Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 398-405.DOI: 10.12300/j.issn.1674-5817.2023.021
• Animal Models of Human Diseases • Previous Articles Next Articles
Rui ZHANG1()(), Meiyu LÜ1, Jianjun ZHANG1()(), Jinlian LIU1, Yan CHEN2, Zhiqiang HUANG2, Yao LIU2, Lanhua ZHOU3()()
Received:
2023-02-17
Revised:
2023-04-10
Online:
2023-08-25
Published:
2023-09-14
Contact:
Jianjun ZHANG, Lanhua ZHOU
CLC Number:
Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.021
造模方法 Establishment method | 造模药物或材料 Establishment drugs or materials | 适用动物 Target animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
细菌感染致炎 Bacterial inflammation | 痤疮丙酸杆菌菌液、金黄色葡萄球菌菌液 | 家兔、大鼠、小鼠 | 最接近痤疮发病过程 | 痤疮丙酸杆菌无法大量繁殖;金黄色葡萄球菌产生的致炎物质与人类痤疮发病过程中的致炎物质不一致 |
化学诱导致炎 Induced by chemical drugs | 巴豆油、二甲苯、角叉菜胶、二硝基氯苯、油酸、睾酮 | 家兔、大鼠、小鼠 | 操作简单;致炎明显 | 与痤疮发病致炎机制不同;更接近于皮炎 |
异物注射或移植 Foreign matter injecting or grafting | 人角质细胞、人皮脂腺细胞、人类皮肤组织 | 豚鼠、裸鼠 | 致炎物质与人类角质细胞微环境相同;造模周期短 | 存在免疫排斥反应;移植操作复杂 |
天然模型 Natural acne models | — | 金黄仓鼠、犀牛小鼠、京都犀牛大鼠、墨西哥无毛犬、小型猪 | 无需造模;可用于痤疮药物筛选 | 部分模拟痤疮发病状态;不太适用于痤疮治疗和发病机制研究 |
Table 1 Common methods of establishing animal models of acne and their advantages and disadvantages
造模方法 Establishment method | 造模药物或材料 Establishment drugs or materials | 适用动物 Target animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|---|
细菌感染致炎 Bacterial inflammation | 痤疮丙酸杆菌菌液、金黄色葡萄球菌菌液 | 家兔、大鼠、小鼠 | 最接近痤疮发病过程 | 痤疮丙酸杆菌无法大量繁殖;金黄色葡萄球菌产生的致炎物质与人类痤疮发病过程中的致炎物质不一致 |
化学诱导致炎 Induced by chemical drugs | 巴豆油、二甲苯、角叉菜胶、二硝基氯苯、油酸、睾酮 | 家兔、大鼠、小鼠 | 操作简单;致炎明显 | 与痤疮发病致炎机制不同;更接近于皮炎 |
异物注射或移植 Foreign matter injecting or grafting | 人角质细胞、人皮脂腺细胞、人类皮肤组织 | 豚鼠、裸鼠 | 致炎物质与人类角质细胞微环境相同;造模周期短 | 存在免疫排斥反应;移植操作复杂 |
天然模型 Natural acne models | — | 金黄仓鼠、犀牛小鼠、京都犀牛大鼠、墨西哥无毛犬、小型猪 | 无需造模;可用于痤疮药物筛选 | 部分模拟痤疮发病状态;不太适用于痤疮治疗和发病机制研究 |
模型动物 Model animals | 应用范围 Application range | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
家兔 Rabbits | 对粉刺、角质化异常的疗效评价;痤疮治疗、改善角质化的机制研究 | 研究最成熟的痤疮模型;兔的毛囊与人类相似;实验操作简单、易成模 | 兔耳皮肤的优势菌群与人类不同;无法做大量抗痤疮药物的筛选 |
大鼠 Rats | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 研究较成熟的痤疮模型;炎性反应明显 | 无法形成黑头粉刺 |
小鼠 Mice | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 体积小,成本低;炎性反应明显 | 耳廓注射操作不易;无法形成黑头粉刺;毛囊细胞类型与人类不同 |
豚鼠 Guinea pigs | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 致炎物质与人类角质细胞的微环境相同 | 致炎机制与人类痤疮炎性反应不同 |
裸鼠 Nude mice/rats | 抗皮脂腺增生的疗效评价;皮脂代谢的机制研究 | 皮脂腺分布均匀 | 成本高;毛囊退化,缺少菌群生长环境;移植后死亡率高 |
金黄仓鼠 Golden hamsters | 抗雄激素、抗皮脂腺增生的疗效评价;激素代谢和皮脂腺代谢的机制研究 | 可用于建立天然模型,对激素敏感 | 不易感染,无法做感染和炎性反应研究 |
犀牛小鼠 Rhino mice | 对粉刺的疗效评价 | 可用于建立天然模型,能够自发产生类似人类粉刺的痤疮 | 与人类角质不同,无法继发炎性反应;国内研究较少 |
