Laboratory Animal and Comparative Medicine ›› 2024, Vol. 44 ›› Issue (1): 3-30.DOI: 10.12300/j.issn.1674-5817.2024.001
• Animal Models of Human Diseases • Previous Articles Next Articles
Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association
Received:
2024-01-02
Revised:
2024-02-15
Online:
2024-02-25
Published:
2024-03-07
Contact:
ZHANG Huabiao (ORCID: 0009-0002-1094-0891), E-mail: zhanghuabiao@yeah.net;
HE Gang (ORCID: 0009-0005-5102-6264), E-mail: hegangdoctor@126.com;
HAN Xinwei (ORCID:0000-0003-4407-4864), E-mail: hanxinwei2006@163.com;
LI Yingjun (ORCID:0009-0003-5971-6599), E-mail: bjthst@163.com
CLC Number:
. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition)[J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. DOI: 10.12300/j.issn.1674-5817.2024.001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2024.001
模型类别及构建方法 Model categories & construction methods | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
自发性高血压脑出血R+/A+双转基因模型:给予高盐饮食和含L-NAME的饮用水,诱导R+/A+双转基因自发性高血压小鼠产生更严重的高血压,从而引发sICH[ | 模型小鼠出血位置为脑干、基底节和小脑,与人类sICH部位相似[ | (1)造模药物不仅对小鼠肾脏和心脏有影响,也会影响在该模型上试验新药的药代动力学和药效学[ |
脑淀粉样血管病脑出血转基因模型:用过表达APP的转基因小鼠建立了5种脑淀粉样血管病模型[ | (1)适用于脑淀粉样血管病相关sICH和小动脉完整性的分子机制研究[ | (1)缺乏sICH表型的具体描述,且无法比较不同模型的严重程度[ |
动静脉畸形脑出血基因工程模型:(1)Alk1条件性基因敲除小鼠[ | 可用于研究脑动静脉畸形血管易损伤的分子机制[ | (1)制作困难,价格高昂,死亡率高,使用较少;(2)缺乏对sICH表型的细节描述[ |
脑海绵状血管畸形相关基因修饰模型:(1)Ccm2基因相关脑海绵状血管畸形模型[ | 可用于研究脑海绵状血管畸形的分子机制 | (1)制作困难,价格高昂,死亡率高,使用较少;(2)部分模型缺乏对sICH表型细节描述 |
胶原蛋白脑出血基因工程模型:Col4a1突变小鼠[ | 可用于研究sICH的环境影响因素和遗传因素[ | 多数小鼠在早期死亡;存活小鼠在胚胎期即可发生sICH,且随年龄增大而加重[ |
Table 1 Comparison of genetically modified animal models for sICH
模型类别及构建方法 Model categories & construction methods | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
自发性高血压脑出血R+/A+双转基因模型:给予高盐饮食和含L-NAME的饮用水,诱导R+/A+双转基因自发性高血压小鼠产生更严重的高血压,从而引发sICH[ | 模型小鼠出血位置为脑干、基底节和小脑,与人类sICH部位相似[ | (1)造模药物不仅对小鼠肾脏和心脏有影响,也会影响在该模型上试验新药的药代动力学和药效学[ |
脑淀粉样血管病脑出血转基因模型:用过表达APP的转基因小鼠建立了5种脑淀粉样血管病模型[ | (1)适用于脑淀粉样血管病相关sICH和小动脉完整性的分子机制研究[ | (1)缺乏sICH表型的具体描述,且无法比较不同模型的严重程度[ |
动静脉畸形脑出血基因工程模型:(1)Alk1条件性基因敲除小鼠[ | 可用于研究脑动静脉畸形血管易损伤的分子机制[ | (1)制作困难,价格高昂,死亡率高,使用较少;(2)缺乏对sICH表型的细节描述[ |
脑海绵状血管畸形相关基因修饰模型:(1)Ccm2基因相关脑海绵状血管畸形模型[ | 可用于研究脑海绵状血管畸形的分子机制 | (1)制作困难,价格高昂,死亡率高,使用较少;(2)部分模型缺乏对sICH表型细节描述 |
胶原蛋白脑出血基因工程模型:Col4a1突变小鼠[ | 可用于研究sICH的环境影响因素和遗传因素[ | 多数小鼠在早期死亡;存活小鼠在胚胎期即可发生sICH,且随年龄增大而加重[ |
分类 Classification | 等级 Grade | 神经缺损表现 Manifestations of neural deficits |
---|---|---|
正常 | 0 | 未观察到神经缺损 |
中等 | 1 | 瘫痪侧前肢内收并屈曲于腹下(提尾悬空试验阳性) |
严重 | 2 | 向瘫痪侧推动大鼠,阻力较正常侧降低(侧推试验阳性),没有向正常侧转圈行为 |
3 | 除2级表现外,伴有向正常侧转圈行为,或爬行时向瘫痪侧倾倒 | |
检测方法:提起大鼠的尾巴,使动物距离台面10 cm高,正常大鼠的前爪处于伸直状态,模型大鼠存在神经行为异常表现 | ||
等级说明:评价等级越高,说明神经损伤越严重 | ||
优点:(1)操作简单;(2)从整体上反映动物神经损伤程度,可进行定性和半定量评价 | ||
缺点:(1)检测方法相对粗糙和主观;(2)多用于早期神经损伤检测,不能全面反映远期神经损伤程度 |
Table 2 Bederson score
分类 Classification | 等级 Grade | 神经缺损表现 Manifestations of neural deficits |
---|---|---|
正常 | 0 | 未观察到神经缺损 |
中等 | 1 | 瘫痪侧前肢内收并屈曲于腹下(提尾悬空试验阳性) |
严重 | 2 | 向瘫痪侧推动大鼠,阻力较正常侧降低(侧推试验阳性),没有向正常侧转圈行为 |
3 | 除2级表现外,伴有向正常侧转圈行为,或爬行时向瘫痪侧倾倒 | |
检测方法:提起大鼠的尾巴,使动物距离台面10 cm高,正常大鼠的前爪处于伸直状态,模型大鼠存在神经行为异常表现 | ||
等级说明:评价等级越高,说明神经损伤越严重 | ||
优点:(1)操作简单;(2)从整体上反映动物神经损伤程度,可进行定性和半定量评价 | ||
缺点:(1)检测方法相对粗糙和主观;(2)多用于早期神经损伤检测,不能全面反映远期神经损伤程度 |
分类 Classification | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
没有神经功能缺损 | 正常站立或爬行 | 0 |
轻度神经功能损伤 | 提尾时瘫痪侧前肢内收屈曲,不能完全伸展 | 1 |
中度神经功能损伤 | 爬行时向瘫痪侧转圈 | 2 |
重度神经功能损伤 | 站立或爬行时,向瘫痪侧摔倒 | 3 |
没有自发性爬行,伴意识水平降低 | 4 | |
评分说明:(1)5级0~4分制评分系统。基础分为1分,如果没有基础分,则2~4分的评分视为无效。(2)分值越高,说明神经功能缺损越严重 | ||
优点:操作简单 | ||
缺点:(1)检测方法相对粗糙和主观;(2)仅用于检测早期神经功能损伤,不能反映远期神经功能损伤程度 |
Table 3 Zea-Longa score
分类 Classification | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
没有神经功能缺损 | 正常站立或爬行 | 0 |
轻度神经功能损伤 | 提尾时瘫痪侧前肢内收屈曲,不能完全伸展 | 1 |
中度神经功能损伤 | 爬行时向瘫痪侧转圈 | 2 |
重度神经功能损伤 | 站立或爬行时,向瘫痪侧摔倒 | 3 |
没有自发性爬行,伴意识水平降低 | 4 | |
评分说明:(1)5级0~4分制评分系统。基础分为1分,如果没有基础分,则2~4分的评分视为无效。(2)分值越高,说明神经功能缺损越严重 | ||
优点:操作简单 | ||
缺点:(1)检测方法相对粗糙和主观;(2)仅用于检测早期神经功能损伤,不能反映远期神经功能损伤程度 |
神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|
能够顺利爬过横杆,四肢完全发挥作用,无明显神经损害体征 | 7 |
能够爬过横杆,瘫痪肢体发挥作用>50% | 6 |
能够爬过横杆,瘫痪肢体发挥作用<50% | 5 |
不能顺利爬过横杆,跌落率<50% | 4 |
无法顺利爬过横杆,跌落率>50% | 3 |
不能在横杆上爬行,但可以坐在上面 | 2 |
根本爬不上横杆,无法将后腿放在水平位置,如果放在横杆上就会掉落下来 | 1 |
检测方法:将一根长度为80 cm、宽度为2.5 cm的横杆一端放在地下,另一端以60°角斜靠在墙面。逐个将动物放到木板上,通过观察动物在横杆上的行走能力评估其运动功能 | |
评分说明:评分为1~7分,分值越小,说明神经功能缺损越严重。 | |
优点:(1)装置简单,容易修改以适应不同测试需求;(2)可用于短期和长期运动功能损伤评估 | |
缺点:(1)仅适用于较活跃的啮齿类动物,不适用于活动较少的动物;(2)测试方法未标准化,木条的宽度、长度、形状等均未统一 |
Table 4 Balance beam test
神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|
能够顺利爬过横杆,四肢完全发挥作用,无明显神经损害体征 | 7 |
能够爬过横杆,瘫痪肢体发挥作用>50% | 6 |
能够爬过横杆,瘫痪肢体发挥作用<50% | 5 |
不能顺利爬过横杆,跌落率<50% | 4 |
无法顺利爬过横杆,跌落率>50% | 3 |
不能在横杆上爬行,但可以坐在上面 | 2 |
根本爬不上横杆,无法将后腿放在水平位置,如果放在横杆上就会掉落下来 | 1 |
检测方法:将一根长度为80 cm、宽度为2.5 cm的横杆一端放在地下,另一端以60°角斜靠在墙面。逐个将动物放到木板上,通过观察动物在横杆上的行走能力评估其运动功能 | |
评分说明:评分为1~7分,分值越小,说明神经功能缺损越严重。 | |
优点:(1)装置简单,容易修改以适应不同测试需求;(2)可用于短期和长期运动功能损伤评估 | |
缺点:(1)仅适用于较活跃的啮齿类动物,不适用于活动较少的动物;(2)测试方法未标准化,木条的宽度、长度、形状等均未统一 |
测试项目 Test item | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
自主运动:观察动物在鼠笼内5 min的活动 | 活动正常 | 3 |
轻度受限 | 2 | |
中度受限 | 1 | |
严重受限 | 0 | |
体态对称性:提尾使之悬空,观察四肢状态 | 体态对称 | 3 |
体态不对称 | 2 | |
偏瘫 | 1 | |
前肢伸展功能:提尾悬空后肢,将前肢放在桌面,观察前肢伸展运动状况 | 对称 | 3 |
轻度不对称 | 2 | |
显著不对称 | 1 | |
偏瘫 | 0 | |
攀爬力和握力:攀爬和抓紧鼠笼的能力 | 攀爬容易,抓持有力 | 3 |
攀爬困难,瘫痪侧抓持无力 | 2 | |
不能攀爬或转圈 | 1 | |
双侧身体触觉 | 双侧对称 | 3 |
瘫痪侧反应迟钝 | 2 | |
瘫痪侧无反应 | 1 | |
双侧胡须触碰反应 | 对称 | 3 |
不对称 | 2 | |
瘫痪侧无反应 | 1 | |
评分说明:分值为4~18分,18分为正常。分值越大,表示神经功能损伤越轻 | ||
优点:综合评估运动、感觉、反射功能,可用于短期和长期神经功能评估 | ||
缺点:评价参数多,操作较复杂 |
Table 5 Modified Garcia score
测试项目 Test item | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
自主运动:观察动物在鼠笼内5 min的活动 | 活动正常 | 3 |
轻度受限 | 2 | |
中度受限 | 1 | |
严重受限 | 0 | |
体态对称性:提尾使之悬空,观察四肢状态 | 体态对称 | 3 |
体态不对称 | 2 | |
偏瘫 | 1 | |
前肢伸展功能:提尾悬空后肢,将前肢放在桌面,观察前肢伸展运动状况 | 对称 | 3 |
轻度不对称 | 2 | |
显著不对称 | 1 | |
偏瘫 | 0 | |
攀爬力和握力:攀爬和抓紧鼠笼的能力 | 攀爬容易,抓持有力 | 3 |
攀爬困难,瘫痪侧抓持无力 | 2 | |
不能攀爬或转圈 | 1 | |
双侧身体触觉 | 双侧对称 | 3 |
瘫痪侧反应迟钝 | 2 | |
瘫痪侧无反应 | 1 | |
双侧胡须触碰反应 | 对称 | 3 |
不对称 | 2 | |
瘫痪侧无反应 | 1 | |
评分说明:分值为4~18分,18分为正常。分值越大,表示神经功能损伤越轻 | ||
优点:综合评估运动、感觉、反射功能,可用于短期和长期神经功能评估 | ||
缺点:评价参数多,操作较复杂 |
测试项目 Test item | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
运动功能: | ||
(1)提尾试验 | 前肢屈曲 | 1 |
后肢屈曲 | 1 | |
后头部在30 s内偏离垂直轴> 10° | 1 | |
(2)将大鼠放置于 地板上 | 正常行走 | 0 |
不能直线行走 | 1 | |
向偏瘫侧转圈 | 2 | |
向偏瘫侧倾倒 | 3 | |
感觉功能: | ||
(1)放置试验 (视 觉和触觉测试) | 离桌面10 cm处45°倾斜靠近桌面,反应延迟 | 1 |
(2)本体感觉试验 (深感觉测试) | 向桌子边缘压迫鼠爪刺激肢体肌肉, 无反应 | 1 |
(3)平衡木试验 | 稳定、平衡的姿势 | 0 |
紧抓平衡木边缘 | 1 | |
紧抱平衡木,一侧肢体从平衡木垂落 | 2 | |
紧抱平衡木,双侧肢体从平衡木垂落,或在平衡木上转圈(> 60 s) | 3 | |
试图在平衡木上保持平衡但跌落(> 40 s) | 4 | |
试图在平衡木上保持平衡但跌落(> 20 s) | 5 | |
跌落,或未尝试保持平衡,或挂在平衡木上(< 20 s) | 6 | |
反射功能: | ||
(1)耳廓反射 | 接触外耳道时摇头 | 1 |
(2)角膜反射 | 用棉花轻触角膜时眨眼 | 1 |
(3)惊恐反射 | 对快弹硬纸板产生的短暂噪音有运动反应 | 1 |
(4)癫病、肌阵挛、肌张力减退 | 出现一种即得1分 | 1 |
评分说明:总分18分,评分越高,表示神经损伤越严重。13~18分为严重损伤;7~12分为中度损伤;1~6分为轻度伤害 | ||
优点:综合评估运动、感觉、反射和平衡功能,可用于长期神经功能缺损评估 | ||
缺点:(1)评价参数多,操作复杂;(2)仅适合评估基底节而非所有脑区神经功能缺损 |
Table 6 Modified neurological severity score
