Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (4): 342-350.DOI: 10.12300/j.issn.1674-5817.2021.122
• Animal Models of Human Diseases • Previous Articles Next Articles
Zhejin SHENG1(), Limei LI2(
)(
)
Received:
2021-07-19
Revised:
2021-11-17
Online:
2022-08-25
Published:
2022-09-01
Contact:
Limei LI
CLC Number:
Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease[J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.122
模型类型 Model type | 举例 Example | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
自然模型 Natural models | 老年猕猴 | 与人类的发育相似,自发地表现出明显的AD相关神经病变 | 造模时间长,且某些个体生殖能力低 |
遗传修饰模型 Genetically modified models | Tg2576 | 有β-淀粉样蛋白斑块、突触丧失及认知功能障碍 | 每个遗传模型不能显示所有AD相关基因的作用 |
诱导模型 Induced models | 脑室内β-淀粉样蛋白灌注 | 表现出部分AD特征,如胆碱能功能丧失 | 不能显示AD的所有典型特征 |
Table 1 Advantages and disadvantages of three types of Alzheimer's disease (AD) animal models
模型类型 Model type | 举例 Example | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
自然模型 Natural models | 老年猕猴 | 与人类的发育相似,自发地表现出明显的AD相关神经病变 | 造模时间长,且某些个体生殖能力低 |
遗传修饰模型 Genetically modified models | Tg2576 | 有β-淀粉样蛋白斑块、突触丧失及认知功能障碍 | 每个遗传模型不能显示所有AD相关基因的作用 |
诱导模型 Induced models | 脑室内β-淀粉样蛋白灌注 | 表现出部分AD特征,如胆碱能功能丧失 | 不能显示AD的所有典型特征 |
模型名称 Name of model | 基因/小鼠类型 Type of gene/mouse | 神经病理学特征 Characteristics of neuoropathology | 行为/认知障碍 |
---|---|---|---|
PDAPP | APP* | 海马、大脑皮层胶质增生(3~4月龄),营养不良性神经突,海马的突触和树突减少 | 物体识别,空间记忆受损(3月龄),暗示条件恐惧反射受损(11月龄) |
APP V717I | APP* | Aβ斑块(10月龄),脑血管内淀粉样蛋白沉积(15月龄),淀粉样蛋白相关炎症,营养不良性神经突,过度磷酸化的Tau蛋白,无NFTs | 空间和非空间定向及记忆障碍(6月龄),焦虑/不安情绪加重(2月龄),多动症和攻击性 |
G2576 | APP* | Aβ斑块(6~9月龄),氧化脂质损伤、星形胶质细胞增生和小胶质细胞增生(11~13月龄) | 空间学习、工作记忆和条件化情景恐惧受损(6月龄),认知功能进行性损伤(12月龄) |
APP23 | APP* | Aβ斑块(6月龄),过度磷酸化Tau,无NFTs,营养不良性神经突,海马CA1区神经元丢失,CAA | 空间记忆缺陷(3月龄),被动回避的记忆缺陷(25月龄) |
J20 (PDGF-APPSw, Ind) | APP* | Aβ斑块,营养不良性神经突,无NFTs,细胞减少丢失,突触的标志物减少,补体免疫反应增加 | 学习和记忆障碍(4月龄),多动,记忆缺陷(6月龄) |
5×FAD | APP*, PSEN1* | Aβ斑块(2月龄),胶质增生和突触变性,大脑皮层V区神经元丢失 | 记忆和暗示与关联条件恐惧受损(6月龄) |
APP (V717I) ×PS1 (A246E) | APP&, PSEN1* | 可溶性Aβ寡聚物(2月龄),Aβ斑块(6~9月龄),淀粉样蛋白相关炎症,CAA(8月龄),异常磷酸化Tau蛋白,营养不良性神经突,但无NFTs | 空间和非空间定向及记忆障碍(5月龄),联想学习障碍、多动症、焦虑和攻击性 |
APPswe/PSEN1dE9 (line 85) | APP*, PSEN1* | Aβ斑块(6月龄),神经元中度丢失(8~10月龄),无NFTs,突触标志物减少和补体免疫反应性增加 | 认知和情境记忆障碍(6月龄),空间学习障碍(12月龄),筑巢、挖洞等自发行为改变 |
Tg2576/Tau(P301L) (APPSwe-Tau) | APP*, MAPT* | Aβ斑块整个皮质、海马体和杏仁核(9月龄),星形细胞和小胶质细胞增多,CAA和NFTs(9~11月龄) | 运动障碍(4~6月龄) |
PLB1-triple (hAPP/hTau/hPS1) | APP&, MAPT&, PSEN1& | Aβ寡聚体,海马和皮质过度磷酸化Tau蛋白(6月龄),无明显NFTs,脑皮层代谢低下,基底前脑和腹中脑代谢活性增加 | 认知记忆和空间学习缺陷(5月龄),海马的结构可塑性受损 |
