Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (4): 351-357.DOI: 10.12300/j.issn.1674-5817.2022.010
• Animal Models of Human Diseases • Previous Articles Next Articles
Yaohua HU1,2(), Jumei ZHAO1(
)(
), Changhong SHI2(
)(
)
Received:
2022-01-25
Revised:
2022-04-01
Online:
2022-08-25
Published:
2022-09-01
Contact:
Jumei ZHAO, Changhong SHI
CLC Number:
Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins[J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.010
1 | RUDNO-RUDZIŃSKA J, KIELAN W, FREJLICH E, et al. A review on Eph/ephrin, angiogenesis and lymphangiogenesis in gastric, colorectal and pancreatic cancers[J]. Chin J Cancer Res, 2017, 29(4):303-312. DOI:10.21147/j.issn.1000-9604.2017.04.03 . |
2 | O'LEARY D D, WILKINSON D G. Eph receptors and ephrins in neural development[J]. Curr Opin Neurobiol, 1999, 9(1):65-73. DOI:10.1016/s0959-4388(99)80008-7 . |
3 | ORICCHIO E, NANJANGUD G, WOLFE A L, et al. The Eph-receptor A7 is a soluble tumor suppressor for follicular lymphoma[J]. Cell, 2011, 147(3):554-564. DOI:10.1016/j.cell.2011.09.035 . |
4 | KUNG A L. Practices and pitfalls of mouse cancer models in drug discovery[J]. Adv Cancer Res, 2006, 96:191-212. DOI:10.1016/S0065-230X(06)96007-2 . |
5 | STERNER R M, SAKEMURA R, COX M J, et al. GM-CSF inhibition reduces cytokine release syndrome and neuroinflammation but enhances CAR-T cell function in xenografts[J]. Blood, 2019, 133(7):697-709. DOI:10.1182/blood-2018-10-881722 . |
6 | KOPETZ S, LEMOS R, POWIS G. The promise of patient-derived xenografts: the best laid plans of mice and men[J]. Clin Cancer Res, 2012, 18(19):5160-5162. DOI:10.1158/1078-0432.CCR-12-2408 . |
7 | LIN J H, ZENG C T, ZHANG J K, et al. EFNA4 promotes cell proliferation and tumor metastasis in hepatocellular carcinoma through a PIK3R2/GSK3β/β-catenin positive feedback loop[J]. Mol Ther Nucleic Acids, 2021, 25:328-341. DOI:10.1016/j.omtn.2021.06.002 . |
8 | DOPESO H, MATEO-LOZANO S, MAZZOLINI R, et al. The receptor tyrosine kinase EPHB4 has tumor suppressor activities in intestinal tumorigenesis[J]. Cancer Res, 2009, 69(18):7430-7438. DOI:10.1158/0008-5472.CAN-09-0706 . |
9 | ASTIN J W, BATSON J, KADIR S, et al. Competition amongst Eph receptors regulates contact inhibition of locomotion and invasiveness in prostate cancer cells[J]. Nat Cell Biol, 2010, 12(12):1194-1204. DOI:10.1038/ncb2122 . |
10 | MIAO H, LI D Q, MUKHERJEE A, et al. EphA2 mediates ligand-dependent inhibition and ligand-independent promotion of cell migration and invasion via a reciprocal regulatory loop with Akt[J]. Cancer Cell, 2009, 16(1):9-20. DOI:10.1016/j.ccr.2009.04.009 . |
11 | QAZI M A, VORA P, VENUGOPAL C, et al. Cotargeting ephrin receptor tyrosine kinases A2 and A3 in cancer stem cells reduces growth of recurrent glioblastoma[J]. Cancer Res, 2018, 78(17):5023-5037. DOI:10.1158/0008-5472.CAN-18-0267 . |
12 | 王洁. 基于肿瘤标本异种移植模型的胃癌转移相关基因研究[D]. 延安: 延安大学, 2020. DOI:10.27438/d.cnki.gyadu.2020.000548 . |
WANG J. Research of metastasis-related genes derived from gastric cancer patient-derived xenograft models[D].Yan'an :Yan'an University, 2020. DOI:10.27438/d.cnki.gyadu.2020.000548 . | |
13 | LV J H, XIA Q Y, WANG J J, et al. EphB4 promotes the proliferation, invasion, and angiogenesis of human colorectal cancer[J].Exp Mol Pathol, 2016, 100(3):402-408. DOI:10.1016/j.yexmp.2016.03.011 . |