测试项目 Test item | 神经缺损表现 Manifestations of neural deficits | 评分 Scores |
---|---|---|
运动功能: | ||
(1)提尾试验 | 前肢屈曲 | 1 |
后肢屈曲 | 1 | |
后头部在30 s内偏离垂直轴> 10° | 1 | |
(2)将大鼠放置于 地板上 | 正常行走 | 0 |
不能直线行走 | 1 | |
向偏瘫侧转圈 | 2 | |
向偏瘫侧倾倒 | 3 | |
感觉功能: | ||
(1)放置试验 (视 觉和触觉测试) | 离桌面10 cm处45°倾斜靠近桌面,反应延迟 | 1 |
(2)本体感觉试验 (深感觉测试) | 向桌子边缘压迫鼠爪刺激肢体肌肉, 无反应 | 1 |
(3)平衡木试验 | 稳定、平衡的姿势 | 0 |
紧抓平衡木边缘 | 1 | |
紧抱平衡木,一侧肢体从平衡木垂落 | 2 | |
紧抱平衡木,双侧肢体从平衡木垂落,或在平衡木上转圈(> 60 s) | 3 | |
试图在平衡木上保持平衡但跌落(> 40 s) | 4 | |
试图在平衡木上保持平衡但跌落(> 20 s) | 5 | |
跌落,或未尝试保持平衡,或挂在平衡木上(< 20 s) | 6 | |
反射功能: | ||
(1)耳廓反射 | 接触外耳道时摇头 | 1 |
(2)角膜反射 | 用棉花轻触角膜时眨眼 | 1 |
(3)惊恐反射 | 对快弹硬纸板产生的短暂噪音有运动反应 | 1 |
(4)癫病、肌阵挛、肌张力减退 | 出现一种即得1分 | 1 |
评分说明:总分18分,评分越高,表示神经损伤越严重。13~18分为严重损伤;7~12分为中度损伤;1~6分为轻度伤害 | ||
优点:综合评估运动、感觉、反射和平衡功能,可用于长期神经功能缺损评估 | ||
缺点:(1)评价参数多,操作复杂;(2)仅适合评估基底节而非所有脑区神经功能缺损 |
测试项目 Test item | 评分Scores | |||
---|---|---|---|---|
3 | 2 | 1 | 0 | |
自发活动(在常规鼠笼内观察5 min) | 大鼠在笼盒里到处移动、探索环境、爬到鼠笼上缘≥3个侧面 | 大鼠在笼盒里笨拙地到处移动探索、爬到鼠笼上缘<3个侧面 | 重症大鼠根本没有向上爬行,在鼠笼里几乎没有移动 | 大鼠完全没有移动 |
肢体运动对称性(尾部悬挂) | 四肢对称伸展 | 一侧肢体较对侧伸展更少或更慢 | 一侧肢体活动很少 | 一侧肢体完全没有移动(偏瘫) |
前肢伸展(尾巴悬挂,前爪悬在桌子上) | 双侧前肢伸直,用双侧前爪对称地行走 | 前爪行走受损,伸展不对称 | 一侧肢体活动很少 | 一侧肢体完全没有移动(偏瘫) |
攀爬(在45°角的台面上进行) | 牢牢抓紧鼠笼钢丝,很容易地爬到笼顶 | 肢体不对称地攀爬,或无力抓紧鼠笼钢丝 | 不能攀爬或只能转圈 | 大鼠完全没有移动 |
轴向感觉(从后背轻微刺激躯干) | 对躯干两侧的刺激,大鼠都同样受到惊吓 | 一侧身体的反应慢于另一侧 | 对一侧躯体的刺激没有反应 | 一侧肢体完全没有移动(偏瘫) |
本体振动感觉(从后背轻轻触摸) | 对身体两侧的棉花束触碰,大鼠都会同样地转头 | 一侧身体的反应慢于另一侧 | 对一侧躯体的刺激没有反应 | 一侧肢体完全没有移动(偏瘫) |
评分方法:通过6项功能测试,综合评估大鼠神经功能 | ||||
评分说明:每项测试可能得分为0~3分,0分最差,3分最好。总分最低0分,最高18分 | ||||
优点:一种专用于ICH大鼠模型的神经功能评价方法,可用于检测短期和长期的运动、感觉、平衡、认知等神经功能缺损 | ||||
缺点:尚未见关于该评分系统缺点的报道 |
Table 7 Neurological function scoring system in ICH rats
测试项目 Test item | 评分Scores | |||
---|---|---|---|---|
3 | 2 | 1 | 0 | |
自发活动(在常规鼠笼内观察5 min) | 大鼠在笼盒里到处移动、探索环境、爬到鼠笼上缘≥3个侧面 | 大鼠在笼盒里笨拙地到处移动探索、爬到鼠笼上缘<3个侧面 | 重症大鼠根本没有向上爬行,在鼠笼里几乎没有移动 | 大鼠完全没有移动 |
肢体运动对称性(尾部悬挂) | 四肢对称伸展 | 一侧肢体较对侧伸展更少或更慢 | 一侧肢体活动很少 | 一侧肢体完全没有移动(偏瘫) |
前肢伸展(尾巴悬挂,前爪悬在桌子上) | 双侧前肢伸直,用双侧前爪对称地行走 | 前爪行走受损,伸展不对称 | 一侧肢体活动很少 | 一侧肢体完全没有移动(偏瘫) |
攀爬(在45°角的台面上进行) | 牢牢抓紧鼠笼钢丝,很容易地爬到笼顶 | 肢体不对称地攀爬,或无力抓紧鼠笼钢丝 | 不能攀爬或只能转圈 | 大鼠完全没有移动 |
轴向感觉(从后背轻微刺激躯干) | 对躯干两侧的刺激,大鼠都同样受到惊吓 | 一侧身体的反应慢于另一侧 | 对一侧躯体的刺激没有反应 | 一侧肢体完全没有移动(偏瘫) |
本体振动感觉(从后背轻轻触摸) | 对身体两侧的棉花束触碰,大鼠都会同样地转头 | 一侧身体的反应慢于另一侧 | 对一侧躯体的刺激没有反应 | 一侧肢体完全没有移动(偏瘫) |
评分方法:通过6项功能测试,综合评估大鼠神经功能 | ||||
评分说明:每项测试可能得分为0~3分,0分最差,3分最好。总分最低0分,最高18分 | ||||
优点:一种专用于ICH大鼠模型的神经功能评价方法,可用于检测短期和长期的运动、感觉、平衡、认知等神经功能缺损 | ||||
缺点:尚未见关于该评分系统缺点的报道 |
动物 Animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
非人灵长类动物 | 与人类基因相似度超过90 %,而且生理功能和大脑构造等都与人类接近,是临床前研究的理想实验动物。适合于sICH神经生理和病理研究、新药研发和外科创新技术转化研究[ | (1)饲养管理条件要求复杂,一般需要大型动物饲养间;(2)监管和监督严格,限制了灵长类动物的使用;(3)实验动物资源稀缺,价格昂贵;(4)生物安全问题[ |
猫 | 适合于生理学及神经生理学研究。实验用猫的质量直接影响到研究结果及临床试验质量[ | (1)目前仅有自体血注入猫ICH模型,且很少使用;(2)目前实验用猫仍未被纳入标准化实验动物管理范畴,缺乏相关国家标准,其遗传背景、年龄、微生物和寄生虫携带状况不清,无质量合格证明,检测实验室面临巨大的生物安全风险;(3)血液生化等背景参考数据有限,有待进一步积累。这些都可能带来实验数据不准确、实验结果不可靠、重复性差等问题 |
犬 | 是最早用于建立实验性脑出血模型的动物品种,通过自体血注入方法,Steiner等在1975年就确定了犬不同脑室出血的致死量;(2)目前已建立犬自发性高血压ICH模型;(3)脑体积较大,便于手术操作以及精细观察生理和病理变化[ | (1)价格较贵,来源较少,需要大型动物笼舍;(2)作为人类陪伴动物,用于实验研究时同样受到严格监管,道德和文化上的原因制约其在生物医学研究中的使用[ |
猪 | (1)仔猪模型的脑血肿体积可能比啮齿类动物高出20~30倍,适合模拟人类sICH的病理生理学过程,用于开发新的外科手术技术[ | (1)需要大型动物间;(2)不能以简单、直接的方式评估模型手术切除血肿的效果 |
兔 | (1)体型中等,脑体积明显大于啮齿类,便于手术操作和标本收集,更适于神经影像学、外科技术和急性脑损伤病理生理等方面的研究[ | (1)群居性差,同性别成年兔群居饲养会发生斗殴咬伤;(2)胆小易受惊吓,产生应激反应;(3)缺乏转基因系统,在研究基因组效应方面的应用有限 |
啮齿类 | (1)大鼠和小鼠价格便宜,体型较小,繁殖快,容易饲养,是sICH研究中最常用的动物;(2)小型啮齿类动物的全身麻醉和给药更容易,可以开发大量的实验模型[ | (1)大鼠和小鼠脑回缺乏、白质相对稀少,与人类大脑的相似性较差;(2)脑体积小,限制了可产生血肿的大小,并且难以用于人体检查仪器和外科手术研究;(3)拥有人类无法比拟的再生和康复能力[ |
绵羊 | (1)诱导的sICH病变可控性好、可重复性高;(2)适用于sICH神经影像学研究,而且可重复性高[ | (1)使用率低;(2)大型动物饲养、实验困难 |
Table 8 Comparison of different animals for sICH modeling
动物 Animals | 优点 Advantages | 缺点 Disadvantages |
---|---|---|
非人灵长类动物 | 与人类基因相似度超过90 %,而且生理功能和大脑构造等都与人类接近,是临床前研究的理想实验动物。适合于sICH神经生理和病理研究、新药研发和外科创新技术转化研究[ | (1)饲养管理条件要求复杂,一般需要大型动物饲养间;(2)监管和监督严格,限制了灵长类动物的使用;(3)实验动物资源稀缺,价格昂贵;(4)生物安全问题[ |
猫 | 适合于生理学及神经生理学研究。实验用猫的质量直接影响到研究结果及临床试验质量[ | (1)目前仅有自体血注入猫ICH模型,且很少使用;(2)目前实验用猫仍未被纳入标准化实验动物管理范畴,缺乏相关国家标准,其遗传背景、年龄、微生物和寄生虫携带状况不清,无质量合格证明,检测实验室面临巨大的生物安全风险;(3)血液生化等背景参考数据有限,有待进一步积累。这些都可能带来实验数据不准确、实验结果不可靠、重复性差等问题 |
犬 | 是最早用于建立实验性脑出血模型的动物品种,通过自体血注入方法,Steiner等在1975年就确定了犬不同脑室出血的致死量;(2)目前已建立犬自发性高血压ICH模型;(3)脑体积较大,便于手术操作以及精细观察生理和病理变化[ | (1)价格较贵,来源较少,需要大型动物笼舍;(2)作为人类陪伴动物,用于实验研究时同样受到严格监管,道德和文化上的原因制约其在生物医学研究中的使用[ |
猪 | (1)仔猪模型的脑血肿体积可能比啮齿类动物高出20~30倍,适合模拟人类sICH的病理生理学过程,用于开发新的外科手术技术[ | (1)需要大型动物间;(2)不能以简单、直接的方式评估模型手术切除血肿的效果 |
兔 | (1)体型中等,脑体积明显大于啮齿类,便于手术操作和标本收集,更适于神经影像学、外科技术和急性脑损伤病理生理等方面的研究[ | (1)群居性差,同性别成年兔群居饲养会发生斗殴咬伤;(2)胆小易受惊吓,产生应激反应;(3)缺乏转基因系统,在研究基因组效应方面的应用有限 |
啮齿类 | (1)大鼠和小鼠价格便宜,体型较小,繁殖快,容易饲养,是sICH研究中最常用的动物;(2)小型啮齿类动物的全身麻醉和给药更容易,可以开发大量的实验模型[ | (1)大鼠和小鼠脑回缺乏、白质相对稀少,与人类大脑的相似性较差;(2)脑体积小,限制了可产生血肿的大小,并且难以用于人体检查仪器和外科手术研究;(3)拥有人类无法比拟的再生和康复能力[ |
绵羊 | (1)诱导的sICH病变可控性好、可重复性高;(2)适用于sICH神经影像学研究,而且可重复性高[ | (1)使用率低;(2)大型动物饲养、实验困难 |
模型 Models | 优势 Advantages | 劣势 Disadvantages | 适用研究领域 Applicable research areas |
---|---|---|---|
胶原酶诱导模型 | (1)操作简单,重复性好,注射位置准确,出血量可控[ | (1)出血是弥漫性的,是胶原酶注射部位周围小血管破裂的结果,其血肿形成较慢[ | (1)常用于啮齿类动物模型,尤其适用于研究sICH病理生理机制,以及脑血肿形成和血肿扩张、血管源性水肿、血脑屏障损伤、轴突变性、细胞凋亡、内皮障碍和脑卒中后的全身并发症[ |
自体血注入模型 | (1)操作简单,重复性好,出血位置准确,出血量一致[ | (1)不是真正意义的血管破裂出血,不能模拟人类sICH的小血管破裂[ | (1)啮齿类模型尤其适合sICH后血液及血凝块毒性物质如凝血酶、红细胞、补体、氧化应激、细胞凋亡和促炎症级联反应在继发性脑损伤中的作用和机制研究[ |
微气球充盈模型 | 微气球充盈产生机械性占位效应,可模拟不同大小血肿对脑组织的压迫效果[ | (1)没有产生真实的血肿,不能模拟血液和随后血凝块释放物质引起的继发性脑损伤 [ | 大鼠模型可用于评估占位效应、颅内压、脑血流量,以及血肿清除的效果等[ |
高血糖诱导脑出血后血肿扩大模型 | 部分模拟了在糖尿病基础上发生sICH的临床情况[ | 建模动物为年轻雄性小鼠,需进一步明确性别和年龄依赖性的影响[ | 可用于糖尿病对sICH发生的影响、脑血肿扩大的原因和机制等研究[ |
自发性高血压脑出血模型 | (1)SHRsp与人类动脉硬化高血压sICH的病理生理和发病过程最接近[ | (1)SHRsp模型价格昂贵,来源困难,饲养困难,易变种及断种,实验时间长等[ | 适用于sICH病理生理机制研究[ |
基因修饰动物模型 | (1)小鼠双转基因(R+/A+)高血压脑出血主要发生于基底节、脑干和小脑等部位[ | (1)价格昂贵,制作困难,实验时间长,动物死亡率高[ | (1)转基因啮齿类动物模型可用于研究sICH的基因发病机制及遗传因素对脑出血恢复的影响等[ |
Table 9 Comparison of animal models for sICH
模型 Models | 优势 Advantages | 劣势 Disadvantages | 适用研究领域 Applicable research areas |
---|---|---|---|
胶原酶诱导模型 | (1)操作简单,重复性好,注射位置准确,出血量可控[ | (1)出血是弥漫性的,是胶原酶注射部位周围小血管破裂的结果,其血肿形成较慢[ | (1)常用于啮齿类动物模型,尤其适用于研究sICH病理生理机制,以及脑血肿形成和血肿扩张、血管源性水肿、血脑屏障损伤、轴突变性、细胞凋亡、内皮障碍和脑卒中后的全身并发症[ |
自体血注入模型 | (1)操作简单,重复性好,出血位置准确,出血量一致[ | (1)不是真正意义的血管破裂出血,不能模拟人类sICH的小血管破裂[ | (1)啮齿类模型尤其适合sICH后血液及血凝块毒性物质如凝血酶、红细胞、补体、氧化应激、细胞凋亡和促炎症级联反应在继发性脑损伤中的作用和机制研究[ |
微气球充盈模型 | 微气球充盈产生机械性占位效应,可模拟不同大小血肿对脑组织的压迫效果[ | (1)没有产生真实的血肿,不能模拟血液和随后血凝块释放物质引起的继发性脑损伤 [ | 大鼠模型可用于评估占位效应、颅内压、脑血流量,以及血肿清除的效果等[ |
高血糖诱导脑出血后血肿扩大模型 | 部分模拟了在糖尿病基础上发生sICH的临床情况[ | 建模动物为年轻雄性小鼠,需进一步明确性别和年龄依赖性的影响[ | 可用于糖尿病对sICH发生的影响、脑血肿扩大的原因和机制等研究[ |
自发性高血压脑出血模型 | (1)SHRsp与人类动脉硬化高血压sICH的病理生理和发病过程最接近[ | (1)SHRsp模型价格昂贵,来源困难,饲养困难,易变种及断种,实验时间长等[ | 适用于sICH病理生理机制研究[ |
基因修饰动物模型 | (1)小鼠双转基因(R+/A+)高血压脑出血主要发生于基底节、脑干和小脑等部位[ | (1)价格昂贵,制作困难,实验时间长,动物死亡率高[ | (1)转基因啮齿类动物模型可用于研究sICH的基因发病机制及遗传因素对脑出血恢复的影响等[ |
1 | GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet Neurol, 2021, 20(10):795-820. DOI: 10.1016/S1474-4422(21)00252-0 . |
2 | QURESHI A I, MENDELOW A D, HANLEY D F. Intracerebral haemorrhage[J]. Lancet, 2009, 373(9675):1632-1644. DOI: 10. 1016/S0140-6736(09)60371-8 . |