3×Tg | APP*, PSEN1*, MAPT* | Aβ斑块(6月龄),NFTs(12月龄),突触功能障碍,突触可塑性缺陷 | 记忆缺陷,暗示与关联条件恐惧受损(4~5月龄) |
hTau | mMAPT#, hMAPT* | NFTs(6月龄),NFTs和神经元丢失(15月龄) | 工作记忆和空间记忆的缺陷(12月龄) |
rTg (TauP301L) 4510 | MAPT* | 无NFTs和神经元丢失(4~6月龄) | 空间记忆减退和新物体识别障碍(1.5~4月龄),暗示与关联条件恐惧受损 |
APOE4 Knock-In§ | APOE$ | 大脑及血清中APOE水平显著高;禁食6 h后,血清胆固醇和三酰甘油升高 | 无数据 |
PS1£ | PSEN1* | 无严重的神经病理学异常(24月龄) | 记忆未受影响(24月龄) |
Table 2 15 common genetically modified mouse models of Alzheimer's disease (AD)
模型名称 Name of model | 基因/小鼠类型 Type of gene/mouse | 神经病理学特征 Characteristics of neuoropathology | 行为/认知障碍 |
---|---|---|---|
PDAPP | APP* | 海马、大脑皮层胶质增生(3~4月龄),营养不良性神经突,海马的突触和树突减少 | 物体识别,空间记忆受损(3月龄),暗示条件恐惧反射受损(11月龄) |
APP V717I | APP* | Aβ斑块(10月龄),脑血管内淀粉样蛋白沉积(15月龄),淀粉样蛋白相关炎症,营养不良性神经突,过度磷酸化的Tau蛋白,无NFTs | 空间和非空间定向及记忆障碍(6月龄),焦虑/不安情绪加重(2月龄),多动症和攻击性 |
G2576 | APP* | Aβ斑块(6~9月龄),氧化脂质损伤、星形胶质细胞增生和小胶质细胞增生(11~13月龄) | 空间学习、工作记忆和条件化情景恐惧受损(6月龄),认知功能进行性损伤(12月龄) |
APP23 | APP* | Aβ斑块(6月龄),过度磷酸化Tau,无NFTs,营养不良性神经突,海马CA1区神经元丢失,CAA | 空间记忆缺陷(3月龄),被动回避的记忆缺陷(25月龄) |
J20 (PDGF-APPSw, Ind) | APP* | Aβ斑块,营养不良性神经突,无NFTs,细胞减少丢失,突触的标志物减少,补体免疫反应增加 | 学习和记忆障碍(4月龄),多动,记忆缺陷(6月龄) |
5×FAD | APP*, PSEN1* | Aβ斑块(2月龄),胶质增生和突触变性,大脑皮层V区神经元丢失 | 记忆和暗示与关联条件恐惧受损(6月龄) |
APP (V717I) ×PS1 (A246E) | APP&, PSEN1* | 可溶性Aβ寡聚物(2月龄),Aβ斑块(6~9月龄),淀粉样蛋白相关炎症,CAA(8月龄),异常磷酸化Tau蛋白,营养不良性神经突,但无NFTs | 空间和非空间定向及记忆障碍(5月龄),联想学习障碍、多动症、焦虑和攻击性 |
APPswe/PSEN1dE9 (line 85) | APP*, PSEN1* | Aβ斑块(6月龄),神经元中度丢失(8~10月龄),无NFTs,突触标志物减少和补体免疫反应性增加 | 认知和情境记忆障碍(6月龄),空间学习障碍(12月龄),筑巢、挖洞等自发行为改变 |
Tg2576/Tau(P301L) (APPSwe-Tau) | APP*, MAPT* | Aβ斑块整个皮质、海马体和杏仁核(9月龄),星形细胞和小胶质细胞增多,CAA和NFTs(9~11月龄) | 运动障碍(4~6月龄) |
PLB1-triple (hAPP/hTau/hPS1) | APP&, MAPT&, PSEN1& | Aβ寡聚体,海马和皮质过度磷酸化Tau蛋白(6月龄),无明显NFTs,脑皮层代谢低下,基底前脑和腹中脑代谢活性增加 | 认知记忆和空间学习缺陷(5月龄),海马的结构可塑性受损 |
3×Tg | APP*, PSEN1*, MAPT* | Aβ斑块(6月龄),NFTs(12月龄),突触功能障碍,突触可塑性缺陷 | 记忆缺陷,暗示与关联条件恐惧受损(4~5月龄) |
hTau | mMAPT#, hMAPT* | NFTs(6月龄),NFTs和神经元丢失(15月龄) | 工作记忆和空间记忆的缺陷(12月龄) |
rTg (TauP301L) 4510 | MAPT* | 无NFTs和神经元丢失(4~6月龄) | 空间记忆减退和新物体识别障碍(1.5~4月龄),暗示与关联条件恐惧受损 |
APOE4 Knock-In§ | APOE$ | 大脑及血清中APOE水平显著高;禁食6 h后,血清胆固醇和三酰甘油升高 | 无数据 |
PS1£ | PSEN1* | 无严重的神经病理学异常(24月龄) | 记忆未受影响(24月龄) |
造模方式Modeling method | 表型Phenotype |
---|---|
脑室内注射β-淀粉样蛋白 | 急性或慢性脑室内注射或海马内注射Aβ40、β42或FAB(亚铁淀粉样丁硫氨酸)引起学习和认知障碍 |
雌性大鼠去卵巢后海马区注射β-淀粉样蛋白片段25-35 | 短记忆和空间记忆功能恶化,皮质醇水平升高,并伴有葡萄糖、脂质和骨代谢异常,空腹胰岛素抵抗 |
脑室内注射链脲佐菌素 | 与AD相似的进行性记忆丧失 |
脑室内注射软海绵酸 | 脑室内注射软海绵酸14 d导致p-Tau和Aβ的增加,造成认知障碍 |
脑室内注射AF64A | 胆碱毒素选择性地降低乙酰胆碱、乙酰胆碱酯酶、胆碱乙酰转移酶、乙酰胆碱酯酶、钾离子水平,并可减少哇巴因刺激的乙酰胆碱酯酶释放水平 |
侧脑室注射192-IgG-saporin | 免疫毒素造成持续性损伤,造成胆碱能通路受损,出现认知障碍 |