14 | SATO S, VASAIKAR S, ESKAROS A, et al. EPHB2 carried on small extracellular vesicles induces tumor angiogenesis via activation of ephrin reverse signaling[J]. JCI Insight, 2019, 4(23): e132447. DOI:10.1172/jci.insight.132447 . |
15 | LI S, MA Y, XIE C, et al. EphA6 promotes angiogenesis and prostate cancer metastasis and is associated with human prostate cancer progression[J]. Oncotarget, 2015, 6(26): 22587-97. DOI:10.18632/oncotarget.4088 . |
16 | NEUBER C, BELTER B, MEISTER S, et al. Overexpression of receptor tyrosine kinase EphB4 triggers tumor growth and hypoxia in A375 melanoma xenografts: Insights from multitracer small animal imaging experiments[J]. Molecules, 2018, 23(2). DOI:10.3390/molecules23020444 . |
17 | FESTUCCIA C, GRAVINA G L, GIORGIO C, et al. UniPR1331, a small molecule targeting Eph/ephrin interaction, prolongs survival in glioblastoma and potentiates the effect of antiangiogenic therapy in mice[J]. Oncotarget, 2018, 9(36):24347-24363. DOI:10.18632/oncotarget.25272 . |
18 | MIAO B C, JI Z Y, TAN L, et al. EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma[J]. Cancer Discov, 2015, 5(3):274-287. DOI:10.1158/2159-8290.CD-14-0295 . |
19 | YANG X K, YANG Y D, TANG S Q, et al. EphB4 inhibitor overcome the acquired resistance to cisplatin in melanomas xenograft model[J]. J Pharmacol Sci, 2015, 129(1):65-71. DOI:10.1016/j.jphs.2015.08.009 . |
20 | LEUNG H W, LEUNG C O N, LAU E Y, et al. EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma[J]. Cancer Res, 2021, 81(12):3229-3240. DOI:10.1158/0008-5472.can-21-0184 . |
21 | TOOSI B M, ZAWILY A EL, TRUITT L, et al. EPHB6 augments both development and drug sensitivity of triple-negative breast cancer tumours[J]. Oncogene, 2018, 37(30):4073-4093. DOI:10.1038/s41388-018-0228-x . |
22 | ZHANG J L, DU Z Q, PAN S, et al. Overcoming multidrug resistance by codelivery of MDR1-targeting siRNA and doxorubicin using EphA10-mediated pH-sensitive lipoplexes: in vitro and in vivo evaluation[J]. ACS Appl Mater Interfaces, 2018, 10(25):21590-21600. DOI:10.1021/acsami.8b01806 . |
23 | ZHANG J L, YANG C R, PAN S, et al. Eph A10-modified pH-sensitive liposomes loaded with novel triphenylphosphine-docetaxel conjugate possess hierarchical targetability and sufficient antitumor effect both in vitro and in vivo [J]. Drug Deliv, 2018, 25(1):723-737. DOI:10.1080/10717544.2018.1446475 . |
24 | MORILLON Y M 2nd, SABZEVARI A, SCHLOM J, et al. The development of next-generation PBMC humanized mice for preclinical investigation of cancer immunotherapeutic agents[J]. Anticancer Res, 2020, 40(10):5329-5341. DOI:10.21873/anticanres.14540 . |
25 | ZUMWALDE N A, GUMPERZ J E. Modeling human antitumor responses in vivo using umbilical cord blood-engrafted mice[J]. Front Immunol, 2018, 9:54. DOI:10.3389/fimmu.2018.00054 . |
26 | SANMAMED M F, RODRIGUEZ I, SCHALPER K A, et al. Nivolumab and urelumab enhance antitumor activity of human T lymphocytes engrafted in Rag2-/-IL2Rγnull immunodeficient mice[J]. Cancer Res, 2015, 75(17):3466-3478. DOI:10.1158/0008-5472.CAN-14-3510 . |
27 | PREVOST N, WOULFE D, TANAKA T, et al. Interactions between Eph kinases and ephrins provide a mechanism to support platelet aggregation once cell-to-cell contact has occurred[J]. Proc Natl Acad Sci USA, 2002, 99(14):9219-9224. DOI:10.1073/pnas.142053899 . |