3 | LIU M, WU B, WANG W Z, et al. Stroke in China: epidemiology, prevention, and management strategies[J]. Lancet Neurol, 2007, 6(5):456-464. DOI: 10.1016/S1474-4422(07)70004-2 . |
4 | VAN ASCH C J, LUITSE M J, RINKEL G J, et al. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: a systematic review and meta-analysis[J]. Lancet Neurol, 2010, 9(2):167-176. DOI: 10.1016/S1474-4422(09)70340-0 . |
5 | FOGELHOLM R, MURROS K, RISSANEN A, et al. Long term survival after primary intracerebral haemorrhage: a retrospective population based study[J]. J Neurol Neurosurg Psychiatry, 2005, 76(11):1534-1538. DOI: 10.1136/jnnp.2004. 055145 . |
6 | ZILLE M, FARR T D, KEEP R F, et al. Novel targets, treatments, and advanced models for intracerebral haemorrhage[J]. EBioMedicine, 2022, 76:103880. DOI: 10.1016/j.ebiom.2022. 103880 . |
7 | O'COLLINS V E, MACLEOD M R, DONNAN G A, et al. 1, 026 experimental treatments in acute stroke[J]. Ann Neurol, 2006, 59(3):467-477. DOI: 10.1002/ana.20741 . |
8 | MYSERLIS E P, MAYERHOFER E, ABRAMSON J R, et al. Lobar intracerebral hemorrhage and risk of subsequent un-controlled blood pressure[J]. Eur Stroke J, 2022, 7(3):280-288. DOI: 10.1177/23969873221094412 . |
9 | WANG X, DI TANNA G L, MOULLAALI T J, et al. J-shape relation of blood pressure reduction and outcome in acute intracerebral hemorrhage: a pooled analysis of INTERACT2 and ATACH-II individual participant data[J]. Int J Stroke, 2022, 17(10):1129-1136. DOI: 10.1177/17474930211064076 . |
10 | SCHLEICHER R L, LI K R, MYLVAGANAM R, et al. Expression of DEspR in acute intracerebral hemorrhage[J]. J Stroke Cerebrovasc Dis, 2022, 31(10):106685. DOI: 10.1016/j.jstroke cerebrovasdis.2022.106685 . |
11 | HERRERA V L M, GROMISCH C M, DECANO J L, et al. Anti-DEspR antibody treatment improves survival and reduces neurologic deficits in a hypertensive, spontaneous intra-cerebral hemorrhage (hsICH) rat model[J]. Sci Rep, 2023, 13(1):2703. DOI: 10.1038/s41598-023-28149-3 . |
12 | IIDA S, BAUMBACH G L, LAVOIE J L, et al. Spontaneous stroke in a genetic model of hypertension in mice[J]. Stroke, 2005, 36(6):1253-1258. DOI: 10.1161/01.str.0000167694.58419.a2 . |
13 | CHEN Y H, CHANG J B, WEI J J, et al. Assessing the evolution of intracranial hematomas by using animal models: a review of the progress and the challenges[J]. Metab Brain Dis, 2021, 36(8):2205-2214. DOI: 10.1007/s11011-021-00828-y . |
14 | JEANNE M, JORGENSEN J, GOULD D B. Molecular and genetic analyses of collagen type IV mutant mouse models of spontaneous intracerebral hemorrhage identify mechanisms for stroke prevention[J]. Circulation, 2015, 131(18):1555-1565. DOI: 10.1161/CIRCULATIONAHA.114.013395 . |
15 | RATELADE J, KLUG N R, LOMBARDI D, et al. Reducing hypermuscularization of the transitional segment between arterioles and capillaries protects against spontaneous intracerebral hemorrhage[J]. Circulation, 2020, 141(25):2078-2094. DOI: 10.1161/CIRCULATIONAHA.119.040963 . |
16 | XIAO N, LIU T L, LI H, et al. Low serum uric acid levels promote hypertensive intracerebral hemorrhage by disrupting the smooth muscle cell-elastin contractile unit and upregulating the Erk1/2-MMP axis[J]. Transl Stroke Res, 2020, 11(5):1077-1094. DOI: 10.1007/s12975-020-00791-3 . |
17 | HOSTETTLER I C, SEIFFGE D J, WERRING D J. Intracerebral hemorrhage: an update on diagnosis and treatment[J]. Expert Rev Neurother, 2019, 19(7):679-694. DOI: 10.1080/14737175.2019.1623671 . |
18 | ALHARBI B M, TSO M K, MACDONALD R L. Animal models of spontaneous intracerebral hemorrhage[J]. Neurol Res, 2016, 38(5):448-455. DOI: 10.1080/01616412.2016.1144671 . |
19 | CANNISTRARO R J, MESCHIA J F. The clinical dilemma of anticoagulation use in patients with cerebral amyloid angiopathy and atrial fibrillation[J]. Curr Cardiol Rep, 2018, 20(11):106. DOI: 10.1007/s11886-018-1052-1 . |
20 | MALHOTRA K, THEODOROU A, KATSANOS A H, et al. Prevalence of clinical and neuroimaging markers in cerebral amyloid angiopathy: a systematic review and meta-analysis[J]. Stroke, 2022, 53(6):1944-1953. DOI: 10.1161/STROKEAHA. 121.035836 . |
21 | SANCHEZ-CARO J M, DE LORENZO MARTÍNEZ DE UBAGO I, DE CELIS RUIZ E, et al. Transient focal neurological events in cerebral amyloid angiopathy and the long-term risk of intracerebral hemorrhage and death: a systematic review and meta-analysis[J]. JAMA Neurol, 2022, 79(1):38-47. DOI: 10.1001/jamaneurol.2021.3989 . |
22 | HOSTETTLER I C, SEIFFGE D, WONG A, et al. APOE and cerebral small vessel disease markers in patients with intracerebral hemorrhage[J]. Neurology, 2022, 99(12): e1290-e1298. DOI: 10.1212/WNL.0000000000200851 . |
23 | BAI Y, DENG H, SHANTSILA A, et al. Rivaroxaban versus dabigatran or warfarin in real-world studies of stroke prevention in atrial fibrillation: systematic review and meta-analysis[J]. Stroke, 2017, 48(4):970-976. DOI: 10.1161/STROKEAHA.116.016275 . |
24 | WU T T, LV C Y, WU L S, et al. Risk of intracranial hemorrhage with direct oral anticoagulants: a systematic review and meta-analysis of randomized controlled trials[J]. J Neurol, 2022, 269(2):664-675. DOI: 10.1007/s00415-021-10448-2 . |
25 | BUTCHER K S, NG K, SHERIDAN P, et al. Dabigatran treatment of acute noncardioembolic ischemic stroke[J]. Stroke, 2020, 51(4):1190-1198. DOI: 10.1161/STROKEAHA. 119.027569 . |
26 | COCHRANE A, CHEN C, STEPHEN J, et al. Antithrombotic treatment after stroke due to intracerebral haemorrhage[J]. Cochrane Database Syst Rev, 2023, 1(1): CD012144. DOI: 10.1002/14651858.CD012144.pub3 . |
27 | PÉTRAULT M, OUK T, PÉTRAULT O, et al. Safety of oral anticoagulants on experimental brain microbleeding and cognition[J]. Neuropharmacology, 2019, 155:162-172. DOI: 10.1016/j.neuropharm.2019.05.030 . |
28 | HILL C S, BORG A, HORSFALL H L, et al. Cerebral cavernous malformation: management, outcomes, and surveillance strategies - A single centre retrospective cohort study[J]. Clin Neurol Neurosurg, 2023, 225:107576. DOI: 10.1016/j.clineuro. 2022.107576 . |
29 | CARDOSO C, ARNOULD M, DE LUCA C, et al. Novel chronic mouse model of cerebral cavernous malformations[J]. Stroke, 2020, 51(4):1272-1278. DOI: 10.1161/STROKEAHA. 119.027207 . |
30 | CHOKSI F, WEINSHEIMER S, NELSON J, et al. Assessing the association of common genetic variants in EPHB4 and RASA1 with phenotype severity in familial cerebral cavernous malformation[J]. Mol Genet Genomic Med, 2021, 9(10): e1794. DOI: 10.1002/mgg3.1794 . |
31 | WEINSHEIMER S, NELSON J, ABLA A A, et al. Intracranial hemorrhage rate and lesion burden in patients with familial cerebral cavernous malformation[J]. J Am Heart Assoc, 2023, 12(3): e027572. DOI: 10.1161/JAHA.122.027572 . |
32 | VAN BEIJNUM J, VAN DER WORP H B, BUIS D R, et al. Treatment of brain arteriovenous malformations: a systematic review and meta-analysis[J]. JAMA, 2011, 306(18):2011-2019. DOI: 10.1001/jama.2011.1632 . |