鹅膏蕈氨酸和其他兴奋性毒素(NMDA、喹啉酸、红藻氨酸和奎司喹酸) | 单独使用兴奋性毒素或与Aβ联用可引起海马胆碱能神经元丢失,出现认知功能障碍 |
腹腔注射东莨菪碱 | 学习障碍 |
缺氧/中风 | 记忆障碍,血管性痴呆 |
Table 3 Common intervention models of Alzheimer's disease (AD)
造模方式Modeling method | 表型Phenotype |
---|---|
脑室内注射β-淀粉样蛋白 | 急性或慢性脑室内注射或海马内注射Aβ40、β42或FAB(亚铁淀粉样丁硫氨酸)引起学习和认知障碍 |
雌性大鼠去卵巢后海马区注射β-淀粉样蛋白片段25-35 | 短记忆和空间记忆功能恶化,皮质醇水平升高,并伴有葡萄糖、脂质和骨代谢异常,空腹胰岛素抵抗 |
脑室内注射链脲佐菌素 | 与AD相似的进行性记忆丧失 |
脑室内注射软海绵酸 | 脑室内注射软海绵酸14 d导致p-Tau和Aβ的增加,造成认知障碍 |
脑室内注射AF64A | 胆碱毒素选择性地降低乙酰胆碱、乙酰胆碱酯酶、胆碱乙酰转移酶、乙酰胆碱酯酶、钾离子水平,并可减少哇巴因刺激的乙酰胆碱酯酶释放水平 |
侧脑室注射192-IgG-saporin | 免疫毒素造成持续性损伤,造成胆碱能通路受损,出现认知障碍 |
鹅膏蕈氨酸和其他兴奋性毒素(NMDA、喹啉酸、红藻氨酸和奎司喹酸) | 单独使用兴奋性毒素或与Aβ联用可引起海马胆碱能神经元丢失,出现认知功能障碍 |
腹腔注射东莨菪碱 | 学习障碍 |
缺氧/中风 | 记忆障碍,血管性痴呆 |
行为测试实验 Behavioral validation test | 测试的认知能力 Cognitive domains | 注释 Description |
---|---|---|
Morris水迷宫 Morris water maze | 空间参考记忆和工作记忆 | 根据在水箱外部学习到的视觉线索,测定大鼠或小鼠在装有不透明液体的圆形水箱中找到稳定平台的能力。找到这些平台所需的时间是衡量认知功能的主要指标。该模型是检测海马空间记忆缺陷最常见的行为测试方法之一 |
放射臂迷宫 Radial arm maze | 空间参考记忆和工作记忆 | 有6~8条手臂从中心空间放射出来的迷宫。其中一只手臂含有动物找到后可以得到的奖励食物 |
巴恩斯迷宫实验 Barnes maze | 空间参考记忆和工作记忆 | 圆形桌子边缘最多有20个圆孔,每个圆孔都有视觉提示,其中一个下方有一个“逃生箱”,啮齿动物可以通过桌面上相应的孔进入。由于啮齿动物对开放空间厌恶,此模型可以促使动物寻找逃生箱 |
场景恐惧实验 Cued and contextual fear conditioning | 空间参考记忆和背景记忆 | 将一个特定的无倾向性的条件刺激与一个厌恶的无条件刺激联系起来,让动物表现出条件反应。具体操作如下:啮齿动物被放置在一个调节室中,给予条件刺激(听觉线索)和厌恶的非条件刺激(电击);休息一段时间后,动物暴露在同一个调节室和一个不同形状的环境空间中,出现听觉线索,观察动物出现冻结行为的情况。冻结行为是一种常见的对恐惧情境的反应,可以作为恐惧记忆的衡量指标 |
新物体识别实验 Novel object recognition | 识别记忆 | 利用啮齿动物自发倾向于探索新物体的本能而建立模型。啮齿动物放置在测试空间探索并适应24 h后,在空间内等距放置两个相同的物体。第2天,这些动物被放在开阔的场地里,面对熟悉的物体和新奇的物体(高度和体积一致,但形状和外观不同),测试它们的长期识别记忆能力 |
Table 4 Behavioral validation tests for animal models of Alzheimer's disease (AD)
行为测试实验 Behavioral validation test | 测试的认知能力 Cognitive domains | 注释 Description |
---|---|---|
Morris水迷宫 Morris water maze | 空间参考记忆和工作记忆 | 根据在水箱外部学习到的视觉线索,测定大鼠或小鼠在装有不透明液体的圆形水箱中找到稳定平台的能力。找到这些平台所需的时间是衡量认知功能的主要指标。该模型是检测海马空间记忆缺陷最常见的行为测试方法之一 |
放射臂迷宫 Radial arm maze | 空间参考记忆和工作记忆 | 有6~8条手臂从中心空间放射出来的迷宫。其中一只手臂含有动物找到后可以得到的奖励食物 |
巴恩斯迷宫实验 Barnes maze | 空间参考记忆和工作记忆 | 圆形桌子边缘最多有20个圆孔,每个圆孔都有视觉提示,其中一个下方有一个“逃生箱”,啮齿动物可以通过桌面上相应的孔进入。由于啮齿动物对开放空间厌恶,此模型可以促使动物寻找逃生箱 |
场景恐惧实验 Cued and contextual fear conditioning | 空间参考记忆和背景记忆 | 将一个特定的无倾向性的条件刺激与一个厌恶的无条件刺激联系起来,让动物表现出条件反应。具体操作如下:啮齿动物被放置在一个调节室中,给予条件刺激(听觉线索)和厌恶的非条件刺激(电击);休息一段时间后,动物暴露在同一个调节室和一个不同形状的环境空间中,出现听觉线索,观察动物出现冻结行为的情况。冻结行为是一种常见的对恐惧情境的反应,可以作为恐惧记忆的衡量指标 |
新物体识别实验 Novel object recognition | 识别记忆 | 利用啮齿动物自发倾向于探索新物体的本能而建立模型。啮齿动物放置在测试空间探索并适应24 h后,在空间内等距放置两个相同的物体。第2天,这些动物被放在开阔的场地里,面对熟悉的物体和新奇的物体(高度和体积一致,但形状和外观不同),测试它们的长期识别记忆能力 |