墨西哥无毛犬 Mexican hairless dogs | 对粉刺的疗效评价 | 可用于建立天然模型,能够自发产生类似人类粉刺的痤疮;可以在身上不同部位筛选外用药 | 成本高;研究较少 |
小型猪 Miniature pigs | 皮脂腺代谢的机制研究 | 可用于建立天然模型,与人类皮脂腺的氨基酮戊酸代谢一致 | 成本高;研究较少 |
Table 2 Animal species, application range, advantages and disadvantages of acne models
模型动物 Model animals | 应用范围 Application range | 优点 Advantages | 缺点 Disadvantages |
---|---|---|---|
家兔 Rabbits | 对粉刺、角质化异常的疗效评价;痤疮治疗、改善角质化的机制研究 | 研究最成熟的痤疮模型;兔的毛囊与人类相似;实验操作简单、易成模 | 兔耳皮肤的优势菌群与人类不同;无法做大量抗痤疮药物的筛选 |
大鼠 Rats | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 研究较成熟的痤疮模型;炎性反应明显 | 无法形成黑头粉刺 |
小鼠 Mice | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 体积小,成本低;炎性反应明显 | 耳廓注射操作不易;无法形成黑头粉刺;毛囊细胞类型与人类不同 |
豚鼠 Guinea pigs | 对炎症、角质化异常的疗效评价;抗炎、改善角质化的机制研究 | 致炎物质与人类角质细胞的微环境相同 | 致炎机制与人类痤疮炎性反应不同 |
裸鼠 Nude mice/rats | 抗皮脂腺增生的疗效评价;皮脂代谢的机制研究 | 皮脂腺分布均匀 | 成本高;毛囊退化,缺少菌群生长环境;移植后死亡率高 |
金黄仓鼠 Golden hamsters | 抗雄激素、抗皮脂腺增生的疗效评价;激素代谢和皮脂腺代谢的机制研究 | 可用于建立天然模型,对激素敏感 | 不易感染,无法做感染和炎性反应研究 |
犀牛小鼠 Rhino mice | 对粉刺的疗效评价 | 可用于建立天然模型,能够自发产生类似人类粉刺的痤疮 | 与人类角质不同,无法继发炎性反应;国内研究较少 |
墨西哥无毛犬 Mexican hairless dogs | 对粉刺的疗效评价 | 可用于建立天然模型,能够自发产生类似人类粉刺的痤疮;可以在身上不同部位筛选外用药 | 成本高;研究较少 |
小型猪 Miniature pigs | 皮脂腺代谢的机制研究 | 可用于建立天然模型,与人类皮脂腺的氨基酮戊酸代谢一致 | 成本高;研究较少 |
1 | MUSTAFA A I, EBRAHIM A A, ABEL HALIM W A L, et al. Serum soluble intercellular adhesion molecule-1 (sICAM-1): a novel potential biomarker in severe acne Vulgaris[J]. Indian J Dermatol, 2022, 67(5):512-517. DOI: 10.4103/ijd.ijd_387_21 . |
2 | DAGNELIE M A, POINAS A, DRÉNO B. What is new in adult acne for the last 2 years: focus on acne pathophysiology and treatments[J]. Int J Dermatol, 2022, 61(10):1205-1212. DOI: 10.1111/ijd.16220 . |
3 | 张睿, 侯新娟, 张毅, 等. 祛痤疮中药保健食品和中成药组方规律及特点分析[J]. 中国中药杂志, 2021, 46(13):3234-3239. DOI: 10.19540/j.cnki.cjcmm.20210120.406 . |
ZHANG R, HOU X J, ZHANG Y, et al. Analysis on formulation regularity and characteristics of acne-relieving Chinese medicinal health products and Chinese patent medicines[J]. China J Chin Mater Med, 2021, 46(13):3234-3239. DOI: 10.19540/j.cnki.cjcmm.20210120.406 . | |
4 | 付珍娜, 王婷, 白明, 等. 基于中西医临床病症特点的痤疮动物模型分析[J]. 中国中药杂志, 2018, 43(6):1288-1291. DOI:10.19540/j.cnki.cjcmm.20180104.001 . |
FU Z N, WANG T, BAI M, et al. Analysis of acne animal model based on Chinese and western medicine clinical symptoms characteristic[J]. China J Chin Mater Med, 2018, 43(6):1288-1291. DOI:10.19540/j.cnki.cjcmm.20180104.001 . | |
