Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 381-397.DOI: 10.12300/j.issn.1674-5817.2023.048
• Animal Models of Human Diseases • Previous Articles Next Articles
Jiahui YU1, Qian GONG1, Lenan ZHUANG1,2,3()()
Received:
2023-04-07
Revised:
2023-05-28
Online:
2023-08-25
Published:
2023-09-14
Contact:
Lenan ZHUANG
CLC Number:
Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.048
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱 Monocrotaline (MCT) | SD大鼠 | 单次皮下注射/腹腔注射MCT(60~80 mg/kg)。造模时间为3~4周 | 操作简便,可重复,成本低。mPAP升高、PVR升高、右心室肥大、中膜肥厚,主要用于炎症相关的PAH研究[ | 实验性治疗效果过度改善(出现逆转);倾向死于MCT综合征(肺间质水肿、心肌炎、肝小静脉闭塞症),病理终点与人类肺高压无关;无严重的血管闭塞性病变(丛状病变和内膜增生);疾病进展为死亡的时间可能太短,无法形成代偿机制 | PAH (Group 1) |
慢性低氧 Chronic hypoxia | SD、FH 大鼠 | 低压氧舱10%供氧量或者380 mmHg低压环境暴露。造模时间为3~4周 | 可重复性好,造模时间3~4周,FH大鼠可诱导重度肺高压 | 无严重的血管闭塞性病变(丛状病变和内膜增生);该模型在常氧下可逆;低氧舱设备昂贵;对低氧的反应受动物年龄影响;低氧肺结构的改变受多种因素影响(不仅是低氧);属于轻/中度肺高压,与低氧所致的肺高压相关(第三类肺高压) | 肺部疾病/低氧所致的肺高压(Group 3) |
分流手术 Shunt surgery | SD大鼠/ 仔猪 | SPS型主动脉-肺动脉吻合术[ | 可模拟先天性心脏病相关的PAH病理变化,大动物模型具有独特优势 | 手术操作复杂,造模技术难度大;动物术后死亡率较高;难以确定增加的血流量,手术风险高,并发症多;大动物饲养成本高;造模时间相对较长 | CHD-PAH (Group 1) |
肺动脉环缩手术 Pulmonary arterial banding | SD大鼠 | 通过左侧开胸从主动脉分离肺动脉,并沿肺动脉放置18号针头,针头和肺动脉周围紧紧捆绑一根丝线,将针取出以产生与针直径成正比的固定肺动脉收缩[ | 不影响肺血管情况下产生右心室重构和功能障碍 | 操作较复杂,技术要求较高;可作为右心衰竭模型,但不会出现肺血管重构和PAH;动物术后死亡率相对高 | 右心衰竭(PAH晚期症状) |
Table 1 Summary of characteristics of single pathological injury- induced pulmonary arterial hypertension (PAH) models
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱 Monocrotaline (MCT) | SD大鼠 | 单次皮下注射/腹腔注射MCT(60~80 mg/kg)。造模时间为3~4周 | 操作简便,可重复,成本低。mPAP升高、PVR升高、右心室肥大、中膜肥厚,主要用于炎症相关的PAH研究[ | 实验性治疗效果过度改善(出现逆转);倾向死于MCT综合征(肺间质水肿、心肌炎、肝小静脉闭塞症),病理终点与人类肺高压无关;无严重的血管闭塞性病变(丛状病变和内膜增生);疾病进展为死亡的时间可能太短,无法形成代偿机制 | PAH (Group 1) |
慢性低氧 Chronic hypoxia | SD、FH 大鼠 | 低压氧舱10%供氧量或者380 mmHg低压环境暴露。造模时间为3~4周 | 可重复性好,造模时间3~4周,FH大鼠可诱导重度肺高压 | 无严重的血管闭塞性病变(丛状病变和内膜增生);该模型在常氧下可逆;低氧舱设备昂贵;对低氧的反应受动物年龄影响;低氧肺结构的改变受多种因素影响(不仅是低氧);属于轻/中度肺高压,与低氧所致的肺高压相关(第三类肺高压) | 肺部疾病/低氧所致的肺高压(Group 3) |
分流手术 Shunt surgery | SD大鼠/ 仔猪 | SPS型主动脉-肺动脉吻合术[ | 可模拟先天性心脏病相关的PAH病理变化,大动物模型具有独特优势 | 手术操作复杂,造模技术难度大;动物术后死亡率较高;难以确定增加的血流量,手术风险高,并发症多;大动物饲养成本高;造模时间相对较长 | CHD-PAH (Group 1) |
肺动脉环缩手术 Pulmonary arterial banding | SD大鼠 | 通过左侧开胸从主动脉分离肺动脉,并沿肺动脉放置18号针头,针头和肺动脉周围紧紧捆绑一根丝线,将针取出以产生与针直径成正比的固定肺动脉收缩[ | 不影响肺血管情况下产生右心室重构和功能障碍 | 操作较复杂,技术要求较高;可作为右心衰竭模型,但不会出现肺血管重构和PAH;动物术后死亡率相对高 | 右心衰竭(PAH晚期症状) |
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱-全肺切除术 MCT- PNT | SD大鼠[ | 左侧全肺切除术[ | 可模拟重度PAH,具有新生内膜形成和丛状病变的病理特点 | 操作较复杂,造模难度大,动物死亡率高;可能出现血管周围增生性病变 | PAH (Group 1) |
野百合碱-分流 MCT-shunt | Lewis/Wistar[ SD大鼠[ | MCT诱导处理后采用主动脉腔静脉分流[ | 触发疾病的病理生理,具有新生内膜病变与右心室衰竭的特征;具有阶段性进行性病理变化 | 手术难度大、风险高,术后死亡率高、并发症多;大动物饲养成本高;无法实现体内分流关闭 | CHD-PAH (Group 1) |
Sugen5416-低氧 Sugen5416-hypoxia | SD大鼠 | 单次皮下注射Sugen(20 mg/kg)后进行3~4周低氧暴露(10%氧气),再恢复常氧3~5周 | 可诱导重度PAH,出现丛样病变和右心室衰竭;该模型置于常氧后不会出现逆转;病变器官局限于肺部 | 血管周围未出现炎性细胞(巨噬/单核细胞)浸润;仅少数基因的表达与人类患者肺部变化相同;物种间(大鼠和小鼠)、品系间(Fischer大鼠和SD大鼠)实验性PAH的差异较大 | PAH (Group 1) |
野百合碱-低氧 MCT-hypoxia | SD大鼠 | 单次皮下注射MCT(60 mg/kg)后暴露于低氧环境中3~4周左右 | 操作简单,造模时间较短;出现重度PAH的组织学病理特征;具有炎性反应(巨噬细胞浸润)、血栓形成的特点[ | 物种间造模效果差异较大,目前主要选择SD大鼠;目前研究应用较少 | PAH (Group 1) |
Table 2 Summary of characteristics of multifactorial pathological injury- induced pulmonary arterial hypertension (PAH) models
模型类型 Model type | 动物 Animal | 构建方式 Establishment method | 优点 Advantage | 局限性 Limitation | 疾病类型 Disease type |
---|---|---|---|---|---|
野百合碱-全肺切除术 MCT- PNT | SD大鼠[ | 左侧全肺切除术[ | 可模拟重度PAH,具有新生内膜形成和丛状病变的病理特点 | 操作较复杂,造模难度大,动物死亡率高;可能出现血管周围增生性病变 | PAH (Group 1) |
野百合碱-分流 MCT-shunt | Lewis/Wistar[ SD大鼠[ | MCT诱导处理后采用主动脉腔静脉分流[ | 触发疾病的病理生理,具有新生内膜病变与右心室衰竭的特征;具有阶段性进行性病理变化 | 手术难度大、风险高,术后死亡率高、并发症多;大动物饲养成本高;无法实现体内分流关闭 | CHD-PAH (Group 1) |