1 | 张淇, 贾杰. 阿尔茨海默病功能障碍康复现状[J]. 中国医刊, 2021, 56(1):16-18. DOI:10.3969/j.issn.1008-1070.2021.01.005 . |
ZHANG Q, JIA J. Status of rehabilitation of dysfunction in Alzheimer's disease[J]. Chin J Med, 2021, 56(1):16-18. DOI:10.3969/j.issn.1008-1070.2021.01.005 . | |
2 | SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284):1577-1590. DOI:10.1016/S0140-6736(20)32205-4 . |
3 | MÖLLER H J, GRAEBER M B. The case described by Alois Alzheimer in 1911[J]. European Archives of Psychiatry and Clinical Neurosciences, 1998, 248:111-122. DOI:10.1007/s004060050027 . |
4 | 肖义军, 陈莉莉. 阿尔茨海默症及其预防措施概述[J]. 生物学教学, 2020, 45(10):2-4. DOI:10.3969/j.issn.1004-7549.2020.10.001 . |
XIAO Y J, CHEN L L. Overview of Alzheimer's disease and its preventive meassures[J]. Biol Teach, 2020, 45(10):2-4. DOI:10.3969/j.issn.1004-7549.2020.10.001 . | |
5 | 刘畅, 封海霞, 沈萍, 等. 阿尔茨海默病的症状、诊断及其护理[J]. 基因组学与应用生物学, 2021, 40(3):1435-1440. DOI:10.13417/j.gab.040.001435 . |
LIU C, FENG H X, SHEN P, et al. Symptoms, diagnosis and nursing of Alzheimer's disease[J]. Genom Appl Biol, 2021, 40(3):1435-1440. DOI:10.13417/j.gab.040.001435 . | |
6 | KIM L D, FACTORA R M. Alzheimer dementia: starting, stopping drug therapy[J]. Cleve Clin J Med, 2018, 85(3):209-214. DOI:10.3949/ccjm.85a.16080 . |
7 | ZANNI R, GARCIA-DOMENECH R, GALVEZ-LLOMPART M, et al. Alzheimer: a decade of drug design. why molecular topology can be an extra edge? [J]. Curr Neuropharmacol, 2018, 16(6):849-864. DOI:10.2174/1570159X15666171129102042 . |
8 | 唐丽娜, 许小明, 李艳红. 阿尔茨海默病发病机制研究进展[J]. 中国老年学杂志, 2016, 36(10):2545-2548. DOI:10.3969/j.issn.1005-9202.2016.10.111 . |
TANG L N, XU X M, LI Y H. Research progress on pathogenesis of Alzheimer's disease[J]. Chin J Gerontol, 2016, 36(10):2545-2548. DOI:10.3969/j.issn.1005-9202.2016.10.111 . | |
9 | GÖTZ J, ITTNER L M. Animal models of Alzheimer's disease and frontotemporal dementia[J]. Nat Rev Neurosci, 2008, 9(7):532-544. DOI:10.1038/nrn2420 . |
10 | GALLARDO G, HOLTZMAN D M. Amyloid-β and tau at the crossroads of Alzheimer's disease[J]. Adv Exp Med Biol, 2019, 1184:187-203. DOI:10.1007/978-981-32-9358-8_16 . |
11 | 马登磊, 张兰. P301S突变tau转基因动物模型及其应用[J]. 实验动物与比较医学, 2017, 37(6):491-496. DOI:10.3969/j.issn.1674-5817.2017.06.015 . |
MA D L, ZHANG L. P301S mutant tau transgenic mouse and their applications[J]. Lab Animal Comp Med, 2017, 37(6):491-496. DOI:10.3969/j.issn.1674-5817.2017.06.015 . | |