33 | LI H, YAN Z H, HUO R, et al. RNA sequencing analysis between ruptured and un-ruptured brain AVM[J]. Chin Neurosurg J, 2022, 8(1):13. DOI: 10.1186/s41016-022-00282-4 . |
34 | LI Q F, DECKER-ROCKEFELLER B, BAJAJ A, et al. Activation of ras in the vascular endothelium induces brain vascular malformations and hemorrhagic stroke[J]. Cell Rep, 2018, 24(11):2869-2882. DOI: 10.1016/j.celrep.2018.08.025 . |
35 | NIKOLAEV S I, FISH J E, RADOVANOVIC I. Somatic activating KRAS mutations in arteriovenous malformations of the brain[J]. N Engl J Med, 2018, 378(16):1561-1562. DOI: 10.1056/NEJMc1802190 . |
36 | RIST P M, BURING J E, RIDKER P M, et al. Lipid levels and the risk of hemorrhagic stroke among women[J]. Neurology, 2019, 92(19): e2286-e2294. DOI: 10.1212/WNL. 000000000 0007454 . |
37 | KREL M, MIULLI D E, JUNG H, et al. Minimization of intraparenchymal hemorrhagic stroke size by optimization of serum lipids[J]. Cureus, 2019, 11(4): e4406. DOI: 10.7759/cureus.4406 . |
38 | MOUTZOURI E, GLUTZ M, ABOLHASSANI N, et al. Association of statin use and lipid levels with cerebral microbleeds and intracranial hemorrhage in patients with atrial fibrillation: a prospective cohort study[J]. Int J Stroke, 2023, 18(10):1219-1227. DOI: 10.1177/17474930231181010 . |
39 | LI Q, ZHANG G, XIONG X, et al. Black hole sign: novel imaging marker that predicts hematoma growth in patients with intracerebral hemorrhage[J]. Stroke, 2016, 47(7):1777-1781. DOI: 10.1161/STROKEAHA.116.013186 . |
40 | MOROTTI A, DOWLATSHAHI D, BOULOUIS G, et al. Predicting intracerebral hemorrhage expansion with noncontrast computed tomography: the BAT score[J]. Stroke, 2018, 49(5):1163-1169. DOI: 10.1161/STROKEAHA. 117.020138 . |
41 | WANG X, ARIMA H, SALMAN R A S, et al. Clinical prediction algorithm (BRAIN) to determine risk of hematoma growth in acute intracerebral hemorrhage[J]. Stroke, 2015, 46(2):376-381. DOI: 10.1161/STROKEAHA.114.006910 . |
42 | BROUWERS H B, CHANG Y, FALCONE G J, et al. Predicting hematoma expansion after primary intracerebral hemorrhage[J]. JAMA Neurol, 2014, 71(2):158-164. DOI: 10.1001/jamaneurol. 2013.5433 . |
43 | MAYER S A, BRUN N C, BEGTRUP K, et al. Efficacy and safety of recombinant activated factor VII for acute intracerebral hemorrhage[J]. N Engl J Med, 2008, 358(20):2127-2137. DOI: 10.1056/NEJMoa0707534 . |
44 | VAN DER HORST S F B, MARTENS E S L, DEN EXTER P L, et al. Idarucizumab for dabigatran reversal: a systematic review and meta-analysis of indications and outcomes[J]. Thromb Res, 2023, 228:21-32. DOI: 10.1016/j.thromres.2023.05.020 . |
45 | CONNOLLY S J, MILLING T J Jr, EIKELBOOM J W, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors[J]. N Engl J Med, 2016, 375(12):1131-1141. DOI: 10.1056/NEJMoa1607887 . |
46 | CHU H L, GAO Z D, HUANG C Y, et al. Relationship between hematoma expansion induced by hypertension and hyperglycemia and blood-brain barrier disruption in mice and its possible mechanism: role of aquaporin-4 and Connexin43[J]. Neurosci Bull, 2020, 36(11):1369-1380. DOI: 10.1007/s12264-020-00540-4 . |
47 | SCHLUNK F, BÖHM M, BOULOUIS G, et al. Secondary bleeding during acute experimental intracerebral hemorrhage[J]. Stroke, 2019, 50(5):1210-1215. DOI: 10.1161/STROKEAHA.118.021732 . |
48 | MOROTTI A, SHOAMANESH A, OLIVEIRA-FILHO J, et al. White matter hyperintensities and blood pressure lowering in acute intracerebral hemorrhage: a secondary analysis of the ATACH-2 trial[J]. Neurocrit Care, 2020, 32(1):180-186. DOI: 10.1007/s12028-019-00761-0 . |
49 | KLAHR A C, KOSIOR J C, DOWLATSHAHI D, et al. Lower blood pressure is not associated with decreased arterial spin labeling estimates of perfusion in intracerebral hemorrhage[J]. J Am Heart Assoc, 2019, 8(11): e010904. DOI: 10.1161/JAHA.118.010904 . |
50 | SATTUR M G, SPIOTTA A M. Commentary: efficacy and safety of minimally invasive surgery with thrombolysis in intracerebral haemorrhage evacuation (MISTIE III): a randomized, controlled, open-label, blinded endpoint phase 3 trial[J]. Neurosurgery, 2020, 86(5): E444-E446. DOI: 10.1093/neuros/nyz551 . |
51 | CHANG C F, MASSEY J, OSHEROV A, et al. Bexarotene enhances macrophage erythrophagocytosis and hematoma clearance in experimental intracerebral hemorrhage[J]. Stroke, 2020, 51(2):612-618. DOI: 10.1161/STROKEAHA. 119.027037 . |
52 | XU J, CHEN Z Q, YU F, et al. IL-4/STAT6 signaling facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice[J]. Proc Natl Acad Sci USA, 2020, 117(51):32679-32690. DOI: 10.1073/pnas.2018497117 . |
53 | FU X J, ZHOU G Y, ZHUANG J F, et al. White matter injury after intracerebral hemorrhage[J]. Front Neurol, 2021, 12:562090. DOI: 10.3389/fneur.2021.562090 . |
54 | YANG Y, CHEN X Z, FENG Z Z, et al. MEC17-induced α-tubulin acetylation restores mitochondrial transport function and alleviates axonal injury after intracerebral hemorrhage in mice[J]. J Neurochem, 2022, 160(1):51-63. DOI: 10.1111/jnc. 15493 . |
55 | YANG H, NI W, WEI P J, et al. HDAC inhibition reduces white matter injury after intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2021, 41(5): 958-974. DOI:10.1177/0271678X20942613 . |
56 | LI M X, XIA M, CHEN W X, et al. Lithium treatment mitigates white matter injury after intracerebral hemorrhage through brain-derived neurotrophic factor signaling in mice[J]. Transl Res, 2020, 217:61-74. DOI: 10.1016/j.trsl.2019.12.006 . |
57 | YANG Z Y, DONG S S, ZHENG Q Y, et al. FTY720 attenuates iron deposition and glial responses in improving delayed lesion and long-term outcomes of collagenase-induced intracerebral hemorrhage[J]. Brain Res, 2019, 1718:91-102. DOI: 10.1016/j.brainres.2019.04.031 . |
58 | FOUDA A Y, NEWSOME A S, SPELLICY S, et al. Minocycline in acute cerebral hemorrhage: an early phase randomized trial[J]. Stroke, 2017, 48(10):2885-2887. DOI: 10.1161/STROKEAHA. 117.018658 . |
59 | ZHOU S Y, CUI G Z, YAN X L, et al. Mechanism of ferroptosis and its relationships with other types of programmed cell death: insights for potential interventions after intracerebral hemorrhage[J]. Front Neurosci, 2020, 14:589042. DOI: 10.3389/fnins.2020.589042 . |
60 | CHEN B, CHEN Z H, LIU M J, et al. Inhibition of neuronal ferroptosis in the acute phase of intracerebral hemorrhage shows long-term cerebroprotective effects[J]. Brain Res Bull, 2019, 153:122-132. DOI: 10.1016/j.brainresbull.2019.08.013 . |
61 | SELIM M, FOSTER L D, MOY C S, et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial[J]. Lancet Neurol, 2019, 18(5):428-438. DOI: 10.1016/S1474-4422(19)30069-9 . |
62 | JIA P J, HE J X, LI Z F, et al. Profiling of blood-brain barrier disruption in mouse intracerebral hemorrhage models: collagenase injection vs. autologous arterial whole blood infusion[J]. Front Cell Neurosci, 2021, 15:699736. DOI: 10.3389/fncel.2021.699736 . |
63 | BOLTZE J, FERRARA F, HAINSWORTH A H, et al. Lesional and perilesional tissue characterization by automated image processing in a novel gyrencephalic animal model of peracute intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2019, 39(12):2521-2535. DOI: 10.1177/0271678X18802119 . |