28 | BERROU E, SOUKASEUM C, FAVIER R, et al. A mutation of the human EPHB2 gene leads to a major platelet functional defect[J]. Blood, 2018, 132(19):2067-2077. DOI:10.1182/blood-2018-04-845644 . |
29 | BRAUN J, HOFFMANN S C, FELDNER A, et al. Endothelial cell ephrinB2-dependent activation of monocytes in arteriosclerosis[J]. Arterioscler Thromb Vasc Biol, 2011, 31(2):297-305. DOI:10.1161/ATVBAHA.110.217646 . |
30 | ZHOU Q, FACCIPONTE J, JIN M, et al. Humanized NOD-SCID IL2rg–/– mice as a preclinical model for cancer research and its potential use for individualized cancer therapies[J]. Cancer Lett, 2014, 344(1):13-19. DOI: 10.1016/j.canlet. 2013.10.015 . |
31 | ZHANG L, MEISSNER E, CHEN J, et al. Current humanized mouse models for studying human immunology and HIV-1 immuno-pathogenesis[J]. Sci China Life Sci, 2010, 53(2): 195-203. |
32 | CHIARI R, HAMES G, STROOBANT V, et al. Identification of a tumor-specific shared antigen derived from an Eph receptor and presented to CD4 T cells on HLA class Ⅱ molecules[J]. Cancer Res, 2000, 60(17):4855-4863. |
33 | TATSUMI T, HERREM C J, OLSON W C, et al. Disease stage variation in CD4+ and CD8+ T-cell reactivity to the receptor tyrosine kinase EphA2 in patients with renal cell carcinoma[J]. Cancer Res, 2003, 63(15):4481-4489. |
34 | ALVES P M S, FAURE O, GRAFF-DUBOIS S, et al. EphA2 as target of anticancer immunotherapy: identification of HLA-A*0201-restricted epitopes[J]. Cancer Res, 2003, 63(23):8476-8480. |
35 | HART D N. Dendritic cells: unique leukocyte populations which control the primary immune response[J]. Blood, 1997, 90(9):3245-3287. |
36 | YAMAGUCHI S, TATSUMI T, TAKEHARA T, et al. Immunotherapy of murine colon cancer using receptor tyrosine kinase EphA2-derived peptide-pulsed dendritic cell vaccines[J]. Cancer, 2007, 110(7):1469-1477. DOI:10.1002/cncr.22958 . |
37 | YAMAGUCHI S, TATSUMI T, TAKEHARA T, et al. Dendritic cell-based vaccines suppress metastatic liver tumor via activation of local innate and acquired immunity[J]. Cancer Immunol Immunother, 2008, 57(12):1861-1869. DOI:10.1007/s00262-008-0514-5 . |
38 | DOTTI G, GOTTSCHALK S, SAVOLDO B, et al. Design and development of therapies using chimeric antigen receptor-expressing T cells[J]. Immunol Rev, 2014, 257(1):107-126. DOI:10.1111/imr.12131 . |
39 | CHOW K K H, NAIK S, KAKARLA S, et al. T cells redirected to EphA2 for the immunotherapy of glioblastoma[J]. Mol Ther, 2013, 21(3):629-637. DOI:10.1038/mt.2012.210 . |
40 | LI N, LIU S H, SUN M J, et al. Chimeric antigen receptor-modified T cells redirected to EphA2 for the immunotherapy of non-small cell lung cancer[J]. Transl Oncol, 2018, 11(1):11-17. DOI:10.1016/j.tranon.2017.10.009 . |
41 | SHI H, YU F, MAO Y T, et al. EphA2 chimeric antigen receptor-modified T cells for the immunotherapy of esophageal squamous cell carcinoma[J]. J Thorac Dis, 2018, 10(5):2779-2788. DOI:10.21037/jtd.2018.04.91 . |
42 | WANG E N, CESANO A, BUTTERFIELD L H, et al. Improving the therapeutic index in adoptive cell therapy: key factors that impact efficacy[J]. J Immunother Cancer, 2020, 8(2): e001619. DOI:10.1136/jitc-2020-001619 . |