12 | BASTIN C, DELHAYE E, MOULIN C, et al. Novelty processing and memory impairment in Alzheimer's disease: a review[J]. Neurosci Biobehav Rev, 2019, 100:237-249. DOI:10.1016/j.neubiorev.2019.02.021 . |
13 | 王金秀, 高凡, 孙慧珍, 等. Aβ对阿尔茨海默病影响机制的研究进展[J]. 生命科学研究, 2021, 25(1):53-57, 79. DOI:10.16605/j.cnki.1007-7847.2020.05.0185 . |
WANG J X, GAO F, SUN H Z, et al. Research progress on mechanisms of aβ effects on Alzheimer's disease[J]. Life Sci Res, 2021, 25(1):53-57, 79. DOI:10.16605/j.cnki.1007-7847.2020.05.0185 . | |
14 | SELKOE D J, HARDY J. The amyloid hypothesis of Alzheimer's disease at 25 years[J]. EMBO Mol Med, 2016, 8(6):595-608. DOI:10.15252/emmm.201606210 . |
15 | VASCONCELOS-FILHO F S L, ROCHA OLIVEIRA L C DA, DE FREITAS T B C, et al. Neuroprotective mechanisms of chronic physical exercise via reduction of β-amyloid protein in experimental models of Alzheimer's disease: a systematic review[J]. Life Sci, 2021, 275:119372. DOI:10.1016/j.lfs.2021.119372 . |
16 | TOLAR M, ABUSHAKRA S, SABBAGH M. The path forward in Alzheimer's disease therapeutics: Reevaluating the amyloid cascade hypothesis[J]. Alzheimer's Dement, 2019 DOI:10.1016/j.jalz.2019.09.075 . |
17 | 李瑞力, 杨明飞. P-tau蛋白在颅脑损伤及相关神经退行性病中的研究进展[J]. 医学研究生学报, 2017, 30(8):889-892. DOI:10.16571/j.cnki.1008-8199.2017.08.022 . |
LI R L, YANG M F. The latest progress of p-tau conformations in traumatic brain injury and relevant neurodegeneration[J]. J Med Postgrad, 2017, 30(8):889-892. DOI:10.16571/j.cnki.1008-8199.2017.08.022 . | |
18 | CANEPA E, FOSSATI S. Impact of tau on neurovascular pathology in Alzheimer's disease[J]. Front Neurol, 2021, 11:573324. DOI:10.3389/fneur.2020.573324 . |
19 | GOEDERT M. Tau filaments in neurodegenerative diseases[J]. FEBS Lett, 2018, 592(14):2383-2391. DOI:10.1002/1873-3468.13108 . |
20 | FAN D Y, SUN H L, SUN P Y, et al. The correlations between plasma fibrinogen with amyloid-beta and tau levels in patients with Alzheimer's disease[J]. Front Neurosci, 2021, 14:625844. DOI:10.3389/fnins.2020.625844 . |
21 | 张薇, 刘会, 张亚岚, 等. 炎症在阿尔茨海默病中作用机制的研究进展[J]. 生命科学研究, 2021, 25(2):144-150. DOI:10.16605/j.cnki.1007-7847.2020.09.0248 . |
ZHANG W, LIU H, ZHANG Y L, et al. Research progresses on mechanisms of inflammation in Alzheimer's disease[J]. Life Sci Res, 2021, 25(2):144-150. DOI:10.16605/j.cnki.1007-7847.2020.09.0248 . | |
22 | DEARDORFF W J, GROSSBERG G T. Targeting neuroinflammation in Alzheimer's disease: evidence for NSAIDs and novel therapeutics[J]. Expert Rev Neurother, 2017, 17(1):17-32. DOI:10.1080/14737175.2016.1200972 . |