Sugen5416-低氧 Sugen5416-hypoxia | SD大鼠 | 单次皮下注射Sugen(20 mg/kg)后进行3~4周低氧暴露(10%氧气),再恢复常氧3~5周 | 可诱导重度PAH,出现丛样病变和右心室衰竭;该模型置于常氧后不会出现逆转;病变器官局限于肺部 | 血管周围未出现炎性细胞(巨噬/单核细胞)浸润;仅少数基因的表达与人类患者肺部变化相同;物种间(大鼠和小鼠)、品系间(Fischer大鼠和SD大鼠)实验性PAH的差异较大 | PAH (Group 1) |
野百合碱-低氧 MCT-hypoxia | SD大鼠 | 单次皮下注射MCT(60 mg/kg)后暴露于低氧环境中3~4周左右 | 操作简单,造模时间较短;出现重度PAH的组织学病理特征;具有炎性反应(巨噬细胞浸润)、血栓形成的特点[ | 物种间造模效果差异较大,目前主要选择SD大鼠;目前研究应用较少 | PAH (Group 1) |
1 | SCHERMULY R T, GHOFRANI H A, WILKINS M R, et al. Mechanisms of disease: pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2011, 8(8):443-455. DOI: 10.1038/nrcardio.2011.87 . |
2 | HUMBERT M, GUIGNABERT C, BONNET S, et al. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives[J]. Eur Respir J, 2019, 53(1):1801887. DOI: 10.1183/13993003.01887-2018 . |
3 | STENMARK K R, MEYRICK B, GALIE N, et al. Animal models of pulmonary arterial hypertension: the hope for etiological discovery and pharmacological cure[J]. Am J Physiol Lung Cell Mol Physiol, 2009, 297(6): L1013-L1032. DOI: 10.1152/ajplung.00217.2009 . |
4 | SOUTHGATE L, MACHADO R D, GRÄF S, et al. Molecular genetic framework underlying pulmonary arterial hyper-tension[J]. Nat Rev Cardiol, 2020, 17(2):85-95. DOI: 10.1038/s41569-019-0242-x . |
5 | LAU E M T, GIANNOULATOU E, CELERMAJER D S, et al. Epidemiology and treatment of pulmonary arterial hypertension[J]. Nat Rev Cardiol, 2017, 14(10):603-614. DOI: 10.1038/nrcardio.2017.84 . |
6 | HASSOUN P M. Pulmonary arterial hypertension[J]. N Engl J Med, 2021, 385(25):2361-2376. DOI: 10.1056/NEJMra2000348 . |
7 | RUOPP N F, COCKRILL B A. Diagnosis and treatment of pulmonary arterial hypertension: a review[J]. JAMA, 2022, 327(14):1379-1391. DOI: 10.1001/jama.2022.4402 . |
8 | HUETSCH J C, SURESH K, BERNIER M, et al. Update on novel targets and potential treatment avenues in pulmonary hypertension[J]. Am J Physiol Lung Cell Mol Physiol, 2016, 311(5):L811-L831. DOI: 10.1152/ajplung.00302.2016 . |
9 | SZTUKA K, JASIŃSKA-STROSCHEIN M. Animal models of pulmonary arterial hypertension: a systematic review and meta-analysis of data from 6126 animals[J]. Pharmacol Res, 2017, 125(Pt B):201-214. DOI: 10.1016/j.phrs.2017.08.003 . |
10 | MAARMAN G, LECOUR S, BUTROUS G, et al. A comprehensive review: the evolution of animal models in pulmonary hypertension research; are we there yet?[J]. Pulm Circ, 2013, 3(4):739-756. DOI: 10.1086/674770 . |
11 | BISSERIER M, MATHIYALAGAN P, ZHANG S H, et al. Regulation of the methylation and expression levels of the BMPR2 gene by SIN3a as a novel therapeutic mechanism in pulmonary arterial hypertension[J]. Circulation, 2021, 144(1):52-73. DOI: 10.1161/CIRCULATIONAHA.120.047978 . |
12 | XIAO R, SU Y, FENG T, et al. Monocrotaline induces endothelial injury and pulmonary hypertension by targeting the extracellular calcium-sensing receptor[J]. J Am Heart Assoc, 2017, 6(4):e004865. DOI: 10.1161/JAHA.116.004865 . |
13 | CHEN D, ZHANG H F, YUAN T Y, et al. Puerarin-V prevents the progression of hypoxia- and monocrotaline-induced pulmonary hypertension in rodent models[J]. Acta Pharmacol Sin, 2022, 43(9):2325-2339. DOI: 10.1038/s41401-022-00865-y . |
14 | SU H, XU X L, YAN C, et al. LncRNA H19 promotes the proliferation of pulmonary artery smooth muscle cells through AT1R via sponging let-7b in monocrotaline-induced pulmonary arterial hypertension[J]. Respir Res, 2018, 19(1):254. DOI: 10.1186/s12931-018-0956-z . |
15 | OMURA J, HABBOUT K, SHIMAUCHI T, et al. Identification of long noncoding RNA H19 as a new biomarker and therapeutic target in right ventricular failure in pulmonary arterial hypertension[J]. Circulation, 2020, 142(15):1464-1484. DOI: 10.1161/CIRCULATIONAHA.120.047626 . |
16 | WU X H, MA J L, DING D, et al. Experimental animal models of pulmonary hypertension: development and challenges[J]. Animal Model Exp Med, 2022, 5(3):207-216. DOI: 10.1002/ame2.12220 . |