43 | AN Z J, HU Y, BAI Y, et al. Antitumor activity of the third generation EphA2 CAR-T cells against glioblastoma is associated with interferon gamma induced PD-L1[J]. Oncoimmunology, 2021, 10(1):1960728. DOI:10.1080/2162402X. 2021.1960728 . |
44 | KAMOUN W S, DUGAST A S, SUCHY J J, et al. Synergy between EphA2-ILs-DTXp, a novel EphA2-targeted nanoliposomal taxane, and PD-1 inhibitors in preclinical tumor models[J]. Mol Cancer Ther, 2020, 19(1):270-281. DOI:10.1158/1535-7163.MCT-19-0414 . |
45 | YANG W H, CHA J H, XIA W Y, et al. Juxtacrine signaling inhibits antitumor immunity by upregulating PD-L1 expression[J]. Cancer Res, 2018, 78(14):3761-3768. DOI:10.1158/0008-5472.CAN-18-0040 . |
46 | FAWAL M A, JUNGAS T, DAVY A. Inhibition of DHFR targets the self-renewing potential of brain tumor initiating cells[J]. Cancer Lett, 2021, 503:129-137. DOI:10.1016/j.canlet.2021.01.026 . |
47 | MATEO-LOZANO S, BAZZOCCO S, RODRIGUES P, et al. Loss of the EPH receptor B6 contributes to colorectal cancer metastasis[J]. Sci Rep, 2017, 7:43702. DOI:10.1038/srep43702 . |
48 | BHATIA S, HIRSCH K, BAIG N A, et al. Effects of altered ephrin-A5 and EphA4/EphA7 expression on tumor growth in a medulloblastoma mouse model[J]. J Hematol Oncol, 2015, 8:105. DOI:10.1186/s13045-015-0202-9 . |
49 | MOHD-ZIN S W, ABDULLAH N L, ABDULLAH A, et al. Identification of the genomic mutation in Epha4(rb-2J/rb-2J) mice[J]. Genome, 2016, 59(7):439-448. DOI:10.1139/gen-2015-0142 . |
[1] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[4] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[5] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[6] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[7] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[8] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[9] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
[10] | LIN Jiang, LUO Fei, LIU Peng, HAN Siyin, CHEN Zhenxing, LIANG Zhongxiu, LAN Taijin. Research Progress Related to Candidate Treatment Methods and Modeling Factors for Diabetic Animal Models with Skin Injury [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 515-520. |
[11] | WEI Sheng, GENG Xiwen, XU Kaiyong, HU Minghui, ZHOU Miaomiao, LI Zifa. Application of Sandwich Teaching Method Based on Internet Interactive Platform in Teaching of Medical Experimental Zoology [J]. Laboratory Animal and Comparative Medicine, 2021, 41(3): 266-270. |
[12] | LI Feng, LI Shun, REN Xiaonan, ZHOU Xiaohui. A Brief Review on Development and Application of Animal Models of Emerging Infectious Diseases Caused by Three Genus Viruses [J]. Laboratory Animal and Comparative Medicine, 2020, 40(3): 173-. |
[13] | GAO Shiping, LI Feng, ZHA Sifan. High-fat Diet Induced Cynomolgus Monkey Model of Non-alcoholic Fatty Liver Disease [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 123-127. |
[14] | XIA Mengxiong, HAN Haihui, LIANG Qianqian, ZHAI Weitao, XU Hao. Research Progress on Animal Models of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 159-165. |
[15] | DONG Guoju, LIU Jiangang, Guan Jie. The Research Progress of Pathological Characteristics of Animal Models with Heart Failure with Ejection Fraction Preservation [J]. Laboratory Animal and Comparative Medicine, 2020, 40(1): 74-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||