23 | DE LA MONTE S M, WANDS J R. Alzheimer's disease is type 3 diabetes-evidence reviewed[J]. J Diabetes Sci Technol, 2008, 2(6):1101-1113. DOI:10.1177/193229680800200619 . |
24 | RORBACH-DOLATA A, PIWOWAR A. Neurometabolic evidence supporting the hypothesis of increased incidence of type 3 diabetes mellitus in the 21st century[J]. Biomed Res Int, 2019, 2019:1435276. DOI:10.1155/2019/1435276 . |
25 | DORSZEWSKA J, PRENDECKI M, OCZKOWSKA A, et al. Molecular basis of familial and sporadic Alzheimer's disease[J]. Curr Alzheimer Res, 2016, 13(9):952-963. DOI:10.2174/1567205013666160314150501 . |
26 | SHASTRY B S. Molecular genetics of familial alzheimer disease[J]. Am J Med Sci, 1998, 315(4):266-272. DOI:10.1016/S0002-9629(15)40324-6 . |
27 | GOATE A, CHARTIER-HARLIN M C, MULLAN M, et al. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease[J]. Nature, 1991, 349(6311):704-706. DOI:10.1038/349704a0 . |
28 | MULLAN M, CRAWFORD F, AXELMAN K, et al. A pathogenic mutation for probable Alzheimer's disease in the APP gene at the N–terminus of β–amyloid[J]. Nat Genet, 1992, 1(5):345-347. DOI:10.1038/ng0892-345 . |
29 | CAMPION D, DUMANCHIN C, HANNEQUIN D, et al. Early-onset autosomal dominant alzheimer disease: prevalence, genetic heterogeneity, and mutation spectrum[J]. Am J Hum Genet, 1999, 65(3):664-670. DOI:10.1086/302553 . |
30 | HUTTON M, LENDON C L, RIZZU P, et al. Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17[J]. Nature, 1998, 393(6686):702-705. DOI:10.1038/31508 . |
31 | GUO T, NOBLE W, HANGER D P. Roles of tau protein in health and disease[J]. Acta Neuropathol, 2017, 133(5):665-704. DOI:10.1007/s00401-017-1707-9 . |
32 | SERRANO-POZO A, DAS S, HYMAN B T. APOE and Alzheimer's disease: advances in genetics, pathophysiology, and therapeutic approaches[J]. Lancet Neurol, 2021, 20(1):68-80. DOI:10.1016/S1474-4422(20)30412-9 . |
33 | 冯荣芳, 冯亚青, 吕佩源. 阿尔茨海默病动物模型研究进展[J]. 脑与神经疾病杂志, 2008, 16(6):724-726. DOI:10.3969/j.issn.1006-351X.2008.06.025 . |
FENG R F, FENG Y Q, LÜ P Y. Research progress of animal models of Alzheimer's disease[J]. J Brain Nerv Dis, 2008, 16(6):724-726. DOI:10.3969/j.issn.1006-351X.2008.06.025 . | |
34 | SALAZAR C, VALDIVIA G, ARDILES Á O, et al. Genetic variants associated with neurodegenerative Alzheimer disease in natural models[J].Biol Res, 2016, 49(1):1-9. DOI:10.1186/s40659-016-0072-9 . |
35 | LIU B, LIU J, SHI J S. SAMP8 mice as a model of age-related cognition decline with underlying mechanisms in Alzheimer's disease[J]. J Alzheimers Dis, 2020, 75(2):385-395. DOI:10.3233/JAD-200063 . |
