实验动物与比较医学 ›› 2024, Vol. 44 ›› Issue (5): 502-510.DOI: 10.12300/j.issn.1674-5817.2024.034
收稿日期:
2024-02-29
修回日期:
2024-06-05
出版日期:
2024-11-06
发布日期:
2024-10-25
通讯作者:
王贵成(1985—),男,硕士,工程师,研究方向:实验动物平台建设。E-mail: wangguicheng@fudan.edu.cn。ORCID: 0000-0002-3979-419X作者简介:
谭 贺(1980—),女,硕士,实验师,研究方向:实验动物表型分析。E-mail: tanhe@fudan.edu.cn
TAN He(), YANG Xiaohui, ZHANG Daxiu, WANG Guicheng()()
Received:
2024-02-29
Revised:
2024-06-05
Published:
2024-10-25
Online:
2024-11-06
Contact:
WANG Guicheng (ORCID: 0000-0002-3979-419X), E-mail: wangguicheng@fudan.edu.cn摘要:
目的 探究小鼠代谢笼实验中不同发育时期小鼠的最佳适应时间,以期为利用小鼠开展代谢研究提供参考。 方法 使用3个发育阶段(离乳期M1、青春期M2和成年期M3)的雄性C57BL/6J小鼠共80只进行为期7 d的代谢笼实验,每5 min记录小鼠摄食、饮水、能量消耗、呼吸商、体重和活动水平等数据。通过时间序列分解和综合聚类分析对数据进行处理,采用重复测量方差分析法并结合t检验进行统计学差异比较,以推断最佳适应时间。 结果 不同发育阶段的小鼠代谢活动存在明显差异(P<0.01)。与M2和M3小鼠相比,M1小鼠的运动水平较低(P<0.01),并且昼夜节律不明显。M1小鼠具有更高的氧气消耗量、二氧化碳呼出量和能量消耗水平,以及较低的呼吸商(均P<0.001),表明其主要以脂肪作为能量来源。对摄食、饮水和能量消耗等因素进行分析后发现,各发育阶段的小鼠在第1个光周期(0~12 h)与 第2个光周期之间(24~36 h)存在明显差异(均P<0.05),而24 h后每日摄食量、饮水量不再有明显差异(均P>0.05)。综合多指标进行聚类分析后发现,小鼠在进入代谢笼的前24 h综合指标与后续6 d的综合指标不成簇,出现离群,表现出明显差异。 结论 小鼠代谢笼实验可以用于检测小鼠连续的生理学指标变化,结果提示小鼠进入代谢笼24 h就可以适应新的代谢笼环境,这为小鼠代谢实验设计提供了理论依据。
中图分类号:
谭贺,杨晓辉,张大秀,等. 不同发育时期小鼠代谢笼实验的最佳适应期探讨[J]. 实验动物与比较医学, 2024, 44(5): 502-510. DOI: 10.12300/j.issn.1674-5817.2024.034.
TAN He,YANG Xiaohui,ZHANG Daxiu,et al. Optimal Adaptation Period for Metabolic Cage Experiments in Mice at Different Developmental Stages[J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 502-510. DOI: 10.12300/j.issn.1674-5817.2024.034.
图1 不同发育阶段的C57BL/6小鼠在代谢笼内的活动水平比较注:A~C,小鼠在X轴、Y轴和Z轴上打断红外射线的频次,离乳期(M1,n=8)小鼠在X和Z轴上运动频次显著低于青春期(M2,n=16)和成年期(M3,n=24)小鼠(*P<0.05,**P<0.01,***P<0.001);D~F,M1、M2和M3小鼠每5 min在所有方向上的运动距离总和。
Figure 1 Comparison of activity levels of C57BL/6 mice at different developmental stages in metabolism cagesNote:A-C, Frequency of infrared beam interruptions on X, Y, Z axes, the movement frequencies of weaned mice (M1, n=8) on X and Z axes was significantly lower than that of adolescent (M2, n=16) and adult (M3, n=24) mice (*P<0.05,**P<0.01, ***P<0.001); D-F, Total movement distance of M1, M2, M3 mice in all directions every 5 minutes in metabolism cage.
