010 . |
43 | GONG Y X, NIU W, TANG Y P, et al. Aggravated mucosal and immune damage in a mouse model of ulcerative colitis with stress[J]. Exp Ther Med, 2019, 17(3):2341-2348. DOI:10.3892/etm.2019.7162 . |
44 | HUANG Z, JIANG Y C, YANG Y, et al. 3, 3'-Diindolylmethane alleviates oxazolone-induced colitis through Th2/Th17 suppression and Treg induction[J]. Mol Immunol, 2013, 53(4):335-344. DOI:10.1016/j.molimm.2012.09.007 . |
45 | MCQUEEN P, BUSMAN-SAHAY K, RIEDER F, et al. Intestinal proteomic analysis of a novel non-human primate model of experimental colitis reveals signatures of mitochondrial and metabolic dysfunction[J]. Mucosal Immunol, 2019, 12(6):1327-1335. DOI:10.1038/s41385-019-0200-2 . |
46 | 孙茂庆, 卜平. 化学刺激致溃疡性结肠炎兔模型的建立[J]. 海南医学院学报, 2011, 17(3):296-298, 308. DOI:10.13210/j.cnki.jhmu.2011.03.009 . |
SUN M Q, BU P. Chemical stimulation induced ulcerative colitis in rabbit models[J]. J Hainan Med Univ, 2011, 17(3):296-298, 308. DOI:10.13210/j.cnki.jhmu.2011.03.009 . | |
47 | 董福轮, 季蓓. 泄福音灌肠剂治疗溃疡性结肠炎的实验研究[J]. 中国中医急症, 2011, 20(10):1623-1624. DOI:10.3969/j.issn.1004-745X.2011.10.040 . |
DONG F L, JI B. Experimental study on the treatment of ulcerative colitis with Xiefuyin enema[J]. J Emerg Tradit Chin Med, 2011, 20(10):1623-1624. DOI:10.3969/j.issn.1004-745X.2011.10.040 . | |
48 | SOLIS C J, HAMILTON M K, CARUFFO M, et al. Intestinal inflammation induced by soybean meal ingestion increases intestinal permeability and neutrophil turnover independently of microbiota in zebrafish[J]. Front Immunol, 2020, 11:1330. DOI:10.3389/fimmu.2020.01330 . |
49 | WENZEL U A, MAGNUSSON M K, RYDSTRÖM A, et al. Spontaneous colitis in Muc2-deficient mice reflects clinical and cellular features of active ulcerative colitis[J]. PLoS One, 2014, 9(6): e100217. DOI:10.1371/journal.pone.0100217 . |
50 | ALKADHI S, KUNDE D L, CHELUVAPPA R, et al. The murine appendiceal microbiome is altered in spontaneous colitis and its pathological progression[J]. Gut Pathog, 2014, 6:25. DOI:10.1186/1757-4749-6-25 . |
51 | JOHANSSON M E V, GUSTAFSSON J K, HOLMÉN-LARSSON J, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis[J]. Gut, 2014, 63(2):281-291. DOI:10.1136/gutjnl-2012-303207 . |
52 | TRÉTON X, PEDRUZZI E, GUICHARD C, et al. Combined NADPH oxidase 1 and interleukin 10 deficiency induces chronic endoplasmic Reticulum stress and causes ulcerative colitis-like disease in mice[J]. PloS One, 2014, 9(7): e101669. DOI:10.1371/journal.pone.0101669 . |
53 | BILSBOROUGH J, FIORINO M F, HENKLE B W. Select animal models of colitis and their value in predicting clinical efficacy of biological therapies in ulcerative colitis[J]. Expert Opin Drug Discov, 2021, 16(5):567-577. DOI:10.1080/17460441. 2021. 1851185 . |
54 | 何育佩, 杜正彩, 侯小涛, 等. 溃疡性结肠炎动物模型研究进展[J]. 世界科学技术-中医药现代化, 2020, 22(2):423-433. DOI:10.11842/wst.20190102006 . |
HE Y P, DU Z C, HOU X T, et al. Research progress of animal models of ulcerative colitis[J]. Mod Tradit Chin Med Mater Med World Sci Technol, 2020, 22(2):423-433. DOI:10.11842/wst.20190102006 .. | |