64 | KUNG T F C, WILKINSON C M, DIRKS C A, et al. Glibenclamide does not improve outcome following severe collagenase-induced intracerebral hemorrhage in rats[J]. PLoS One, 2021, 16(6): e0252584. DOI: 10.1371/journal.pone. 0252584 . |
65 | XUE M Z, YONG V W. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation[J]. Lancet Neurol, 2020, 19(12):1023-1032. DOI: 10.1016/S1474-4422(20)30364-1 . |
66 | LI Z G, LI Y L, HAN J R, et al. Formyl peptide receptor 1 signaling potentiates inflammatory brain injury[J]. Sci Transl Med, 2021, 13(605): eabe9890. DOI: 10.1126/scitranslmed.abe9890 . |
67 | HE Y, GAO Y, ZHANG Q, et al. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH[J]. Neuroscience, 2020, 437:161-171. DOI: 10.1016/j.neuroscience.2020.03.008 . |
68 | BAI Q, XUE M Z, YONG V W. Microglia and macrophage phenotypes in intracerebral haemorrhage injury: therapeutic opportunities[J]. Brain, 2020, 143(5):1297-1314. DOI: 10.1093/brain/awz393 . |
69 | TSCHOE C, BUSHNELL C D, DUNCAN P W, et al. Neuroinflammation after intracerebral hemorrhage and potential therapeutic targets[J]. J Stroke, 2020, 22(1):29-46. DOI: 10.5853/jos.2019.02236 . |
70 | CARMONA-MORA P, ANDER B P, JICKLING G C, et al. Distinct peripheral blood monocyte and neutrophil transcriptional programs following intracerebral hemorrhage and different etiologies of ischemic stroke[J]. J Cereb Blood Flow Metab, 2021, 41(6):1398-1416. DOI: 10.1177/0271678X20953912 . |
71 | ZHAO X R, TING S M, LIU C H, et al. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage[J]. Nat Commun, 2017, 8(1):602. DOI: 10.1038/s41467-017-00770-7 . |
72 | ZHAO X R, KRUZEL M, TING S M, et al. Optimized lactoferrin as a highly promising treatment for intracerebral hemorrhage: pre-clinical experience[J]. J Cereb Blood Flow Metab, 2021, 41(1):53-66. DOI: 10.1177/0271678X20925667 . |
73 | HAN R R, LUO J Y, SHI Y C, et al. PD-L1 (programmed death ligand 1) protects against experimental intracerebral hemorrhage-induced brain injury[J]. Stroke, 2017, 48(8):2255-2262. DOI: 10.1161/STROKEAHA.117.016705 . |
74 | CHENG N, WANG H, ZOU M, et al. Brain-derived programmed death-ligand 1 mediates immunosuppression post intracerebral hemorrhage[J]. J Cereb Blood Flow Metab, 2022, 42(11):2048-2057. DOI: 10.1177/0271678X221116048 . |
75 | ZHANG L, WANG H D. FTY720 in CNS injuries: molecular mechanisms and therapeutic potential[J]. Brain Res Bull, 2020, 164:75-82. DOI: 10.1016/j.brainresbull.2020.08.013 . |
76 | ZHANG L Q, WURI J, AN L L, et al. Metoprolol attenuates intracerebral hemorrhage-induced cardiac damage by suppression of sympathetic overactivity in mice[J]. Auton Neurosci, 2021, 234:102832. DOI: 10.1016/j.autneu.2021.102832 . |
77 | SONG J R, CHEN W J, YE W. Stroke and the risk of gastrointestinal disorders: a Mendelian randomization study[J]. Front Neurol, 2023, 14:1131250. DOI: 10.3389/fneur.2023. 1131250 . |
78 | ZHANG Y, YU W P, FLYNN C, et al. Interplay between gut microbiota and NLRP3 inflammasome in intracerebral hemorrhage[J]. Nutrients, 2022, 14(24):5251. DOI: 10.3390/nu14245251 . |
79 | YU X B, ZHOU G Y, SHAO B, et al. Gut microbiota dysbiosis induced by intracerebral hemorrhage aggravates neuroinflammation in mice[J]. Front Microbiol, 2021, 12:647304. DOI: 10.3389/fmicb.2021.647304 . |
80 | BAI Q, SHENG Z F, LIU Y, et al. Intracerebral haemorrhage: from clinical settings to animal models[J]. Stroke Vasc Neurol, 2020, 5(4):388-395. DOI: 10.1136/svn-2020-000334 . |
81 | PAIVA W S, ZIPPO E, MIRANDA C, et al. Animal models for the study of intracranial hematomas (Review)[J]. Exp Ther Med, 2022, 25(1):20. DOI: 10.3892/etm.2022.11719 . |
82 | ROSENBERG G A, ESTRADA E, KELLEY R O, et al. Bacterial collagenase disrupts extracellular matrix and opens blood-brain barrier in rat[J]. Neurosci Lett, 1993, 160(1):117-119. DOI: 10.1016/0304-3940(93)90927-d . |
83 | ROSENBERG G A, MUN-BRYCE S, WESLEY M, et al. Collagenase-induced intracerebral hemorrhage in rats[J]. Stroke, 1990, 21(5):801-807. DOI: 10.1161/01.str.21.5.801 . |
84 | CLARK W, GUNION-RINKER L, LESSOV N, et al. Citicoline treatment for experimental intracerebral hemorrhage in mice[J]. Stroke, 1998, 29(10):2136-2140. DOI: 10.1161/01.str.29. 10.2136 . |
85 | MACLELLAN C L, SILASI G, POON C C, et al. Intracerebral hemorrhage models in rat: comparing collagenase to blood infusion[J]. J Cereb Blood Flow Metab, 2008, 28(3):516-525. DOI: 10.1038/sj.jcbfm.9600548 . |
86 | TANAKA Y, MARUMO T, SHIBUTA H, et al. Serum S100B, brain edema, and hematoma formation in a rat model of collagenase-induced hemorrhagic stroke[J]. Brain Res Bull, 2009, 78(4-5):158-163. DOI: 10.1016/j.brainresbull.2008.10.012 . |
87 | MACLELLAN C L, DAVIES L M, FINGAS M S, et al. The influence of hypothermia on outcome after intracerebral hemorrhage in rats[J]. Stroke, 2006, 37(5):1266-1270. DOI: 10.1161/01.STR.0000217268.81963.78 . |
88 | DEL BIGIO M R, YAN H J, BUIST R, et al. Experimental intracerebral hemorrhage in rats. Magnetic resonance imaging and histopathological correlates[J]. Stroke, 1996, 27(12):2312-2319; discussion 2319-2320. DOI: 10.1161/01.str.27. 12.2312 . |
89 | BERAY-BERTHAT V, DELIFER C, BESSON V C, et al. Long-term histological and behavioural characterisation of a collagenase-induced model of intracerebral haemorrhage in rats[J]. J Neurosci Methods, 2010, 191(2):180-190. DOI: 10.1016/j.jneumeth.2010.06.025 . |
90 | JAMES M L, WARNER D S, LASKOWITZ D T. Preclinical models of intracerebral hemorrhage: a translational perspective[J]. Neurocrit Care, 2008, 9(1):139-152. DOI: 10. 1007/s12028-007-9030-2 . |
91 | ANDALUZ N, ZUCCARELLO M, WAGNER K R. Experimental animal models of intracerebral hemorrhage[J]. Neurosurg Clin N Am, 2002, 13(3):385-393. DOI: 10.1016/s1042-3680(02)00006-2 . |
92 | MA Q Y, KHATIBI N H, CHEN H, et al. History of preclinical models of intracerebral hemorrhage[J]. Acta Neurochir Suppl, 2011, 111:3-8. DOI: 10.1007/978-3-7091-0693-8_1 . |
93 | YANG G Y, BETZ A L, CHENEVERT T L, et al. Experimental intracerebral hemorrhage: relationship between brain edema, blood flow, and blood-brain barrier permeability in rats[J]. J Neurosurg, 1994, 81(1):93-102. DOI: 10.3171/jns. 1994.81.1.0093 . |
94 | DEINSBERGER W, VOGEL J, KUSCHINSKY W, et al. Experimental intracerebral hemorrhage: description of a double injection model in rats[J]. Neurol Res, 1996, 18(5):475-477. DOI: 10.1080/01616412.1996.11740456 . |
95 | BELAYEV L, SAUL I, CURBELO K, et al. Experimental intracerebral hemorrhage in the mouse: histological, behavioral, and hemodynamic characterization of a double-injection model[J]. Stroke, 2003, 34(9):2221-2227. DOI: 10.1161/01.STR.0000088061.06656.1E . |
96 | MA B, ZHANG J. Nimodipine treatment to assess a modified mouse model of intracerebral hemorrhage[J]. Brain Res, 2006, 1078(1):182-188. DOI: 10.1016/j.brainres.2006.01.045 . |