17 | YAMAZATO Y, YAMAZATO M, ISHIDA A, et al. Intratracheal administration of autologous bone marrow-derived cells ameliorates monocrotaline-induced pulmonary vessel remodeling and lung inflammation in rats[J]. Lung, 2018, 196(2):147-155. DOI: 10.1007/s00408-017-0075-5 . |
18 | CARMAN B L, PREDESCU D N, MACHADO R, et al. Plexiform arteriopathy in rodent models of pulmonary arterial hypertension[J]. Am J Pathol, 2019, 189(6):1133-1144. DOI: 10.1016/j.ajpath.2019.02.005 . |
19 | DIGNAM J P, SCOTT T E, KEMP-HARPER B K, et al. Animal models of pulmonary hypertension: getting to the heart of the problem[J]. Br J Pharmacol, 2022, 179(5):811-837. DOI: 10.1111/bph.15444 . |
20 | BOUCHERAT O, AGRAWAL V, LAWRIE A, et al. The latest in animal models of pulmonary hypertension and right ventricular failure[J]. Circ Res, 2022, 130(9):1466-1486. DOI: 10.1161/CIRCRESAHA.121.319971 . |
21 | RYAN J, BLOCH K, ARCHER S L. Rodent models of pulmonary hypertension: harmonisation with the world health organisation's categorisation of human PH[J]. Int J Clin Pract Suppl, 2011(172):15-34. DOI: 10.1111/j.1742-1241.2011.02710.x . |
22 | REHMAN J, ARCHER S L. A proposed mitochondrial-metabolic mechanism for initiation and maintenance of pulmonary arterial hypertension in fawn-hooded rats: the Warburg model of pulmonary arterial hypertension[J]. Adv Exp Med Biol, 2010, 661: 171-185. DOI:10.1007/978-1-60761-500-2_11 . |
23 | ARCHER S L, MARSBOOM G, KIM G H, et al. Epigenetic attenuation of mitochondrial superoxide dismutase 2 in pulmonary arterial hypertension: a basis for excessive cell proliferation and a new therapeutic target[J]. Circulation, 2010, 121(24):2661-2671. DOI: 10.1161/CIRCULATIONAHA. 109.916098 . |
24 | PIAO L, SIDHU V K, FANG Y H, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate[J]. J Mol Med, 2013, 91(3):333-346. DOI: 10.1007/s00109-012-0982-0 . |
25 | BOUCHERAT O, PETERLINI T, BOURGEOIS A, et al. Mitochondrial HSP90 accumulation promotes vascular remodeling in pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2018, 198(1):90-103. DOI: 10.1164/rccm.201708-1751OC . |
26 | ZHANG M J, FENG Z Y, HUANG R, et al. Characteristics of pulmonary vascular remodeling in a novel model of shunt-associated pulmonary arterial hypertension[J]. Med Sci Monit, 2018, 24:1624-1632. DOI: 10.12659/msm.905654 . |
27 | WANG L P, GUO L L, ZHU L M, et al. Characteristics of pulmonary vascular remodeling in a porcine model of shunt-associated pulmonary arterial hypertension[J]. Pediatr Cardiol, 2020, 41(4):669-676. DOI: 10.1007/s00246-019-02275-0 . |
28 | JIANG Y Y, HE G W. Early diagnostic features of left-to-right shunt-induced pulmonary arterial hypertension in piglets[J]. Ann Thorac Surg, 2018, 106(5):1396-1405. DOI: 10.1016/j.athoracsur.2018.05.052 . |
29 | MENG L K, TENG X, LIU Y, et al. Vital roles of gremlin-1 in pulmonary arterial hypertension induced by systemic-to-pulmonary shunts[J]. J Am Heart Assoc, 2020, 9(15):e016586. DOI: 10.1161/jaha.120.016586 . |
30 | MENG L K, YUAN W, CHI H J, et al. Genetic deletion of CMG2 exacerbates systemic-to-pulmonary shunt-induced pulmonary arterial hypertension[J]. FASEB J, 2021, 35(4):e21421. DOI: 10.1096/fj.202000299R . |
31 | WANG K, CHEN C S, MA J F, et al. Contribution of calcium-activated chloride channel to elevated pulmonary artery pressure in pulmonary arterial hypertension induced by high pulmonary blood flow[J]. Int J Clin Exp Pathol, 2015, 8(1):146-154. |
32 | GARCIA R, DIEBOLD S. Simple, rapid, and effective method of producing aortocaval shunts in the rat[J]. Cardiovasc Res, 1990, 24(5):430-432. DOI: 10.1093/cvr/24.5.430 . |