图2 不同发育阶段的C57BL/6小鼠在代谢笼中的代谢活动变化注:A,氧气消耗量的变化;B,二氧化碳呼出量的变化;C,能量消耗(EE)水平的变化;D,小鼠代谢笼中呼吸商(RQ)变化。离乳期(M1,n=8)小鼠的O2消耗水平、CO2呼出水平和能量消耗水平显著高于青春期(M2,n=16)小鼠和成年期(M3,n=24)小鼠(***P<0.001),而M3小鼠的RQ显著高于M1和M2小鼠 (***P<0.001)。以上数据均以体重(g)为基准进行校正,结果以mean±SEM表示,统计学显著性差异通过重复测量数据方差分析给出。
Figure 2 Metabolic activity changes of mice in metabolism cages across 3 age groupsNote:A, Changes in oxygen consumption; B, Changes in carbon dioxide exhalation; C, Changes in energy expenditure (EE) levels; D, Changes in metabolic cage respiratory quotient (RQ) in mice. O2 consumption, CO2 exhalation, and EE of weaned mice (M1, n=8) were significantly higher than those of adolescent (M2, n=16) and adult (M3, n=24) mice (***P<0.001). RQ of M3 mice was significantly higher than that of M1 and M2 mice (***P<0.001). Data were calibrated on body mass (g), and results were expressed as mean±SEM, statistically significant differences were shown by repeated measures ANOVA.
适应时间 Adaptation time | 指标 Indicators | 离乳期(M1) Weaned (M1) | 青春期(M2) Adolescent (M2) | 成年期(M3) Adult (M3) |
---|---|---|---|---|
第1天 0-24 h | 摄食量/g | 4.43±1.12 | 4.27±1.02 | 5.02±1.51 |
饮水量/mL | 3.38±0.62 | 2.98±0.59 | 3.50±1.01 | |
XYZ轴移动频次/次 | 222.21±23.20 | 289.41±40.00 | 368.90±39.49 | |
第2天 24-48 h | 摄食量/g | 4.69±0.80 | 4.25±0.99 | 4.50±1.21 |
饮水量/mL | 3.57±0.73 | 3.15±0.75 | 3.44±0.77 | |
XYZ 轴移动频次/次 | 186.22±32.15 | 240.27±32.29*** | 264.98±36.63*** | |
第3天 48-72 h | 摄食量/g | 4.78±1.00 | 3.82±0.67 | 4.78±1.14 |
饮水量/mL | 4.78±1.00 | 3.05±0.66 | 3.43±0.82 | |
XYZ 轴移动频次/次 | 168.21±54.76 | 213.24±24.71*** | 250.81±25.62*** |
表1 小鼠进入代谢笼内前3 d的各指标适应效果评价 (xˉ±se)
Table 1 Evaluation of adaptation effects on various indicators in metabolic cages during the first three days
适应时间 Adaptation time | 指标 Indicators | 离乳期(M1) Weaned (M1) | 青春期(M2) Adolescent (M2) | 成年期(M3) Adult (M3) |
---|---|---|---|---|
第1天 0-24 h | 摄食量/g | 4.43±1.12 | 4.27±1.02 | 5.02±1.51 |
饮水量/mL | 3.38±0.62 | 2.98±0.59 | 3.50±1.01 | |
XYZ轴移动频次/次 | 222.21±23.20 | 289.41±40.00 | 368.90±39.49 | |
第2天 24-48 h | 摄食量/g | 4.69±0.80 | 4.25±0.99 | 4.50±1.21 |
饮水量/mL | 3.57±0.73 | 3.15±0.75 | 3.44±0.77 | |
XYZ 轴移动频次/次 | 186.22±32.15 | 240.27±32.29*** | 264.98±36.63*** | |
第3天 48-72 h | 摄食量/g | 4.78±1.00 | 3.82±0.67 | 4.78±1.14 |
饮水量/mL | 4.78±1.00 | 3.05±0.66 | 3.43±0.82 | |
XYZ 轴移动频次/次 | 168.21±54.76 | 213.24±24.71*** | 250.81±25.62*** |
适应时间 Adaptation time | 指标 Indicators | 离乳期(M1) Weaned (M1) | 青春期(M2) Adolescent (M2) | 成年期(M3) Adult (M3) |
---|---|---|---|---|
第1个光周期 0-12 h | 摄食量/g | 1.52±0.44 | 1.16±0.47 | 1.58±0.72 |
饮水量/mL | 0.44±0.29 | 0.37±0.25 | 0.49±0.34 | |
第2个光周期 24-36 h | 摄食量/g | 2.03±0.45* | 1.05±0.47 | 0.95±0.42*** |
饮水量/mL | 1.29±0.43*** | 0.54±0.35 | 0.67±0.31 |
表2 小鼠进入代谢笼内第1个与第2个光周期的各指标适应效果评价 (xˉ±se)
Table 2 Evaluation of adaptation effects on various indicators in metabolic cages during the first and second light periods