97 | KNIGHT R A, HAN Y X, NAGARAJA T N, et al. Temporal MRI assessment of intracerebral hemorrhage in rats[J]. Stroke, 2008, 39(9):2596-2602. DOI: 10.1161/STROKEAHA.107.506683 . |
98 | XUE M, DEL BIGIO M R. Intracerebral injection of autologous whole blood in rats: time course of inflammation and cell death[J]. Neurosci Lett, 2000, 283(3):230-232. DOI: 10.1016/s0304-3940(00)00971-x . |
99 | YANG D M, KNIGHT R A, HAN Y X, et al. Vascular recovery promoted by atorvastatin and simvastatin after experimental intracerebral hemorrhage: magnetic resonance imaging and histological study[J]. J Neurosurg, 2011, 114(4):1135-1142. DOI: 10.3171/2010.7.JNS10163 . |
100 | KARKI K, KNIGHT R A, HAN Y X, et al. Simvastatin and atorvastatin improve neurological outcome after experimental intracerebral hemorrhage[J]. Stroke, 2009, 40(10):3384-3389. DOI: 10.1161/STROKEAHA.108.544395 . |
101 | SINAR E J, MENDELOW A D, GRAHAM D I, et al. Experimental intracerebral hemorrhage: effects of a temporary mass lesion[J]. J Neurosurg, 1987, 66(4):568-576. DOI: 10.3171/jns.1987.66.4.0568 . |
102 | NAKASHIMA K, YAMASHITA K, UESUGI S, et al. Temporal and spatial profile of apoptotic cell death in transient intracerebral mass lesion of the rat[J]. J Neurotrauma, 1999, 16(2):143-151. DOI: 10.1089/neu.1999.16.143 . |
103 | REN R, LU Q, SHERCHAN P, et al. Inhibition of aryl hydrocarbon receptor attenuates hyperglycemia-induced hematoma expansion in an intracerebral hemorrhage mouse model [J]. J Am Heart Assoc, 2021, 10(20): e022701. DOI: 10.1161/JAHA.121.022701 . |
104 | OKAMOTO K, YAMORI Y, NAGAOKA A. Establishment of the stroke-prone spontaneously hypertensive rat (SHR)[J]. Circ Res, 1974, 35: 1143-1153. |
105 | ZENG J, ZHANG Y, MO J, et al. Two-kidney, two clip renovascular hypertensive rats can be used as stroke-prone rats[J]. Stroke, 1998, 29(8):1708-1713; discussion 1713-1714. DOI: 10.1161/01.str.29.8.1708 . |
106 | GUO H X, YOU M F, WU J H, et al. Genetics of spontaneous intracerebral hemorrhage: risk and outcome[J]. Front Neurosci, 2022, 16:874962. DOI: 10.3389/fnins.2022.874962 . |
107 | EKKERT A, ŠLIACHTENKO A, UTKUS A, et al. Intracerebral hemorrhage genetics[J]. Genes, 2022, 13(7):1250. DOI: 10. 3390/genes13071250 . |
108 | CHARIDIMOU A, BOULOUIS G, GUROL M E, et al. Emerging concepts in sporadic cerebral amyloid angiopathy[J]. Brain, 2017, 140(7):1829-1850. DOI: 10.1093/brain/awx047 . |
109 | GOKHALE S, CAPLAN L R, JAMES M L. Sex differences in incidence, pathophysiology, and outcome of primary intracerebral hemorrhage[J]. Stroke, 2015, 46(3):886-892. DOI: 10.1161/STROKEAHA.114.007682 . |
110 | AUER R N, SUTHERLAND G R. Primary intracerebral hemorrhage: pathophysiology[J]. Can J Neurol Sci Le J Can Des Sci Neurol, 2005, 32(): S3-S12. |
111 | BIFFI A, GREENBERG S M. Cerebral amyloid angiopathy: a systematic review[J]. J Clin Neurol, 2011, 7(1):1-9. DOI: 10.3988/ jcn.2011.7.1.1 . |
112 | BILKEI-GORZO A. Genetic mouse models of brain ageing and Alzheimer’s disease[J]. Pharmacol Ther, 2014, 142(2):244-257. DOI: 10.1016/j.pharmthera.2013.12.009 . |
113 | WINKLER D T, BONDOLFI L, HERZIG M C, et al. Spontaneous hemorrhagic stroke in a mouse model of cerebral amyloid angiopathy[J]. J Neurosci, 2001, 21(5):1619-1627. DOI: 10.1523/ JNEUROSCI.21-05-01619.2001 . |
114 | STURCHLER-PIERRAT C, ABRAMOWSKI D, DUKE M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology[J]. Proc Natl Acad Sci USA, 1997, 94(24):13287-13292. DOI: 10.1073/pnas.94.24.13287 . |
115 | DAVIS J, XU F, DEANE R, et al. Early-onset and robust cerebral microvascular accumulation of amyloid beta- protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta- protein precursor[J]. J Biol Chem, 2004, 279(19):20296-20306. DOI: 10.1074/jbc.M312946200 . |
116 | HERZIG M C, WINKLER D T, BURGERMEISTER P, et al. Abeta is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis[J]. Nat Neurosci, 2004, 7(9):954-960. DOI: 10.1038/nn1302 . |
117 | MAAT-SCHIEMAN M, ROOS R, VAN DUINEN S. Hereditary cerebral hemorrhage with amyloidosis-Dutch type[J]. Neuropathology, 2005, 25(4):288-297. DOI: 10.1111/j.1440- 1789.2005.00631.x . |
118 | FISHER M, VASILEVKO V, PASSOS G F, et al. Therapeutic modulation of cerebral microhemorrhage in a mouse model of cerebral amyloid angiopathy[J]. Stroke, 2011, 42(11):3300- 3303. DOI: 10.1161/STROKEAHA.111.626655 . |
119 | HAN B H, ZHOU M L, JOHNSON A W, et al. Contribution of reactive oxygen species to cerebral amyloid angiopathy, vasomotor dysfunction, and microhemorrhage in aged Tg2576 mice[J]. Proc Natl Acad Sci USA, 2015, 112(8): E881- E890. DOI: 10.1073/pnas.1414930112 . |
120 | COOMARASWAMY J, KILGER E, WÖLFING H, et al. Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease[J]. Proc Natl Acad Sci USA,2010,107(17):7969-7974.DOI:10.1073/pnas. 1001056107 . |
121 | VOLLHERBST D F, BENDSZUS M, MÖHLENBRUCH M A. Vascular malformations of the brain and its coverings[J]. J Neuroendovasc Ther, 2020, 14(8):285-294. DOI: 10.5797/jnet. ra.2020-0020 . |
122 | NARANBHAI N, PÉREZ R. Management of brain arteriovenous malformations: a review[J]. Cureus, 2023, 15(1): e34053. DOI: 10.7759/cureus.34053 . |
123 | BARBOSA DO PRADO L, HAN C, OH S P, et al. Recent advances in basic research for brain arteriovenous malformation[J]. Int J Mol Sci, 2019, 20(21):5324. DOI: 10.3390/ ijms20215324 . |
124 | WINKLER E A, PACULT M A, CATAPANO J S, et al. Emerging pathogenic mechanisms in human brain arteriovenous malformations: a contemporary review in the multiomics era [J]. Neurosurg Focus, 2022, 53(1): E2. DOI: 10.3171/2022.4. FOCUS2291 . |
125 | VETISKA S, WÄLCHLI T, RADOVANOVIC I, et al. Molecular and genetic mechanisms in brain arteriovenous malformations: new insights and future perspectives[J]. Neurosurg Rev, 2022, 45(6):3573-3593. DOI: 10.1007/s10143-022-01883-4 . |
126 | MILTON I, OUYANG D, ALLEN C J, et al. Age-dependent lethality in novel transgenic mouse models of central nervous system arteriovenous malformations[J]. Stroke, 2012, 43(5):1432-1435. DOI: 10.1161/STROKEAHA.111.647024 . |
127 | FISH J E, FLORES SUAREZ C P, BOUDREAU E, et al. Somatic gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling[J]. Circ Res, 2020, 127(6):727-743. DOI: 10.1161/ CIRCRESAHA.119.316500 . |
128 | PARK E S, KIM S, HUANG S N, et al. Selective endothelial hyperactivation of oncogenic KRAS induces brain arteriovenous malformations in mice[J]. Ann Neurol, 2021, 89 (5):926-941. DOI: 10.1002/ana.26059 . |
129 | CARLSON T R, YAN Y B, WU X Q, et al. Endothelial expression of constitutively active Notch4 elicits reversible arteriovenous malformations in adult mice[J]. Proc Natl Acad Sci USA, 2005, 102(28):9884-9889. DOI: 10.1073/pnas.0504391102 . |
130 | SATOMI J, MOUNT R J, TOPORSIAN M, et al. Cerebral vascular abnormalities in a murine model of hereditary hemorrhagic telangiectasia[J]. Stroke, 2003, 34(3):783-789. DOI: 10.1161/01.STR.0000056170.47815.37 . |