33 | SHANG L F, WANG K, LIU D L, et al. TMEM16A regulates the cell cycle of pulmonary artery smooth muscle cells in high-flow-induced pulmonary arterial hypertension rat model[J]. Exp Ther Med, 2020, 19(5):3275-3281. DOI: 10.3892/etm.2020.8589 . |
34 | LIU D L, WANG K, SU D Y, et al. TMEM16A regulates pulmonary arterial smooth muscle cells proliferation via p38MAPK/ERK pathway in high pulmonary blood flow-induced pulmonary arterial hypertension[J]. J Vasc Res, 2020, 58(1):27-37. DOI: 10.1159/000511267 . |
35 | LIU X Y, MENG L K, YUAN W, et al. Evidence for ANTXR2 as a therapeutic target on systemic-to-pulmonary shunt induced pulmonary arterial hypertension[J]. Eur Heart J, 2019, 40 ():ehz746.0733. DOI: 10.1093/eurheartj/ehz746.0733 . |
36 | GUAN H, YANG X F, SHI T, et al. CTRP9 mitigates the progression of arteriovenous shunt-induced pulmonary artery hypertension in rats[J]. Cardiovasc Ther, 2021, 2021:4971300. DOI: 10.1155/2021/4971300 . |
37 | SHIMAUCHI T, BOUCHERAT O, YOKOKAWA T, et al. PARP1-PKM2 axis mediates right ventricular failure associated with pulmonary arterial hypertension[J]. JACC Basic Transl Sci, 2022, 7(4):384-403. DOI: 10.1016/j.jacbts.2022.01.005 . |
38 | AKAZAWA Y, OKUMURA K, ISHII R, et al. Pulmonary artery banding is a relevant model to study the right ventricular remodeling and dysfunction that occurs in pulmonary arterial hypertension[J]. J Appl Physiol (1985), 2020, 129(2):238-246. DOI: 10.1152/japplphysiol.00148.2020 . |
39 | MENG L K, LIU X Y, ZHENG Z, et al. Original rat model of high kinetic unilateral pulmonary hypertension surgically induced by combined surgery[J]. J Thorac Cardiovasc Surg, 2013, 146(5):1220-1226.e1. DOI: 10.1016/j.jtcvs.2013.01.018 . |
40 | LACHANT D J, MEOLI D F, HAIGHT D, et al. Low dose monocrotaline causes a selective pulmonary vascular lesion in male and female pneumonectomized rats[J]. Exp Lung Res, 2018, 44(1):51-61. DOI: 10.1080/01902148.2017.1422157 . |
41 | KATZ M G, FARGNOLI A S, GUBARA S M, et al. The left pneumonectomy combined with monocrotaline or sugen as a model of pulmonary hypertension in rats[J]. J Vis Exp, 2019(145):10.3791/59050. DOI: 10.3791/59050 . |
42 | BISSERIER M, BOUCHERAT O, BONNET S, et al. Intra-airway gene delivery for pulmonary hypertension in rodent models[J]. Methods Mol Biol, 2022, 2573:263-278. DOI: 10.1007/978-1-0716-2707-5_20 . |
43 | YAN J, SHEN Y, WANG Y, et al. Increased expression of hypoxia-inducible factor-1α in proliferating neointimal lesions in a rat model of pulmonary arterial hypertension[J]. Am J Med Sci, 2013, 345(2):121-128. DOI: 10.1097/MAJ.0b013e31824cf5a2 . |
44 | DUAN Y, WANG T, WU S S, et al. The role of the phosphatidylinositol 3-kinase/protein kinase B signaling pathway in the pulmonary vascular remodeling of pulmonary arterial hypertension in rats[J]. ScienceAsia, 2023, 49(1):56. DOI: 10.2306/scienceasia1513-1874.2023.130 . |
45 | MEDARAMETLA V, FESTIN S, SUGARRAGCHAA C, et al. PK10453, a nonselective platelet-derived growth factor receptor inhibitor, prevents the progression of pulmonary arterial hypertension[J]. Pulm Circ, 2014, 4(1):82-102. DOI: 10.1086/674881 . |
46 | SITAPARA R, SLEE D, SALTER-CID L, et al. Abstract 12947: In vivo efficacy of a novel, inhaled Pdgfra/b inhibitor, Gb002, in the rat monocrotaline and pneumonectomy model of pulmonary arterial hypertension[J]. Circulation, 2019, 140(): A12947. DOI:10.1161/circ.140.suppl_1.12947 . |
47 | BISSERIER M, KATZ M G, BUENO-BETI C, et al. Combination therapy with STAT3 inhibitor enhances SERCA2a-induced BMPR2 expression and inhibits pulmonary arterial hypertension[J]. Int J Mol Sci, 2021, 22(17):9105. DOI: 10.3390/ijms22179105 . |
48 | VAN DER FEEN D E, WEIJ M, SMIT-VAN OOSTEN A, et al. Shunt surgery, right heart catheterization, and vascular morphometry in a rat model for flow-induced pulmonary arterial hypertension[J]. J Vis Exp, 2017(120):55065. DOI: 10.3791/55065 . |