适应时间 Adaptation time | 指标 Indicators | 离乳期(M1) Weaned (M1) | 青春期(M2) Adolescent (M2) | 成年期(M3) Adult (M3) |
---|---|---|---|---|
第1个光周期 0-12 h | 摄食量/g | 1.52±0.44 | 1.16±0.47 | 1.58±0.72 |
饮水量/mL | 0.44±0.29 | 0.37±0.25 | 0.49±0.34 | |
第2个光周期 24-36 h | 摄食量/g | 2.03±0.45* | 1.05±0.47 | 0.95±0.42*** |
饮水量/mL | 1.29±0.43*** | 0.54±0.35 | 0.67±0.31 |
图3 不同发育阶段的小鼠进入代谢笼后的适应指标数据可视化分析注:A,小鼠在代谢笼中每5 min内所有方向上的运动总和;B,小鼠每5 min在X轴上的运动频次;C,小鼠每5 min在Y轴上的运动频次;D,小鼠每5 min在Z轴上的运动频次;E,小鼠在代谢笼中消耗氧气的变化;F,小鼠在代谢笼中呼出二氧化碳的变化;G,小鼠在代谢笼中每5 min内摄取食物的质量;H,小鼠在代谢笼中每5 min内饮水量。M1为离乳期小鼠;M2为青春期小鼠;M3为成年期小鼠。
Figure 3 Visualization analysis of adaptation indicators for mice in metabolic cages at different developmental stagesNote:A, The total movements of the mice in all directions during 5 minutes in metabolic cages; B, The frequency of movement along the X axis; C, The frequency of movement along the Y axis; D, The frequency of movement along the Z axis; E, Changes in oxygen consumption in metabolic cages; F, Changes in carbon dioxide exhaled in metabolic cages; G, The amount of food intake every 5 minutes by mice in metabolic cages; H, The amount of water intake by mice every 5 minutes in metabolic cages. M1, weaned mice; M2, adolescent mice; M3, adult mice.
图4 不同发育阶段的小鼠进入代谢笼后各适应指标数据的多因素聚类分析注:离乳期小鼠进入代谢笼的第1天(M1_1)、青春期小鼠进入代谢笼的第1天(M2_1)和成年期小鼠进入代谢笼的第1天(M3_1)数据均出现离群,不与同组内数据成簇。 Kcal_hr,小鼠每小时能量消耗/mL;VCO2,小鼠二氧化碳呼出量;VO2,小鼠氧气消耗量/mL;VH2O,小鼠饮水量mL;Allmeters.5m,小鼠每5 min总运动距离/m;Pedmeters.5m,小鼠每5 min内定向运动总距离/m;Foodupa.5m,小鼠每5 min摄食量/g;Waterupa.5m,小鼠每5 min饮水量/mL。
Figure 4 Multifactor clustering analysis of adaptation indicators for mice at different developmental stages in metabolic cagesNote:The data from day 1 in metabolic cages for weaned mice (M1_1), adolescent mice (M2_1), and adult mice (M3_1) were outliers and did not cluster with the data from the same group. Kcal_hr,EE per hour/mL;VCO2,mice carbon dioxide exhalation;VO2,oxygen consumption/mL;VH2O,water intake/mL;Allmeters.5m,total movement distance in 5 min/m;Pedmeters.5m,total directional movement distance along X, Y, Z axes in 5 min/m;Foodupa.5m,food intake in 5 min/g;Waterupa.5m,water intake in 5 min/mL。
1 | GRUNDY S M. Metabolic syndrome update[J]. Trends Cardiovasc Med, 2016, 26(4):364-373. DOI: 10.1016/j.tcm. 2015.10.004 . |
2 | GUPTA A, GUPTA V. Metabolic syndrome: what are the risks for humans?[J]. Biosci Trends, 2010, 4(5):204-212. |
3 | GRIFFIN J L. Understanding mouse models of disease through metabolomics[J]. Curr Opin Chem Biol, 2006, 10(4):309-315. DOI: 10.1016/j.cbpa.2006.06.027 . |
4 | KULKARNI N M, JAJI M S, SHETTY P, et al. A novel animal model of metabolic syndrome with non-alcoholic fatty liver disease and skin inflammation[J]. Pharm Biol, 2015, 53(8):1110-1117. DOI: 10.3109/13880209.2014.960944 . |