5 | CHILICKA K, ROGOWSKA A M, RUSZTOWICZ M, et al. The effects of green tea (Camellia sinensis), bamboo extract (Bambusa vulgaris) and lactic acid on sebum production in young women with acne vulgaris using sonophoresis treatment[J]. Healthcare (Basel), 2022, 10(4):684. DOI: 10.3390/healthcare10040684 . |
6 | BRÜGGEMANN H, SALAR-VIDAL L, GOLLNICK H P M, et al. A Janus-faced bacterium: host-beneficial and-detrimental roles of Cutibacterium acnes [J]. Front Microbiol, 2021, 12:673845. DOI: 10.3389/fmicb.2021.673845 . |
7 | WANG L J, YIN H, DI Y H, et al. Human local and total heat losses in different temperature[J]. Physiol Behav, 2016, 157:270-276. DOI: 10.1016/j.physbeh.2016.02.018 . |
8 | PATTERSON ROSA L, WALKER N, MALLICOTE M, et al. Genomic association of chronic idiopathic anhidrosis to a potassium channel subunit in a large animal model[J]. J Invest Dermatol, 2021, 141(11):2639-2645.e3. DOI: 10.1016/j.jid.2021.05.014 . |
9 | HO C Y, DREESEN O. Faces of cellular senescence in skin aging[J]. Mech Ageing Dev, 2021, 198:111525. DOI: 10.1016/j.mad.2021.111525 . |
10 | 王一淇, 张廷志, 徐筱群. 基于皮肤本态的中国年轻人肌肤特点研究[J]. 中国化妆品, 2023(1):91-95. |
WANG Y Q, ZHANG T Z, XU X Q. Study on skin characteristics of Chinese young people based on skin intrinsic state[J]. China Cosmet Rev, 2023(1):91-95. | |
11 | 夏晶晶, 钟倩, 魏情珍, 等. 皮肤上的"生态系统": 皮肤微生物组[J]. 科学(上海), 2022, 74(1):7-11. DOI: 10.3969/j.issn.0368-6396.2022.01.003 . |
XIA J J, ZHONG Q, WEI Q Z, et al. The "ecosystem" on the skin: skin microbiome[J]. Science (Shanghai), 2022, 74(1):7-11. DOI: 10.3969/j.issn.0368-6396.2022.01.003 . | |
12 | NAKASE K, MOMOSE M, YUKAWA T, et al. Development of skin sebum medium and inhibition of lipase activity in Cutibacterium acnes by oleic acid[J]. Access Microbiol, 2022, 4(10): acmi000397. DOI: 10.1099/acmi.0.000397 . |
13 | 中华中医药学会中药实验药理专业委员会. 痤疮动物模型制备规范(草案)[J]. 中华中医药杂志, 2018, 33(1):197-200. DOI: 10.19288/j.cnki.issn.1000-2723.2017.01.005 . |
Traditional Chinese Medicine Experimental Pharmacology Professional Committee,China Association of Chinese Medicine.Specification for preparation of acne animal model (draft)[J]. China J Tradit Chin Med Pharm, 2018, 33(1):197-200. DOI: 10.19288/j.cnki.issn.1000-2723.2017.01.005 . | |
14 | 吴亚梅, 华桦, 黄志芳. 复方白蔹面膜对兔耳痤疮模型治疗作用的实验研究[J]. 四川中医, 2016, 34(8): 43-46. DOI: 10.3969/j.issn.1008-6455.2012.03.083 . |
WU Y M, HUA H, HUANG Z F. Experimental study on the therapeutic effect of compound ampelopsis mask on rabbit ear acne model[J]. J Sichuan Tradit Chin Med, 2016, 34(8): 43-46. DOI: 10.3969/j.issn.1008-6455.2012.03.083 . | |
15 | OU-YANG X L, ZHANG D, WANG X P, et al. Nontargeted metabolomics to characterize the effects of isotretinoin on skin metabolism in rabbit with acne[J]. Front Pharmacol, 2022, 13:963472. DOI: 10.3389/fphar.2022.963472 . |