49 | VAN DER FEEN D E, KURAKULA K, TREMBLAY E, et al. Multicenter preclinical validation of BET inhibition for the treatment of pulmonary arterial hypertension[J]. Am J Respir Crit Care Med, 2019, 200(7):910-920. DOI: 10.1164/rccm.201812-2275OC . |
50 | VAN DER FEEN D E, BOSSERS G P L, HAGDORN Q A J, et al. Cellular senescence impairs the reversibility of pulmonary arterial hypertension[J]. Sci Transl Med, 2020, 12(554):eaaw4974. DOI: 10.1126/scitranslmed.aaw4974 . |
51 | ALAMRI A K, SHELBURNE N J, MAYEUX J D, et al. Pulmonary hypertension association's 2022 international conference scientific Sessions overview[J]. Pulm Circ, 2023, 13(1):e12182. DOI: 10.1002/pul2.12182 . |
52 | ZHOU J J, LI H, QIAN Y L, et al. Nestin represents a potential marker of pulmonary vascular remodeling in pulmonary arterial hypertension associated with congenital heart disease[J]. J Mol Cell Cardiol, 2020, 149:41-53. DOI: 10.1016/j.yjmcc.2020.09.005 . |
53 | ZHOU J J, LI H, LI L, et al. CYLD mediates human pulmonary artery smooth muscle cell dysfunction in congenital heart disease-associated pulmonary arterial hypertension[J]. J Cell Physiol, 2021, 236(9):6297-6311. DOI: 10.1002/jcp.30298 . |
54 | ZHOU J J, YANG J, LI L, et al. Transgelin exacerbates pulmonary artery smooth muscle cell dysfunction in shunt-related pulmonary arterial hypertension[J]. ESC Heart Fail, 2022, 9(5):3407-3417. DOI: 10.1002/ehf2.14080 . |
55 | ZHOU J J. Synemin promotes pulmonary artery smooth muscle cell phenotypic switch in shunt-induced pulmonary arterial hypertension[J]. ESC Heart Fail, 2022, 9(5):3221-3231. DOI: 10.1002/ehf2.14048 . |
56 | ZHOU J J, LI F R, YANG Y C. Protective effects of calcyclin-binding protein against pulmonary vascular remodeling in flow-associated pulmonary arterial hypertension[J]. Respir Res, 2022, 23(1):223. DOI: 10.1186/s12931-022-02137-z . |
57 | TARASEVICIENE-STEWART L, KASAHARA Y, ALGER L, et al. Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension[J/OL]. FASEB J, 2001, 15(2): 427-438. DOI:10.1096/fj.00-0343com . |
58 | HURST L A, DUNMORE B J, LONG L, et al. TNFα drives pulmonary arterial hypertension by suppressing the BMP type-II receptor and altering NOTCH signalling[J]. Nat Commun, 2017, 8:14079. DOI: 10.1038/ncomms14079 . |
59 | WU Z H, ZHU L, NIE X R, et al. USP15 promotes pulmonary vascular remodeling in pulmonary hypertension in a YAP1/TAZ-dependent manner[J]. Exp Mol Med, 2023, 55(1):183-195. DOI: 10.1038/s12276-022-00920-y . |
60 | SHEN H, ZHANG J, WANG C, et al. MDM2-mediated ubiquitination of angiotensin-converting enzyme 2 contributes to the development of pulmonary arterial hypertension[J]. Circulation, 2020, 142(12):1190-1204. DOI: 10.1161/CIRCULATIONAHA.120.048191 . |
61 | CLEMENTS R T, VANG A, FERNANDEZ-NICOLAS A, et al. Treatment of pulmonary hypertension with angiotensin II receptor blocker and neprilysin inhibitor sacubitril/valsartan[J]. Circ Heart Fail, 2019, 12(11):e005819. DOI: 10.1161/CIRCHEARTFAILURE.119.005819 . |
62 | BAO C L, HE Q, WANG H, et al. Artemisinin and its derivate alleviate pulmonary hypertension and vasoconstriction in rodent models[J]. Oxid Med Cell Longev, 2022, 2022:2782429. DOI: 10.1155/2022/2782429 . |
63 | JIA D L, BAI P Y, WAN N F, et al. Niacin attenuates pulmonary hypertension through H-PGDS in macrophages[J]. Circ Res, 2020, 127(10):1323-1336. DOI: 10.1161/CIRCRESAHA.120.316784 . |
64 | WANG L N, ZHANG X Y, CAO Y P, et al. Mice with a specific deficiency of Pfkfb3 in myeloid cells are protected from hypoxia-induced pulmonary hypertension[J]. Br J Pharmacol, 2021, 178(5):1055-1072. DOI: 10.1111/bph.15339 . |