5 | LUO Y H, LU H C, PENG D Q, et al. Liver-humanized mice: a translational strategy to study metabolic disorders[J]. J Cell Physiol, 2022, 237(1):489-506. DOI: 10.1002/jcp.30610 . |
6 | EVANS C C, LEPARD K J, KWAK J W, et al. Exercise prevents weight gain and alters the gut microbiota in a mouse model of high fat diet-induced obesity[J]. PLoS One, 2014, 9(3): e92193. DOI: 10.1371/journal.pone.0092193 . |
7 | RIDAURA V K, FAITH J J, REY F E, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice[J]. Science, 2013, 341(6150):1241214. DOI: 10.1126/science.1241214 . |
8 | TETRI L H, BASARANOGLU M, BRUNT E M, et al. Severe NAFLD with hepatic necroinflammatory changes in mice fed trans fats and a high-fructose corn syrup equivalent[J]. Am J Physiol Gastrointest Liver Physiol, 2008, 295(5): G987-G995. DOI: 10.1152/ajpgi.90272.2008 . |
9 | LIU Z W, HUANG M L, WU X, et al. PER1 phosphorylation specifies feeding rhythm in mice[J]. Cell Rep, 2014, 7(5):1509-1520. DOI: 10.1016/j.celrep.2014.04.032 . |
10 | ZHU S W, YEE B K, NYFFELER M, et al. Influence of differential housing on emotional behaviour and neurotrophin levels in mice[J]. Behav Brain Res, 2006, 169(1):10-20. DOI: 10.1016/j.bbr.2005.11.024 . |
11 | ISHIDA H, MITSUI K, NUKAYA H, et al. Study of active substances involved in skin dysfunction induced by crowding stress. I. effect of crowding and isolation on some physiological variables, skin function and skin blood perfusion in hairless mice[J]. Biol Pharm Bull, 2003, 26(2):170-181. DOI: 10.1248/bpb.26.170 . |
12 | STEYERMARK A C, MUELLER P J. Cage size affects feeding and energetics of captive rodents[J]. Physiol Biochem Zool, 2002, 75(2):209-213. DOI: 10.1086/338689 . |
13 | BARTOLOMUCCI A, PALANZA P, SACERDOTE P, et al. Individual housing induces altered immuno-endocrine responses to psychological stress in male mice[J]. Psychoneuroendocrinology, 2003, 28(4):540-558. DOI: 10.1016/s0306-4530(02)00039-2 . |
14 | MANSER C E, ELLIOT H, MORRIS T H, et al. The use of a novel operant test to determine the strength of preference for flooring in laboratory rats[J]. Lab Anim, 1996, 30(1):1-6. DOI: 10.1258/002367796780744974 . |
15 | MANSER C E, MORRIS T H, BROOM D M. An investigation into the effects of solid or grid cage flooring on the welfare of laboratory rats[J]. Lab Anim, 1995, 29(4):353-363. DOI: 10.1258/002367795780740023 . |
16 | BRUNNER L J, DIPIRO J T, FELDMAN S. Metabolic cage isolation reduces antipyrine clearance in rats[J]. J Pharm Pharmacol, 1994, 46(7):581-584. DOI: 10.1111/j.2042-7158.1994.tb03861.x . |
17 | KALLIOKOSKI O, JACOBSEN K R, DARUSMAN H S, et al. Mice do not habituate to metabolism cage housing: a three week study of male BALB/c mice[J]. PLoS One, 2013, 8(3): e58460. DOI: 10.1371/journal.pone.0058460 . |
18 | DUTTA S, SENGUPTA P. Men and mice: relating their ages[J]. Life Sci, 2016, 152:244-248. DOI: 10.1016/j.lfs.2015.10.025 . |