16 | 于坤良, 王思农, 郭斐斐, 等. 基于皮肤含水量、经皮失水量及血清VEGF含量探讨三黄消痤面膜对痤疮的治疗作用与机制[J]. 中医药信息, 2021, 38(11):53-57. DOI: 10.19656/j.cnki.1002-2406.20211110 . |
YU K L, WANG S N, GUO F F, et al. Effect and mechanism of Sanhuang Xiaocuo mask in treating acne based on skin water content, transdermal water loss and serum content of VEGF[J]. Inf Tradit Chin Med, 2021, 38(11):53-57. DOI: 10.19656/j.cnki.1002-2406.20211110 . | |
17 | 王亚红, 王思农. 加味黑布膏对大鼠耳廓复合痤疮模型外周血清IL-1α、IL-4水平的影响[J]. 临床医学研究与实践, 2023, 8(1):15-17. DOI: 10.19347/j.cnki.2096-1413.202301004 . |
WANG Y H, WANG S N. Influences of modified Heibu ointment on IL-1αand IL-4 levels in peripheral blood of rats with auricle compound acne model[J]. Clin Res Pract, 2023, 8(1):15-17. DOI: 10.19347/j.cnki.2096-1413.202301004 . | |
18 | CAO J J, XU M F, ZHU L F, et al. Viaminate ameliorates Propionibacterium acnes-induced acne via inhibition of the TLR2/NF-κB and MAPK pathways in rats[J]. Naunyn Schmiedebergs Arch Pharmacol, 2023, 396(7):1487-1500. DOI: 10.1007/s00210-022-02379-0 . |
19 | 陈尔净, 刘晓伟, 卢丹, 等. 小鼠痤疮模型研究进展[J]. 中国比较医学杂志, 2019, 29(10):117-121. DOI: 10.3969/j.issn.1671-7856.2019.10.020 . |
CHEN E J, LIU X W, LU D, et al. Progress in the use of mouse models of acne[J]. Chin J Comp Med, 2019, 29(10):117-121. DOI: 10.3969/j.issn.1671-7856.2019.10.020 . | |
20 | 杨丽晗, 张志毕, 杨晖, 等. 两种血竭凝胶抗炎抗菌效果比较[J]. 昆明医科大学学报, 2021, 42(1): 6-11. DOI: 10.12259/j.issn.2095-610X.S20210134 . |
YANG L H, ZHANG Z B, YANG H, et al. Comparative study on anti-inflammatory and antimicrobial effects for two kinds of the resin gel[J]. J Kunming Med Univ, 2021, 42(1): 6-11. DOI: 10.12259/j.issn.2095-610X.S20210134 . | |
21 | KIM K M, KIM S Y, MONY T J, et al. Moringa concanensis L. alleviates DNCB-induced atopic dermatitis-like symptoms by inhibiting NLRP3 inflammasome-mediated IL-1β in BALB/c mice[J]. Pharmaceuticals (Basel), 2022, 15(10):1217. DOI: 10.3390/ph15101217 . |
22 | 陈茜, 江阳, 吕静, 等. 复方桑叶消痤凝胶对ICR小鼠痤疮模型炎性改善作用及抗炎机制初探[J]. 云南中医中药杂志, 2021, 42(11):65-70. DOI: 10.3969/j.issn.1007-2349.2021.11.019 . |
CHEN Q, JIANG Y, LV J, et al. A preliminary study on the inflammation improvement effect and anti-inflammatory mechanism of compound Sangye Xiaocuo gel on ICR mice with acne model[J]. Yunnan J Tradit Chin Med Mater Med, 2021, 42(11):65-70. DOI: 10.3969/j.issn.1007-2349.2021.11.019 . | |
23 | 刘洪君, 孙雪美, 孙明强, 等. 蒲公英甾醇通过TGF-β/Smad通路对小鼠痤疮模型炎症因子水平、胸腺组织形态的影响[J]. 河北医科大学学报, 2020, 41(7): 810-814, 869. DOI: 10.3969/j.issn.1007-3205.2020.07.015 . |
