1 |
SECHER N H, QUISTORFF B, DALSGAARD M K. The muscles work, but the brain gets tired[J]. Ugeskr Laeger, 2006, 168(51):4503-4506.
|
2 |
AMANN M, ROMER L M, SUBUDHI A W, et al. Severity of arterial hypoxaemia affects the relative contributions of peripheral muscle fatigue to exercise performance in healthy humans[J]. J Physiol, 2007, 581(1):389-403. DOI:10.1113/jphysiol.2007.129700 .
|
3 |
DAVIS J M, BAILEY S P. Possible mechanisms of central nervous system fatigue during exercise[J]. Med Sci Sports Exerc, 1997, 29(1):45-57. DOI:10.1097/00005768-199701000-00008 .
|
4 |
刘红平, 杨国愉, 张晶轩, 等. 急进高原驻训军人躯体-脑力疲劳追踪研究[J]. 西北国防医学杂志, 2017, 38(9):565-569. DOI:10.16021/j.cnki.1007-8622.2017.09.002 .
|
5 |
SCHURR A, GOZAL E. Aerobic production and utilization of lactate satisfy increased energy demands upon neuronal activation in hippocampal slices and provide neuroprotection against oxidative stress[J]. Front Pharmacol, 2011, 2:96. DOI:10.3389/fphar.2011.00096 .
|
6 |
GAO C, ZHOU L Y, ZHU W X, et al. Monocarboxylate transporter-dependent mechanism confers resistance to oxygen- and glucose-deprivation injury in astrocyte-neuron co-cultures[J]. Neurosci Lett, 2015, 594:99-104. DOI:10.1016/j.neulet.2015.03.062 .
|
7 |
DHILLON H S, DOSE J M, SCHEFF S W, et al. Time course of changes in lactate and free fatty acids after experimental brain injury and relationship to morphologic damage[J]. Exp Neurol, 1997, 146(1):240-249. DOI:10.1006/exnr.1997.6524 .
|
8 |
王静, 刘洪涛. 脑乳酸对运动性中枢疲劳的作用及影响[J]. 中国临床康复, 2004, 8(22):4572-4573.
|
9 |
HALESTRAP A P. The SLC16 gene family: structure, role and regulation in health and disease[J]. Mol Aspects Med, 2013, 34(2-3):337-349. DOI:10.1016/j.mam.2012.05.003 .
|
10 |
GAO C, ZHU W X, Tian L Z, et al. MCT4-mediated expression of EAAT1 is involved in the resistance to hypoxia injury in astrocyte-neuron co-cultures[J]. Neurochem Res, 2014, 40(4): 818-828. DOI: 10.1007/s11064-015-1532-2 .
|
11 |
PELLERIN L, PELLEGRI G, BITTAR P G, et al. Evidence supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle[J]. Dev Neurosci, 1998, 20(4-5):291-299. DOI:10.1159/000017324 .
|
12 |
SIMPSON I A, CARRUTHERS A, VANNUCCI S J. Supply and demand in cerebral energy metabolism: the role of nutrient transporters[J]. J Cereb Blood Flow Metab, 2007, 27(11):1766-1791. DOI:10.1038/sj.jcbfm.9600521 .
|
13 |
程泽鹏, 冯钰, 史仍飞. 运动过程中单羧酸转运蛋白(MCTs)作用的研究进展[J]. 军事体育学报, 2017, 36(3):89-94. DOI:10.3969/j.issn.1671-1300.2017.03.025
|
14 |
BEDFORD T G, TIPTON C M, WILSON N C, et al. Maximum oxygen consumption of rats and its changes with various experimental procedures[J]. J Appl Physiol Respir Environ Exerc Physiol, 1979, 47(6):1278-1283. DOI:10.1152/jappl. 1979.47.6.1278 .
|
15 |
胡琰茹, 乔德才, 刘晓莉. 力竭运动过程中大鼠苍白球内侧部对皮层的调控作用[J]. 中国运动医学杂志, 2013, 32(5):420-425, 419. DOI:10.16038/j.1000-6710.2013.05.001 .
|
16 |
GAO C, WANG C, LIU B, et al. Intermittent hypoxia preconditioning-induced epileptic tolerance by upregulation of monocarboxylate transporter 4 expression in rat hippocampal astrocytes[J]. Neurochem Res, 2014, 39(11):2160-2169. DOI:10.1007/s11064-014-1411-2 .
|
17 |
ANDERSEN L W, MACKENHAUER J, ROBERTS J C, et al. Etiology and therapeutic approach to elevated lactate levels[J]. Mayo Clin Proc, 2013, 88(10):1127-1140. DOI:10.1016/j.mayocp.2013.06.012 .
|
18 |
GAO C, LI Z Y, BAI J, et al. Involvement of monocarboxylate transporters in the cross-tolerance between epilepsy and cerebral infarction: a promising choice towards new treatments[J]. Neurosci Lett, 2019, 707:134305. DOI:10.1016/j.neulet.2019.134305 .
|
19 |
郑庆云, 李世昌, 刘中刚. 运动对单羧酸转运蛋白的影响[J]. 中国临床康复, 2006, 10(44):155-157.
|
20 |
BROOKS G A. Cell-cell and intracellular lactate shuttles[J]. J Physiol, 2009, 587(Pt 23):5591-5600. DOI:10.1113/jphysiol. 2009.178350 .
|
21 |
CONTRERAS-BAEZA Y, SANDOVALP Y, ALARCON R, et al. Monocarboxylate transporter 4 (MCT4) is a high affinity transporter capable of exporting lactate in high-lactate microenvironments[J]. J Biol Chem, 2019, 294(52):20135-20147. DOI: 10.1074/jbc.RA119.009093 .
|
22 |
EYDOUX N, DUBOUCHAUD H, PY G, et al. Lactate transport in rat sarcolemmal vesicles after a single bout of submaximal exercise[J]. Int J Sports Med, 2000, 21(6):393-399. DOI:10.1055/s-2000-3830 .
|
23 |
CHIH C P, ROBERTS E L Jr. Energy substrates for neurons during neural activity: a critical review of the astrocyte-neuron lactate shuttle hypothesis[J]. J Cereb Blood Flow Metab, 2003, 23(11):1263-1281. DOI:10.1097/01.WCB.0000081369.51727.6F .
|
24 |
PELLERIN L. Lactate as a pivotal element in neuron-Glia metabolic cooperation[J]. Neurochem Int, 2003, 43(4-5):331-338. DOI:10.1016/S0197-0186(03)00020-2 .
|
25 |
WADA H, OKADA Y, UZUO T, et al. The effects of glucose, mannose, fructose and lactate on the preservation of neural activity in the hippocampal slices from the Guinea pig[J]. Brain Res, 1998, 788(1-2):144-150. DOI:10.1016/s0006-8993(97)01532-1 .
|
26 |
TAKATA T, OKADA Y. Effects of deprivation of oxygen or glucose on the neural activity in the Guinea pig hippocampal slice—intracellular recording study of pyramidal neurons[J]. Brain Res, 1995, 683(1):109-116. DOI:10.1016/0006-8993(95)00318-K .
|
27 |
TANAKA M, NAKAMURA F, MIZOKAWA S, et al. Role of lactate in the brain energy metabolism: revealed by Bioradiography[J]. Neurosci Res, 2004, 48(1):13-20. DOI:10.1016/j.neures.2003.09.001 .
|
28 |
张换鸽. 神经递质与运动性中枢疲劳[J]. 当代体育科技, 2012, 2(4):18-20. DOI:10.16655/j.cnki.2095-2813.2012.04.020 .
|