65 | MACIAS D, MOORE S, CROSBY A, et al. Targeting HIF2α-ARNT hetero-dimerisation as a novel therapeutic strategy for pulmonary arterial hypertension[J]. Eur Respir J, 2021, 57(3):1902061. DOI: 10.1183/13993003.02061-2019 . |
66 | DANEVA Z, CHEN Y L, TA H Q, et al. Endothelial IK and SK channel activation decreases pulmonary arterial pressure and vascular remodeling in pulmonary hypertension[J]. Pulm Circ, 2023, 13(1):e12186. DOI: 10.1002/pul2.12186 . |
67 | SUEN C M, CHAUDHARY K R, DENG Y P, et al. Fischer rats exhibit maladaptive structural and molecular right ventricular remodelling in severe pulmonary hypertension: a genetically prone model for right heart failure[J]. Cardiovasc Res, 2019, 115(4):788-799. DOI: 10.1093/cvr/cvy258 . |
68 | MORIMATSU Y, SAKASHITA N, KOMOHARA Y, et al. Development and characterization of an animal model of severe pulmonary arterial hypertension[J]. J Vasc Res, 2012, 49(1):33-42. DOI: 10.1159/000329594 . |
69 | INTERNATIONAL PPH CONSORTIUM, LANE K B, MACHADO R D, et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension[J]. Nat Genet, 2000, 26(1):81-84. DOI: 10.1038/79226 . |
70 | DANNEWITZ PROSSEDA S, ALI M K, SPIEKERKOETTER E. Novel advances in modifying BMPR2 signaling in PAH[J]. Genes, 2020, 12(1):8. DOI: 10.3390/genes12010008 . |
71 | MACHADO R D, PAUCIULO M W, THOMSON J R, et al. BMPR2 haploinsufficiency as the inherited molecular mechanism for primary pulmonary hypertension[J]. Am J Hum Genet, 2001, 68(1):92-102. DOI: 10.1086/316947 . |
72 | BEPPU H, ICHINOSE F, KAWAI N, et al. BMPR-II heterozygous mice have mild pulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia[J]. Am J Physiol Lung Cell Mol Physiol, 2004, 287(6):L1241-L1247. DOI: 10.1152/ajplung.00239.2004 . |
73 | LONG L, ORMISTON M L, YANG X D, et al. Selective enhancement of endothelial BMPR-II with BMP9 reverses pulmonary arterial hypertension[J]. Nat Med, 2015, 21(7):777-785. DOI: 10.1038/nm.3877 . |
74 | HAUTEFORT A, MENDES-FERREIRA P, SABOURIN J, et al. Bmpr2 mutant rats develop pulmonary and cardiac characteristics of pulmonary arterial hypertension[J]. Circulation, 2019, 139(7):932-948. DOI: 10.1161/CIRCULATIONAHA.118.033744 . |
75 | TIAN W, JIANG X G, SUNG Y K, et al. Phenotypically silent bone morphogenetic protein receptor 2 mutations predispose rats to inflammation-induced pulmonary arterial hypertension by enhancing the risk for neointimal transformation[J]. Circulation, 2019, 140(17):1409-1425. DOI: 10.1161/CIRCULATIONAHA.119.040629 . |
76 | WEST J D, CHEN X P, PING L, et al. Adverse effects of BMPR2 suppression in macrophages in animal models of pulmonary hypertension[J]. Pulm Circ, 2019, 10(1):2045894019856483. DOI: 10.1177/2045894019856483 . |
77 | THEILMANN A L, HAWKE L G, HILTON L R, et al. Endothelial BMPR2 loss drives a proliferative response to BMP (bone morphogenetic protein) 9 via prolonged canonical signaling[J]. Arterioscler Thromb Vasc Biol, 2020, 40(11):2605-2618. DOI: 10.1161/ATVBAHA.119.313357 . |
78 | MORENO J, ESCOBEDO D, CALHOUN C, et al. Arterial wall stiffening in caveolin-1 deficiency-induced pulmonary artery hypertension in mice[J]. Exp Mech, 2021, 61(1):217-228. DOI: 10.1007/s11340-020-00666-6 . |
79 | LAMBERT M, CAPUANO V, BOET A, et al. Characterization of Kcnk3-mutated rat, a novel model of pulmonary hypertension[J]. Circ Res, 2019, 125(7):678-695. DOI: 10.1161/CIRCRESAHA.119.314793 . |
80 | WEST J D, AUSTIN E D, RIZZI E M, et al. KCNK3 mutation causes altered immune function in pulmonary arterial hypertension patients and mouse models[J]. Int J Mol Sci, 2021, 22(9):5014. DOI: 10.3390/ijms22095014 . |
81 | TU L, DESROCHES-CASTAN A, MALLET C, et al. Selective BMP-9 inhibition partially protects against experimental pulmonary hypertension[J]. Circ Res, 2019, 124(6):846-855. DOI: 10.1161/CIRCRESAHA.118.313356 . |