LIU H J, SUN X M, SUN M Q, et al. Effects of taraxasterol on inflammatory factor levels and morphology of thymus in acne model of mice through TGF-β/Smad pathway[J]. J Hebei Med Univ, 2020, 41(7): 810-814, 869. DOI: 10.3969/j.issn.1007-3205.2020.07.015 . | |
24 | NAKATSUJI T, SHI Y, ZHU W H, et al. Bioengineering a humanized acne microenvironment model: proteomics analysis of host responses to Propionibacterium acnes infection in vivo [J]. Proteomics, 2008, 8(16):3406-3415. DOI: 10.1002/pmic.200800044 . |
25 | 黄晋权, 曾智文, 张东淑. 自血穴注疗法对痤疮小鼠Th1/Th2免疫偏移的调节作用[J]. 广州中医药大学学报, 2020, 37(8):1529-1533. |
HUANG J Q, ZENG Z W, ZHANG D S. Regulation effect of autohemotherapy on Th1/Th2 immune deviation in acne mice[J]. J Guangzhou Univ Tradit Chin Med, 2020, 37(8):1529-1533. | |
26 | NAKAYAMA E, KUSHIBIKI T, MAYUMI Y, et al. Optimal blue light irradiation conditions for the treatment of acne vulgaris in a mouse model[J]. J Photochem Photobiol B, 2023, 239:112651. DOI: 10.1016/j.jphotobiol.2023.112651 . |
27 | DALZIEL K, DYKES P J, MARKS R. The effect of tetracycline and erythromycin in a model of acne-type inflammation[J]. Br J Exp Pathol, 1987, 68(1):67-70. |
28 | SALIMI A, SHARIF MAKHMAL ZADEH B, GODAZGARI S, et al. Development and evaluation of azelaic acid-loaded microemulsion for transfollicular drug delivery through Guinea pig skin: a mechanistic study[J]. Adv Pharm Bull, 2020, 10(2):239-246. DOI: 10.34172/apb.2020.028 . |
29 | YOSHIMASU T, KURAMOTO T, KAMINAKA C, et al. Efficacy of 0.1% adapalene in a non-inflammatory Kyoto Rhino Rat acne model. J Dermatol Sci. 2014, 76(2):143-8. DOI: 10.1016/j.jdermsci.2014.08.001 . |
30 | MIRSHAHPANAH P, MAIBACH H I. Models in acnegenesis[J]. Cutan Ocul Toxicol, 2007, 26(3):195-202. DOI: 10.1080/15569520701502815 . |
31 | PETERSEN M J, ZONE J J, KRUEGER G G. Development of a nude mouse model to study human sebaceous gland physiology and pathophysiology[J]. J Clin Invest, 1984, 74(4):1358-1365. DOI: 10.1172/JCI111546 . |
32 | OTULAKOWSKI G, ZHOU L, FUNG-LEUNG W P, et al. Use of a human skin-grafted nude mouse model for the evaluation of topical retinoic acid treatment[J]. J Invest Dermatol, 1994, 102(4):515-518. DOI: 10.1111/1523-1747.ep12373180 . |
33 | ODORISIO T, DE LUCA N, VESCI L, et al. The atypical retinoid E-3-(3'-Adamantan-1-yl-4'-methoxybiphenyl-4-yl)-2-propenoic acid (ST1898) displays comedolytic activity in the rhino mouse model[J]. Eur J Dermatol, 2012, 22(4):505-511. DOI: 10.1684/ejd.2012.1778 . |