36 | BILKEI-GORZO A. Genetic mouse models of brain ageing and Alzheimer's disease[J]. Pharmacol Ther, 2014, 142(2):244-257. DOI:10.1016/j.pharmthera.2013.12.009 . |
37 | GÖTZ J, SCHILD A, HOERNDLI F, et al. Amyloid-induced neurofibrillary tangle formation in Alzheimer's disease: insight from transgenic mouse and tissue-culture models[J]. Int J Dev Neurosci, 2004, 22(7):453-465. DOI:10.1016/j.ijdevneu.2004.07.013 . |
38 | AUDRAIN M, HAURE-MIRANDE J V, MLECZKO J, et al. Reactive or transgenic increase in microglial TYROBP reveals a TREM2-independent TYROBP-APOE link in wild-type and Alzheimer's-related mice[J]. Alzheimers Dement, 2021, 17(2):149-163. DOI:10.1002/alz.12256 . |
39 | GOODARZI P, PAYAB M, ALAVI-MOGHADAM S, et al. Development and validation of Alzheimer's disease animal model for the purpose of regenerative medicine[J]. Cell Tissue Bank, 2019, 20(2):141-151. DOI:10.1007/s10561-019-09773-8 . |
40 | DAVIS S, LAROCHE S. What can rodent models tell us about cognitive decline in Alzheimer's disease? [J]. Mol Neurobiol, 2003, 27(3):249-276. DOI:10.1385/MN: 27:3: 249 . |
41 | MASUDA A, KOBAYASHI Y, Automated ITOHARA S., long-term behavioral assay for cognitive functions in multiple genetic models of Alzheimer's disease, IntelliCage using [J]. J Vis Exp, 2018(138):58009. DOI:10.3791/58009 . |
42 | SCARFE L, BRILLANT N, KUMAR J D, et al. Preclinical imaging methods for assessing the safety and efficacy of regenerative medicine therapies[J]. Npj Regen Med, 2017, 2:28. DOI:10.1038/s41536-017-0029-9 . |
43 | SALMON E, BERNARD IR C, HUSTINX R. Pitfalls and limitations of PET/CT in brain imaging[J]. Semin Nucl Med, 2015, 45(6):541-551. DOI:10.1053/j.semnuclmed.2015.03.008 . |
44 | FRISONI G B, FOX N C, JACK C R, et al. The clinical use of structural MRI in Alzheimer disease[J]. Nat Rev Neurol, 2010, 6(2):67-77. DOI:10.1038/nrneurol.2009.215 . |
45 | AGOSTA F, CANU E, FILIPPI M. Virtual reality and real-time neurofeedback functional MRI: a breakthrough in foreseeing Alzheimer's disease? [J]. Brain, 2020, 143(3):722-726. DOI:10.1093/brain/awaa038 . |
46 | MARCUS C, MENA E, SUBRAMANIAM R M. Brain PET in the diagnosis of Alzheimer's disease[J]. Clin Nucl Med, 2014, 39(10): e413-e422; quiz e423-6. DOI:10.1097/RLU. 0000000000000547 . |
47 | REIMAN E M, JAGUST W J. Brain imaging in the study of Alzheimer's disease[J]. NeuroImage, 2012, 61(2):505-516. DOI:10.1016/j.neuroimage.2011.11.075 . |