55 | XIE Y, ZHOU L Y, YAO X J, et al. Protective effects of Clostridium butyricum in a murine model of dextran sodium sulfate-induced colitis that involve inhibition of the TLR2 signaling pathway and T helper 17 cells[J]. Am J Med Sci, 2020, 360(2):176-191. DOI:10.1016/j.amjms.2020.05.021 . |
56 | LIU J L, GAO Y Y, ZHOU J, et al. Changes in serum inflammatory cytokine levels and intestinal flora in a self-healing dextran sodium sulfate-induced ulcerative colitis murine model[J]. Life Sci, 2020, 263:118587. DOI:10.1016/j.lfs.2020.118587 . |
57 | 李凯, 郑丰杰, 袁坤, 等. 参青方对TNBs诱导溃疡性结肠炎大鼠结肠黏膜影响的研究[J]. 中医学报, 2013, 28(6):847-849. DOI:10.16368/j.issn.1674-8999.2013.06.050 . |
LI K, ZHENG F J, YUAN K, et al. Impact of shenqing prescription in treating TNBs induced ulcerative colitis model rats[J]. China J Chin Med, 2013, 28(6):847-849. DOI:10.16368/j.issn.1674-8999.2013.06.050 . | |
58 | HART A L, AL-HASSI H O, RIGBY R J, et al. Characteristics of intestinal dendritic cells in inflammatory bowel diseases[J]. Gastroenterology, 2005, 129(1):50-65. DOI:10.1053/j.gastro.2005.05.013 . |
59 | NEURATH M F. Cytokines in inflammatory bowel disease[J]. Nat Rev Immunol, 2014, 14(5):329-342. DOI:10.1038/nri3661 . |
60 | GERSEMANN M, BECKER S, KÜBLER I, et al. Differences in goblet cell differentiation between Crohn's disease and ulcerative colitis[J]. Differentiation, 2009, 77(1):84-94. DOI:10.1016/j.diff.2008.09.008 . |
[1] | 梁天薇, 邓亚胜, 黄慧, 荣娜, 刘鑫, 王玉洁, 林江. 围绝经期综合征动物模型的制备方法及评价指标分析[J]. 实验动物与比较医学, 2024, 44(1): 74-84. |
[2] | 中国研究型医院学会医学动物实验专家委员会. 自发性脑出血动物模型选择及临床前药物试验指南(2024年版)[J]. 实验动物与比较医学, 2024, 44(1): 3-30. |
[3] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[4] | 万颖寒, 顾也欣, 袁雨浓, 汤忞, 鲁立. FDA现代化法案2.0给疾病动物模型发展带来的启示和思考[J]. 实验动物与比较医学, 2023, 43(5): 472-481. |
[5] | 谢淑武, 沈如凌, 林金杏, 范春. 雄性不育药物研发相关实验动物模型建立和应用进展[J]. 实验动物与比较医学, 2023, 43(5): 504-511. |
[6] | 陈艳娟, 沈如凌. 模式动物疾病模型在结直肠癌医学研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(5): 512-523. |
[7] | 张睿, 吕美豫, 张建军, 刘金莲, 陈彦, 黄志强, 刘尧, 周澜华. 痤疮动物模型建立及评价研究进展[J]. 实验动物与比较医学, 2023, 43(4): 398-405. |
[8] | 卢今, 王剑, 朱莲, 严国锋, 马政文, 李垚, 戴建军, 朱寅秋, 周晶. 山羊先兆子痫疾病模型的构建及母体生物学特性评价[J]. 实验动物与比较医学, 2023, 43(4): 371-380. |
[9] | 俞佳慧, 巩倩, 庄乐南. 肺动脉高压动物模型及其在药物研究中的应用进展[J]. 实验动物与比较医学, 2023, 43(4): 381-397. |
[10] | 邓亚胜, 林江, 甘池伶, 曾官凤, 黄嘉茵, 邓慧芳, 麻颖贤, 韩丝银. 皮肤光老化动物模型制备要素和受试物数据的文献分析[J]. 实验动物与比较医学, 2023, 43(4): 406-414. |
[11] | 王雪, 呼永河. 糖尿病小鼠模型的常见种类及其构建要素分析[J]. 实验动物与比较医学, 2023, 43(4): 415-421. |
[12] | 黄慧, 邓亚胜, 梁天薇, 郑艺清, 范燕萍, 荣娜, 林江. 卵巢储备功能减退动物模型的造模方法评价与分析[J]. 实验动物与比较医学, 2023, 43(4): 422-428. |
[13] | 相磊, 景金珠, 梁震, 阎国强, 郭文峰, 张萌, 张威, 刘亚军. 基于VOSviewer的肌少症动物模型研究可视化分析[J]. 实验动物与比较医学, 2023, 43(4): 429-439. |
[14] | 谭志刚, 刘锦信, 郑楚雅, 廖文峰, 冯露平, 彭红丽, 严秀, 卓振建. 神经母细胞瘤动物模型研究进展与应用[J]. 实验动物与比较医学, 2023, 43(3): 288-296. |
[15] | 刘甦苏, 吴勇, 曹愿, 赵皓阳, 翟世杰, 孙晓炜, 李琳丽, 范昌发. hKDR+/+ 人源化及Rag1-/-基因缺陷新型双靶点遗传修饰荷瘤小鼠模型的建立[J]. 实验动物与比较医学, 2023, 43(2): 103-111. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||