34 | RAMEZANLI T, MICHNIAK-KOHN B B. Development and characterization of a topical gel formulation of adapalene-TyroSpheres and assessment of its clinical efficacy[J]. Mol Pharm, 2018, 15(9):3813-3822. DOI: 10.1021/acs.molpharm-aceut. 8b00318 . |
35 | VEGA-NAREDO I, TOMAS-ZAPICO C, COTO-MONTES A. Potential role of autophagy in behavioral changes of the flank organ[J]. Autophagy, 2009, 5(2):265-267. DOI: 10.4161/auto.5.2.7619 . |
36 | 刘文彬, 王晖. 痤疮模型的研究现状[J]. 广东药学院学报, 2010, 26(2):209-215. DOI: 10.3969/j.issn.1006-8783.2010.02.027 . |
LIU W B, WANG H. Review on statue quo of acne vulgaris models[J]. J Guangdong Pharm Univ, 2010, 26(2):209-215. DOI: 10.3969/j.issn.1006-8783.2010.02.027 . | |
37 | 张娟娟, 张曦, 杨逸璇, 等. 加味三仁汤联合石榴皮多酚乳膏对湿热痰瘀型金黄地鼠痤疮模型脂质组学的影响[J]. 湖南中医药大学学报, 2022, 42(10):1641-1649. DOI: 10.3969/j.issn.1674-070X.2022.10.009 . |
ZHANG J J, ZHANG X, YANG Y X, et al. Effects of combining Modified Sanren Decoction and Pomegranate Peel Polyphenol Cream on lipidomics of golden hamsters acne model of damp-heat and phlegm-stasis type[J]. J Tradit Chin Med Univ Hunan, 2022, 42(10):1641-1649. DOI: 10.3969/j.issn.1674-070X.2022.10.009 . | |
38 | 任威威, 薛兵, 方惠敏, 等. 基于AR/SREBP-1/ACC1信号通路探讨雄激素诱导金黄地鼠皮脂代谢异常的发病机制[J]. 实用医学杂志, 2020, 36(8):1010-1014. DOI: 10.3969/j.issn.1006-5725.2020.08.006 . |
REN W W, XUE B, FANG H M, et al. Mechanism of androgen induced abnormal lipid metabolism in golden hamster skin based on AR/SREBP-1/ACC1 signaling pathway[J]. J Pract Med, 2020, 36(8):1010-1014. DOI: 10.3969/j.issn.1006-5725.2020.08.006 . | |
39 | SCHWARTZMAN R M, KLIGMAN A M, DUCLOS D D. The Mexican hairless dog as a model for assessing the comedolytic and morphogenic activity of retinoids[J]. Br J Dermatol, 1996, 134(1):64-70. |
40 | SAKAMOTO F H, TANNOUS Z, DOUKAS A G, et al. Porphyrin distribution after topical aminolevulinic acid in a novel porcine model of sebaceous skin[J]. Lasers Surg Med, 2009, 41(2):154-160. DOI: 10.1002/lsm.20734 . |
41 | LU Y T, HU Z L, SHAO F X, et al. Simultaneous determination of tazarotene, clindamycin phosphate and their active metabolites in Bama mini-pig skin by LC-MS/MS: Application to the development of a tazarotene/clindamycin phosphate cream[J]. J Chromatogr B Analyt Technol Biomed Life Sci, 2021, 1162:122455. DOI: 10.1016/j.jchromb.2020.122455 . |
42 | ZHANG R, ZHOU L H, LV M Y, et al. The relevant of sex hormone levels and acne grades in patients with acne vulgaris: a cross-sectional study in Beijing[J]. Clin Cosmet Investig Dermatol, 2022, 15:2211-2219. DOI: 10.2147/CCID.S385376 . |