131 | YAO Y C, YAO J Y, RADPARVAR M, et al. Reducing Jagged 1 and 2 levels prevents cerebral arteriovenous malformations in matrix Gla protein deficiency[J]. Proc Natl Acad Sci USA, 2013, 110(47):19071-19076. DOI: 10.1073/pnas.1310905110 . |
132 | NIELSEN C M, CUERVO H, DING V W, et al. Deletion of Rbpj from postnatal endothelium leads to abnormal arteriovenous shunting in mice[J]. Development, 2014, 141(19):3782-3792. DOI: 10.1242/dev.108951 . |
133 | SU H, KIM H, PAWLIKOWSKA L, et al. Reduced expression of integrin alphavbeta8 is associated with brain arteriovenous malformation pathogenesis[J]. Am J Pathol, 2010, 176(2):1018- 1027. DOI: 10.2353/ajpath.2010.090453 . |
134 | MOUCHTOURIS N, CHALOUHI N, CHITALE A, et al. Management of cerebral cavernous malformations: from diagnosis to treatment[J]. Sci World J, 2015, 2015:808314. DOI: 10.1155/2015/808314 . |
135 | NIKOUBASHMAN O, DI ROCCO F, DAVAGNANAM I, et al. Prospective hemorrhage rates of cerebral cavernous malformations in children and adolescents based on MRI appearance[J]. AJNR Am J Neuroradiol, 2015, 36(11):2177- 2183. DOI: 10.3174/ajnr.A4427 . |
136 | HOFFMAN J E, WITTENBERG B, MOREL B, et al. Tailored treatment options for cerebral cavernous malformations[J]. J Pers Med, 2022, 12(5):831. DOI: 10.3390/jpm12050831 . |
137 | WANG Y D, NAKAYAMA M, PITULESCU M E, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis [J]. Nature, 2010, 465(7297):483-486. DOI: 10.1038/ nature09002 . |
138 | BOULDAY G, RUDINI N, MADDALUNO L, et al. Developmental timing of CCM2 loss influences cerebral cavernous malformations in mice[J]. J Exp Med, 2011, 208(9): 1835-1847. DOI: 10.1084/jem.20110571 . |
139 | BOULDAY G, BLÉCON A, PETIT N, et al. Tissue-specific conditional CCM2 knockout mice establish the essential role of endothelial CCM2 in angiogenesis: implications for human cerebral cavernous malformations[J]. Dis Model Mech, 2009, 2(3-4):168-177. DOI: 10.1242/dmm.001263 . |
140 | MCDONALD D A, SHENKAR R, SHI C B, et al. A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease[J]. Hum Mol Genet, 2011, 20(2):211-222. DOI: 10.1093/ hmg/ddq433 . |
141 | JEANNE M, LABELLE-DUMAIS C, JORGENSEN J, et al. COL4A2 mutations impair COL4A1 and COL4A2 secretion and cause hemorrhagic stroke[J]. Am J Hum Genet, 2012, 90 (1):91-101. DOI: 10.1016/j.ajhg.2011.11.022 . |
142 | WENG Y C, SONNI A, LABELLE-DUMAIS C, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage[J]. Ann Neurol, 2012, 71(4):470-477. DOI: 10.1002/ ana.22682 . |
143 | SHAH S, ELLARD S, KNEEN R, et al. Childhood presentation of COL4A1 mutations[J]. Dev Med Child Neurol, 2012, 54(6): 569-574. DOI: 10.1111/j.1469-8749.2011.04198.x . |
144 | GOULD D B, PHALAN F C, BREEDVELD G J, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly[J]. Science, 2005, 308(5725):1167-1171. DOI: 10.1126/science.1109418 . |
145 | BEDERSON J B, PITTS L H, TSUJI M, et al. Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination[J]. Stroke, 1986, 17 (3):472-476. DOI: 10.1161/01.str.17.3.472 . |
146 | LONGA E Z, WEINSTEIN P R, CARLSON S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats [J]. Stroke, 1989, 20(1):84-91. DOI: 10.1161/01.str.20.1.84 . |
147 | FEENEY D M, BOYESON M G, LINN R T, et al. Responses to cortical injury: I. Methodology and local effects of contusions in the rat[J]. Brain Res, 1981, 211(1):67-77. DOI: 10.1016/0006- 8993(81)90067-6 . |
148 | GARCIA J H, WAGNER S, LIU K F, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation[J]. Stroke, 1995, 26(4):627-634, 635. DOI: 10.1161/01.str.26.4.627 . |
149 | CHEN J, SANBERG P R, LI Y, et al. Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats[J]. Stroke, 2001, 32(11):2682-2688. DOI: 10.1161/hs1101.098367 . |
150 | HARTMAN R, LEKIC T, ROJAS H, et al. Assessing functional outcomes following intracerebral hemorrhage in rats [J]. Brain Res,2009,1280:148-157. DOI:10.1016/j.brainres.2009. 05.038 . |
151 | TOMITA H, ITO U, OHNO K, et al. Chronological changes in brain edema induced by experimental intracerebral hematoma in cats[J]. Acta Neurochir Suppl, 1994, 60:558-560. DOI: 10.1007/978-3-7091-9334-1_154 . |
152 | LEE E J, HUNG Y C. Marked anemic hypoxia deteriorates cerebral hemodynamics and brain metabolism during massive intracerebral hemorrhage[J]. J Neurol Sci, 2001, 190 (1-2):3-10. DOI: 10.1016/s0022-510x(01)00567-6 . |
153 | MUN-BRYCE S, WILKERSON A C, PAPUASHVILI N, et al. Recurring episodes of spreading depression are spontaneously elicited by an intracerebral hemorrhage in the swine[J]. Brain Res, 2001, 888(2):248-255. DOI: 10.1016/s0006-8993(00)03068-7 . |
154 | BULLOCK R, MENDELOW A D, TEASDALE G M, et al. Intracranial haemorrhage induced at arterial pressure in the rat. Part 1: description of technique, ICP changes and neuropathological findings[J]. Neurol Res, 1984, 6(4):184-188. DOI: 10.1080/01616412.1984.11739687 . |
155 | 林潇, 倪浩棋, 黄李洁, 等. 常用脑出血动物模型的研究进展[J]. 温州医科大学学报, 2017, 47(9):698-703. DOI: 10.3969/j. issn.2095-9400.2017.09.017 . |
LIN X, NI H Q, HUANG L J, et al. Research progress of common animal models of cerebral hemorrhage[J]. J Wenzhou Med Univ, 2017, 47(9):698-703. DOI: 10.3969/j. issn.2095-9400.2017.09.017 . | |
156 | 胡凌峰, 柳洁, 范胜涛. NHP实验动物在神经科学领域的应用及 挑战[J]. 中国比较医学杂志, 2024, 34(1):151-157. DOI:10. 3969 / j. issn.1671-7856. 2024. 01. 020 . |
HU L F, LIU J, FAN S T. Application and challenges of NHP laboratory animals in neuroscience[J]. Chin J Comp Med, 2024, 34(1):151-157. DOI:10. 3969/j.issn.1671-7856.2024.01.020 . | |
157 | 宋洋, 付金凤. 浅谈实验用猫的饲养与管理方法[J]. 黑龙江医药, 2011, 24(6):928-930. |
SONG Y, FU J F. A brief discussion on the feeding and management methods of experimental cats[J]. Heilongjiang Med J, 2011, 24(6):928-930. | |
158 | ZHAO H, LIU E Q, ZHANG Y Q. Dog models of human atherosclerotic cardiovascular diseases[J]. Mamm Genome, 2023, 34(2):262-269. DOI: 10.1007/s00335-022-09965-w . |
159 | TAHA A, BOBI J, DAMMERS R, et al. Comparison of large animal models for acute ischemic stroke: which model to use?[J]. Stroke, 2022, 53(4):1411-1422. DOI: 10.1161/ STROKEAHA.121.036050 . |
160 | TAYLOR K, ALVAREZ L R. An estimate of the number of animals used for scientific purposes worldwide in 2015[J]. Altern Lab Anim, 2019, 47(5-6):196-213. DOI: 10.1177/ 0261192919899853 . |
161 | ANDRADE A F, SOARES M S, PATRIOTA G C, et al. Experimental model of intracranial hypertension with continuous multiparametric monitoring in swine[J]. Arq Neuropsiquiatr, 2013, 71(10):802-806. DOI: 10.1590/0004- 282X20130126 . |
162 | 刘智, 袁楠, 兰天野, 等. 脑出血实验动物模型制备及在中医药研究中的应用[J]. 毒理学杂志, 2019, 5 (4):323-326. |
LIU Z, YUAN N, LAN T Y, et al. Preparation of experimental animal models of cerebral hemorrhage and their application in traditional Chinese medicine research[J]. J Toxicol, 2019, 5(4):323-326. | |
163 | KRAFFT P R, ROLLAND W B, DURIS K, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase[J]. J Vis Exp, 2012(67): e4289. DOI: 10.3791/4289 . |