82 | BOUVARD C, TU L, ROSSI M, et al. Different cardiovascular and pulmonary phenotypes for single- and double-knock-out mice deficient in BMP9 and BMP10[J]. Cardiovasc Res, 2022, 118(7):1805-1820. DOI: 10.1093/cvr/cvab187 . |
83 | ZHANG Y N, ZERVOPOULOS S D, BOUKOURIS A E, et al. SNPs for genes encoding the mitochondrial proteins Sirtuin3 and uncoupling protein 2 are associated with disease severity, type 2 diabetes, and outcomes in patients with pulmonary arterial hypertension and this is recapitulated in a new mouse model lacking both genes[J]. J Am Heart Assoc, 2021, 10(23):e020451. DOI: 10.1161/JAHA.120.020451 . |
84 | DEMPSIE Y, NILSEN M, WHITE K, et al. Development of pulmonary arterial hypertension in mice over-expressing S100A4/Mts1 is specific to females[J]. Respir Res, 2011, 12(1):159. DOI: 10.1186/1465-9921-12-159 . |
85 | WEST J, RATHINASABAPATHY A, CHEN X P, et al. Overexpression of Msx1 in mouse lung leads to loss of pulmonary vessels following vascular hypoxic injury[J]. Cells, 2021, 10(9):2306. DOI: 10.3390/cells10092306 . |
86 | XUE C, SOWDEN M, BERK B C. Extracellular cyclophilin A, especially acetylated, causes pulmonary hypertension by stimulating endothelial apoptosis, redox stress, and inflammation[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6):1138-1146. DOI: 10.1161/ATVBAHA.117.309212 . |
87 | XUE C, SENCHANTHISAI S, SOWDEN M, et al. Endothelial-to-mesenchymal transition and inflammation play key roles in cyclophilin A-induced pulmonary arterial hypertension[J]. Hypertension, 2020, 76(4):1113-1123. DOI: 10.1161/HYPERTENSIONAHA.119.14013 . |
88 | GALIÈ N, HUMBERT M, VACHIERY J L, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): endorsed by: association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT)[J]. Eur Heart J, 2016, 37(1):67-119. DOI: 10.1093/eurheartj/ehv317 . |
89 | KIM K H, KIM H K, CHAN S Y, et al. Hemodynamic and histopathologic benefits of early treatment with macitentan in a rat model of pulmonary arterial hypertension[J]. Korean Circ J, 2018, 48(9):839-853. DOI: 10.4070/kcj.2017.0394 . |
90 | LEE H, YEOM A, KIM K C, et al. Effect of ambrisentan therapy on the expression of endothelin receptor, endothelial nitric oxide synthase and NADPH oxidase 4 in monocrotaline-induced pulmonary arterial hypertension rat model[J]. Korean Circ J, 2019, 49(9):866-876. DOI: 10.4070/kcj.2019.0006 . |
91 | NOVELLI D, FUMAGALLI F, STASZEWSKY L, et al. Monocrotaline-induced pulmonary arterial hypertension: time-course of injury and comparative evaluation of macitentan and Y-27632, a Rho kinase inhibitor[J]. Eur J Pharmacol, 2019, 865:172777. DOI: 10.1016/j.ejphar. 2019. 172777 . |
92 | CHAUMAIS M C, DJESSAS M R A, THUILLET R, et al. Additive protective effects of sacubitril/valsartan and bosentan on vascular remodelling in experimental pulmonary hypertension[J]. Cardiovasc Res, 2021, 117(5):1391-1401. DOI: 10.1093/cvr/cvaa200 . |
93 | ZHANG Z Y, LIU C L, BAI Y Y, et al. Pipersentan: a de novo synthetic endothelin receptor antagonist that inhibits monocrotaline- and hypoxia-induced pulmonary hypertension[J]. Front Pharmacol, 2022, 13:920222. DOI: 10.3389/fphar. 2022.920222 . |
94 | VELASOVA E, LELKOVA K, VETESKOVA J, et al. Riociguat normalizes altered lung expression of serotonin-related genes and renal damage markers in experimental pulmonary hypertension[J]. Eur Heart J, 2022, 43():ehac544.1922. DOI: 10.1093/eurheartj/ehac544.1922 . |
95 | XU X, LI H L, WEI Q X, et al. Novel targets in a high-altitude pulmonary hypertension rat model based on RNA-seq and proteomics[J]. Front Med (Lausanne), 2021, 8:742436. DOI: 10.3389/fmed.2021.742436 . |