43 | CAO Y Q, LIANG J F, WANG C G, et al. Investigating material basis and molecular mechanism of Qing Cuo formula in the treatment of acne based on animal experiments, UPLC-LTQ-Orbitrap-MS and network pharmacology[J]. Pharm Biol, 2023, 61(1):973-985. DOI: 10.1080/13880209.2023.2225546 . |
44 | WEBSTER G F, RUGGIERI M R, MCGINLEY K J. Correlation of Propionibacterium acnes populations with the presence of triglycerides on nonhuman skin[J]. Appl Environ Microbiol, 1981, 41(5):1269-1270. DOI: 10.1128/aem.41.5.1269-1270.1981 . |
45 | NAKANO K, KIYOKANE K, BENVENUTO-ANDRADE C, et al. Real-timereflectance confocal microscopy, a noninvasive tool for in vivo quantitative evaluation of comedolysis in the rhino mouse model[J]. Skin Pharmacol Physiol, 2007, 20(1):29-36. DOI: 10.1159/000096169 . |
[1] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[4] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[5] | Qiwen HU, Zheng BI, Haiping LIU, Zhihua DONG, ZHUYanlin, Jinhua WANG. Research Progress on Animal Models of Intrauterine Growth Restriction [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 423-431. |
[6] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[7] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[8] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
[9] | Junhao TAO, Huiqiong YAN, Hui XIE, Huazhong YING, Fangwei DAI. Research Progress of Tyzzer’s Organism in Quality Control of Laboratory Animals [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 358-363. |
[10] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[11] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
[12] | Bo DONG, Jiaxin LIU, Wei XIONG, Songqi TANG, Wei HUANG. Progress in Animal Models of Ischemic Stroke [J]. Laboratory Animal and Comparative Medicine, 2022, 42(1): 54-61. |
[13] | LIN Jiang, LUO Fei, LIU Peng, HAN Siyin, CHEN Zhenxing, LIANG Zhongxiu, LAN Taijin. Research Progress Related to Candidate Treatment Methods and Modeling Factors for Diabetic Animal Models with Skin Injury [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 515-520. |
[14] | LI Feng, LI Shun, REN Xiaonan, ZHOU Xiaohui. A Brief Review on Development and Application of Animal Models of Emerging Infectious Diseases Caused by Three Genus Viruses [J]. Laboratory Animal and Comparative Medicine, 2020, 40(3): 173-. |
[15] | GAO Shiping, LI Feng, ZHA Sifan. High-fat Diet Induced Cynomolgus Monkey Model of Non-alcoholic Fatty Liver Disease [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 123-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||