19 | PALANZA P. Animal models of anxiety and depression: how are females different?[J]. Neurosci Biobehav Rev, 2001, 25(3):219-233. DOI: 10.1016/s0149-7634(01)00010-0 . |
20 | STECHMAN M J, AHMAD B N, LOH N Y, et al. Establishing normal plasma and 24-hour urinary biochemistry ranges in C3H, BALB/c and C57BL/6J mice following acclimatization in metabolic cages[J]. Lab Anim, 2010, 44(3):218-225. DOI: 10.1258/la.2010.009128 . |
21 | 尹媛, 陆璐, 王蕴, 等. 小鼠生活笼实验引入适应期的必要性研究[J]. 实验动物与比较医学, 2021, 41(4):358-362. DOI: 10.12300/j.issn.1674-5817.2020.154 . |
YIN Y, LU L, WANG Y, et al. Necessity of an acclimatization period in a home cage experiment of mice[J]. Lab Anim Comp Med, 2021, 41(4):358-362. DOI: 10.12300/j.issn.1674-5817.2020.154 . | |
22 | ERIKSSON E, ROYO F, LYBERG K, et al. Effect of metabolic cage housing on immunoglobulin A and corticosterone excretion in faeces and urine of young male rats[J]. Exp Physiol, 2004, 89(4):427-433. DOI: 10.1113/expphysiol. 2004. 027656 . |
23 | TULI J S, SMITH J A, MORTON D B. Stress measurements in mice after transportation[J]. Lab Anim, 1995, 29(2):132-138. DOI: 10.1258/002367795780740249 . |
24 | Parliament European. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purposes [S/OL]. (2010-10-20) [2024-02-20].. |
[1] | 孟雨, 梁冬丽, 郑琳琳, 周园园, 王朝霞. 人肝肿瘤细胞的裸小鼠原位癌建模条件优化及评价[J]. 实验动物与比较医学, 2024, 44(5): 511-522. |
[2] | 秦靖, 赵勇, 张彩勤, 白冰, 师长宏. 靶向炎性脑水肿的诊疗一体化近红外荧光探针的构建与评价[J]. 实验动物与比较医学, 2024, 44(3): 243-250. |
[3] | 张一粟, 刘欣茹, 武若杰, 刘睿, 欧阳红, 李晓红. 慢性不可预知性应激与完全弗氏佐剂、福尔马林诱导的妊娠期疼痛-抑郁共病小鼠模型的构建与评价[J]. 实验动物与比较医学, 2024, 44(3): 259-269. |
[4] | 吴东, 石蕊, 罗珮珊, 李灵恩, 盛席静, 王梦阳, 倪露, 王素娟, 杨慧欣, 赵静. 不同颗粒饲料硬度对实验小鼠生长繁殖、饲料利用率及环境粉尘量的影响[J]. 实验动物与比较医学, 2024, 44(3): 313-320. |
[5] | 刘芸, 冯婷婷, 佟巍, 郭智, 李夏, 孔琪, 向志光. 甘草酸能减轻小鼠肺炎病毒引起的小鼠肺脏损伤[J]. 实验动物与比较医学, 2024, 44(3): 251-258. |
[6] | 胡锦华, 韩菁婕, 金旻, 胡滨, 娄月芬. 葛根素对大鼠和小鼠骨密度影响的Meta分析[J]. 实验动物与比较医学, 2024, 44(2): 149-161. |
[7] | 梁敏, 郭洋, 王津津, 朱梦妍, 池骏, 陈艳娟, 王成稷, 喻智澜, 沈如凌. Dmd基因突变小鼠构建及在肌肉及免疫系统的表型验证[J]. 实验动物与比较医学, 2024, 44(1): 42-51. |
[8] | 郑建华, 法云智, 董巧燕, 邱业峰, 陈菁青. 高原急性缺氧肠道应激损伤小鼠模型的构建与评价[J]. 实验动物与比较医学, 2024, 44(1): 31-41. |
[9] | 唐倩倩, 张秀莉, 常在. 清华大学实验动物中心小鼠自动饮水系统漏水情况统计分析[J]. 实验动物与比较医学, 2024, 44(1): 85-91. |
[10] | 刘欣, 石少波, 张翠, 杨波, 曲川. 小鼠自体动静脉内瘘端侧吻合模型的建立与评价[J]. 实验动物与比较医学, 2023, 43(6): 595-603. |
[11] | 王丹, 张晓璐, 王妍, 傅博, 王文栋, 刘京, 张甦寅, 武怡荷, 吴德国, 杜小燕, 战大伟, 章秀林, 李长龙. Big-BALB/c小鼠亚系选育前后的抗体制备效率比较研究[J]. 实验动物与比较医学, 2023, 43(6): 612-618. |
[12] | 聂永强, 王朝霞. 濒危基因编辑小鼠品系拯救技术及其应用探讨[J]. 实验动物与比较医学, 2023, 43(6): 636-640. |
[13] | 于灵芝, 谢建芸, 冯丽萍, 魏晓锋. 金黄色葡萄球菌荧光定量PCR检测方法的建立及其在大鼠、小鼠粪便检测中的应用[J]. 实验动物与比较医学, 2023, 43(5): 566-573. |
[14] | 王成稷, 王珏, 王海杰, 陆炜晟, 史岩, 顾正页, 万鸣秋, 沈如凌. 乳胶血管灌注技术制作小鼠头面部静脉血管模型方法初探[J]. 实验动物与比较医学, 2023, 43(5): 574-578. |
[15] | 黄缨, 韦思羽, 蔡莉, 强苏静, 李冬婷, 丁玉强. 供应商来源的实验大鼠和小鼠微生物监测结果分析:以复旦大学实验动物科学部为例[J]. 实验动物与比较医学, 2023, 43(4): 347-354. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||