96 | SILVA M M C D, ALENCAR A K N, SILVA J S D, et al. Therapeutic benefit of the association of lodenafil with mesenchymal stem cells on hypoxia-induced pulmonary hypertension in rats[J]. Cells, 2020, 9(9):2120. DOI: 10.3390/cells9092120 . |
97 | CHAUDHARY K R, DENG Y P, SUEN C M, et al. Efficacy of treprostinil in the SU5416-hypoxia model of severe pulmonary arterial hypertension: haemodynamic benefits are not associated with improvements in arterial remodelling[J]. Br J Pharmacol, 2018, 175(20):3976-3989. DOI: 10.1111/bph.14472 . |
98 | VANDERPOOL R R, GORELOVA A, MA Y R, et al. Reversal of right ventricular hypertrophy and dysfunction by prostacyclin in a rat model of severe pulmonary arterial hypertension[J]. Int J Mol Sci, 2022, 23(10):5426. DOI: 10.3390/ijms23105426 . |
99 | MORRISON K, HAAG F, ERNST R, et al. Selective prostacyclin receptor agonist selexipag, in contrast to prostacyclin analogs, does not evoke paradoxical vasoconstriction of the rat femoral artery[J]. J Pharmacol Exp Ther, 2018, 365(3):727-733. DOI: 10.1124/jpet.117.246058 . |
100 | HONDA Y, KOSUGI K, FUCHIKAMI C, et al. The selective PGI2 receptor agonist selexipag ameliorates Sugen 5416/hypoxia-induced pulmonary arterial hypertension in rats[J]. PLoS One, 2020, 15(10):e0240692. DOI: 10.1371/journal.pone.0240692 . |
101 | CORBOZ M R, PLAUNT A J, MALININ V S, et al. Assessment of inhaled treprostinil palmitil, inhaled and intravenous treprostinil, and oral selexipag in a sugen/hypoxia rat model of pulmonary arterial hypertension[J]. J Pharmacol Exp Ther, 2022, 383(1):103-116. DOI: 10.1124/jpet.122.001174 . |
102 | RAI N, SHIHAN M, SEEGER W, et al. Genetic delivery and gene therapy in pulmonary hypertension[J]. Int J Mol Sci, 2021, 22(3):1179. DOI: 10.3390/ijms22031179 . |
103 | BISSERIER M, PRADHAN N, HADRI L. Current and emerging therapeutic approaches to pulmonary hypertension[J]. Rev Cardiovasc Med, 2020, 21(2):163-179. DOI: 10.31083/j.rcm.2020.02.597 . |
[1] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[4] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[5] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[6] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[7] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
[8] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[9] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
[10] | LIN Jiang, LUO Fei, LIU Peng, HAN Siyin, CHEN Zhenxing, LIANG Zhongxiu, LAN Taijin. Research Progress Related to Candidate Treatment Methods and Modeling Factors for Diabetic Animal Models with Skin Injury [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 515-520. |
[11] | DONG Zhengwei, FAN Guanwei. A Review of Modified Right Heart Catheterization for Measuring Pulmonary Artery Pressure in Rats [J]. Laboratory Animal and Comparative Medicine, 2020, 40(4): 354-. |
[12] | LI Feng, LI Shun, REN Xiaonan, ZHOU Xiaohui. A Brief Review on Development and Application of Animal Models of Emerging Infectious Diseases Caused by Three Genus Viruses [J]. Laboratory Animal and Comparative Medicine, 2020, 40(3): 173-. |
[13] | GAO Shiping, LI Feng, ZHA Sifan. High-fat Diet Induced Cynomolgus Monkey Model of Non-alcoholic Fatty Liver Disease [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 123-127. |
[14] | XIA Mengxiong, HAN Haihui, LIANG Qianqian, ZHAI Weitao, XU Hao. Research Progress on Animal Models of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 159-165. |
[15] | DONG Guoju, LIU Jiangang, Guan Jie. The Research Progress of Pathological Characteristics of Animal Models with Heart Failure with Ejection Fraction Preservation [J]. Laboratory Animal and Comparative Medicine, 2020, 40(1): 74-79. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||