48 | KARRAN E, DE STROOPER B. The amyloid cascade hypothesis: are we poised for success or failure? [J]. J Neurochem, 2016, 139():237-252. DOI:10.1111/jnc.13632 . |
49 | LESNE S, KOH M T, KOTILINEK L, et al. A specific amyloid-beta protein assembly in the brain impairs memory[J]. Nature, 2006, 440(7082):352-357. DOI:10.1038/nature04533 . |
50 | RICCIARELLI R, FEDELE E. The amyloid cascade hypothesis in Alzheimer's disease: it's time to change our mind[J]. Curr Neuropharmacol, 2017, 15(6):926-935. DOI:10.2174/1570159X15666170116143743 . |
51 | ROBERTS R O, CHRISTIANSON T J H, KREMERS W K, et al. Association between olfactory dysfunction and amnestic mild cognitive impairment and alzheimer disease dementia[J]. JAMA Neurol, 2016, 73(1):93-101. DOI:10.1001/jamaneurol. 2015.2952 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Shuo WANG, Yunhui LÜ, Xiaokang WANG, Zhenhao ZHANG, Yongchun CUI. Construction and Verification of Quality Evaluation Indicator System for Extracorporeal Membrane Oxygenation Animal Experimental Platform [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 604-611. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[6] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[7] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[8] | Honghua XU, Tian JIN, Hai WANG, Mengying SHEN, Rui WANG, Yijia ZHOU, Ying TAN. Influence of Corneal Staining in Rabbits on the Evaluation of Eye Irritation Test Results [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 307-313. |
[9] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[10] | Chenghan MEI, Beibei CHEN. Research Progress on Neuroprotective Effects and Mechanisms of Glucagon-like Peptide 1 Analogues in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 186-193. |
[11] | Danyang YIN, Yi HU, Rengfei SHI. Advances in Animal Aging Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 156-162. |
[12] | Haosheng WU, Hang SU, Chao ZHU, Wenhui WANG, Shengbing WU, Shuai CUI, Meiqi ZHOU. Research Progress of Animal Models of Stress Cardiomyopathy [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 173-179. |
[13] | Liya YANG, Tao SONG, Jialin HE, Yiming GUO, Mingkang QI, Hanbi WANG, Huiping WANG. Establishment of a Vaginal Atrophy Rat Model and its Application in Pharmacodynamic Evaluation [J]. Laboratory Animal and Comparative Medicine, 2022, 42(6): 531-540. |
[14] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[15] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||