164 | LOVE C J, KIRSCHENBAUM D, SELIM M, et al. Observation of collagen-containing lesions after hematoma resolution in intracerebral hemorrhage [J]. Stroke,2021,52(5):1856-1860.DOI:10.1161/STROKEAHA. 120.030240 . |
165 | XUE M Z, DEL BIGIO M R. Comparison of brain cell death and inflammatory reaction in three models of intracerebral hemorrhage in adult rats[J]. J Stroke Cerebrovasc Dis, 2003, 12(3):152-159. DOI: 10.1016/S1052-3057(03)00036-3 . |
166 | LASO-GARCIA F, CASADO-FERNANDEZ L, PINIELLA D, et al. Circulating extracellular vesicles promote recovery in a preclinical model of intracerebral hemorrhage[J]. Mol Ther Nucleic Acids, 2023, 32:247-262. DOI: 10.1016/j.omtn.2023. 03.006 . |
167 | KRAFFT P R, ROLLAND W B, DURIS K, et al. Modeling intracerebral hemorrhage in mice: injection of autologous blood or bacterial collagenase [J]. J Vis Exp, 2012, (67): e4289.DOI:10.3791/4289 . |
168 | 段晓春, 王中, 陈罡. 脑出血动物模型研究进展[J]. 中华神经创伤 外科电子杂志, 2015(2):36-39. DOI: 10.3877/cma.j.issn.2095- 9141.2015.02.011 . |
DUAN X C, WANG Z, CHEN G. The research progress of animal model of cerebral hemorrhage[J]. Chin J Neurotraumatic Surg Electron Ed, 2015(2):36-39. DOI: 10.3877/cma.j.issn.2095-9141.2015.02.011 . | |
169 | JING C H, BIAN L H, WANG M, et al. Enhancement of hematoma clearance with CD47 blocking antibody in experimental intracerebral hemorrhage[J]. Stroke, 2019, 50(6): 1539-1547. DOI: 10.1161/STROKEAHA.118.024578 . |
170 | WAGNER K R, XI G, HUA Y, et al. Lobar intracerebral hemorrhage model in pigs: rapid edema development in perihematomal white matter[J]. Stroke, 1996, 27(3):490-497. DOI: 10.1161/01.str.27.3.490 . |
171 | KINGMAN T A, MENDELOW A D, GRAHAM D I, et al. Experimental intracerebral mass: description of model, intracranial pressure changes and neuropathology[J]. J Neuropathol Exp Neurol, 1988, 47(2):128-137. DOI: 10.1097/ 00005072-198803000-00005 . |
172 | LOPEZ VALDES E, HERNANDEZ LAIN A, CALANDRE L, et al. Time window for clinical effectiveness of mass evacuation in a rat balloon model mimicking an intraparenchymatous hematoma[J]. J Neurol Sci, 2000, 174(1):40-46. DOI: 10.1016/ s0022-510x(99)00288-9 . |
173 | KINGMAN T A, MENDELOW A D, GRAHAM D I, et al. Experimental intracerebral mass: time-related effects on local cerebral blood flow[J]. J Neurosurg, 1987, 67(5):732-738. DOI: 10.3171/jns.1987.67.5.0732 . |
174 | NEHLS D G, MENDELOW D A, GRAHAM D I, et al. Experimental intracerebral hemorrhage: early removal of a spontaneous mass lesion improves late outcome[J]. Neurosurgery, 1990, 27(5):674-682; discussion 682. |
175 | ZHENG Y, HU Q, MANAENKO A, et al. 17β-Estradiol attenuates hematoma expansion through estrogen receptor α/silent information regulator 1/nuclear factor-kappa b pathway in hyperglycemic intracerebral hemorrhage mice[J]. Stroke,2015,46(2):485-491.DOI:10.1161/STROKEAHA. 114.006372 . |
176 | European Medicines Agency. ICH guideline M3 ( R2 ) on non- clinical safety studies for the conduct of human clinical trials and marketing authorisation for pharmaceuticals [EB/OL]. [2023-12-22]. . |
177 | Food and Drug Administration. Guidance, compliance & regulatory information (Biologics)[EB/OL].[2023-12-22]. . |
178 | 陈奇. 中药药理研究方法学[M]. 2版. 北京: 人民卫生出版社, 2006:30-35. |
CHEN Q. Research methods in pharmacology of Chinese Materia Medica[M]. 2nd. Beijing: People’s Health Publishing House, 2006:30-35. | |
179 | GUPTA D, GUPTA S V, YANG N N. Understanding the routes of administration[M]// PATHAK Y V, ARAÚJO DOS SANTOS M, ZEA L. Handbook of space pharmaceuticals. Cham: Springer International Publishing, 2022: 23-47. |
180 | 张谦, 冀瑞俊, 赵萌, 等. 中国脑血管病临床管理指南(第2版)(节 选): 第5章脑出血临床管理[J]. 中国卒中杂志, 2023, 18(9):1014- 1023. DOI: 10.3969/j.issn.1673-5765.2023.09.007 . |
ZHANG Q, JI R J, ZHAO M, et al. Chinese stroke association guidelines for clinical management of cerebrovascular diseases (second edition)(excerpt)—chapter five clinical management of intracerebral hemorrhage[J]. Chin J Stroke, 2023, 18(9):1014-1023. DOI: 10.3969/j.issn.1673-5765. 2023. 09.007 . | |
181 | 国家卫生计生委脑卒中筛查与防治工程委员会. 脑卒中筛查与 防治技术规范[J]. 中国医学前沿杂志(电子版), 2013, 5(9):44-50. DOI: 10.3969/j.issn.1674-7372.2013.09.017 . |
Stroke Screening and Prevention Project Committee, National Health and Family Planning Commissionm, P. R. China. Technical specification for screening and prevention of stroke[J]. Chin J Front Med Sci Electron Version, 2013, 5(9): 44-50. DOI: 10.3969/j.issn.1674-7372.2013.09.017 | |
182 | 徐叔云. 药理实验方法学[M]. 3版. 北京: 人民卫生出版社, 2002: 200-202. |
XU S Y. Experimental methodology of pharmacology[M]. 3rd. Beijing: People’s Health Publishing House, 2002:200-202. | |
183 | 国家市场监督管理总局. 药品注册管理办法[A/OL]. (2020-01- 22)[2024-01-11]. . |
State Administration for Market Regulation. Provisions for drug registration[A/OL]. (2020-01-22)[2024-01-11]. . | |
184 | 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 实验 动物福利伦理审查指南: GB/T 35892—2018[S]. 北京: 中国标准 出版社, 2018 |
General Administration of Quality Supervision, Inspection and Quarantine, China National Standardization Commission. Laboratory animal—Guideline for ethical review of animal welfare: GB/T 35892-2018 [S]. Beijing: China Standards Press, 2018. | |
185 | 陈佳琦, 吕龙宝, 张飞燕, 等. 浅谈微量采血法在药物非临床研究中的应用及3R原则的贯彻[J]. 实验动物与比较医学, 2022, 42(4): 306-312. DOI: 10.12300/j.issn.1674-5817.2021.163 . |
CHEN J Q, LÜ L B, ZHANG F Y, et al. Application of blood microsampling and its implementation of the 3Rs in non-clinical studies of drugs[J]. Lab Anim Comp Med, 2022, 42(4): 306-312. DOI: 10.12300/j.issn.1674-5817.2021.163 . |
[1] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
[2] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
[3] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
[4] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
[5] | Jia LIU, Yanrong YE, Yun SHEN, Qiying TANG, Meiqing CHEN, Kehui YI, Shaozhuang CHEN. Ginkgolide B Promotes Neural Function Recovery of Ischemic Stroke Mice by Regulating Characteristics of Brain T Cells and Their Interactions with Glial Cells [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 139-148. |
[6] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[7] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[8] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[9] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[10] | Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. |
[11] | Yanbing ZHU, Fan BAI, Shaoxin TAO, Yuhualei PAN, Huan WANG, Yushang ZHAO, Song WANG, Yan YU. Inhibition of Phospholipase D1 Activity Improves the Recovery of Neurological Function in Mice with Ischemic Stroke [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 322-332. |
[12] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[13] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
[14] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[15] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||