Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (5): 432-439.DOI: 10.12300/j.issn.1674-5817.2021.182
• Animal Models of Human Diseases • Previous Articles Next Articles
Feng WEI(), Weiwei CHENG, Yafu YIN(
)
Received:
2021-12-13
Revised:
2022-05-21
Online:
2022-10-25
Published:
2022-11-04
Contact:
Yafu YIN
CLC Number:
Feng WEI, Weiwei CHENG, Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.182
1 | JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. DOI:10.1016/S2468-2667(20)30185-7 . |
2 | WANG Y Q, JIA R X, LIANG J H, et al. Dementia in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Geriatr Gerontol Int, 2019, 19(11):1096-1100. DOI:10.1111/ggi.13778 . |
3 | 中国老龄协会.认知症老年人照护服务现状与发展报告[EB/OL].(2021-05-12)[2021-05-13]. . |
4 | BALLARD C, GAUTHIER S, CORBETT A, et al. Alzheimer's disease[J]. Lancet, 2011, 377(9770):1019-1031. DOI:10.1016/S0140-6736(10)61349-9 . |
5 | WELLER J, BUDSON A. Current understanding of Alzheimer's disease diagnosis and treatment[J]. F1000Res, 2018, 7: F1000 Faculty Rev-F1000 Faculty1161. DOI:10.12688/f1000research.14506.1 . |
6 | HANE F T, LEE B Y, LEONENKO Z. Recent progress in Alzheimer's disease research, part 1: pathology[J]. J Alzheimers Dis, 2017, 57(1):1-28. DOI:10.3233/JAD-160882 . |
7 | JONSSON T, ATWAL J K, STEINBERG S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline[J]. Nature, 2012, 488(7409):96-99. DOI:10.1038/nature11283 . |
8 | CHONG F P, NG K Y, KOH R Y, et al. Tau proteins and tauopathies in Alzheimer's disease[J].Cell Mol Neurobiol, 2018, 38(5):965-980. DOI:10.1007/s10571-017-0574-1 . |
9 | SAITO T, MATSUBA Y, MIHIRA N, et al. Single App knock-in mouse models of Alzheimer's disease[J]. Nat Neurosci, 2014, 17(5):661-663. DOI:10.1038/nn.3697 . |
10 | Masliah E, Sisk A, Mallory M, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease [J]. J Neurosci, 1996, 16(18): 5795-5811. |
11 | CHEN G Q, CHEN K S, KNOX J, et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease[J]. Nature, 2000, 408(6815):975-979. DOI:10.1038/35050103 . |
12 | BEGLOPOULOS V, TULLOCH J, ROE A D, et al. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice[J]. Nat Commun, 2016, 7:11761. DOI:10.1038/ncomms11761 . |
13 | SCOPA C, MARROCCO F, LATINA V, et al. Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Aβ oligomers[J]. Cell Death Differ, 2020, 27(3):934-948. DOI:10.1038/s41418-019-0409-3 . |
14 | KAWARABAYASHI T, YOUNKIN L H, SAIDO T C, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease[J]. J Neurosci, 2001, 21(2):372-381. DOI:10.1523/JNEUROSCI.21-02-00372.2001 . |
15 | DAM D V, VLOEBERGHS E, ABRAMOWSKI D, et al. APP23 mice as a model of Alzheimer's disease: an example of a transgenic approach to modeling a CNS disorder[J]. CNS Spectr, 2005, 10(3):207-222. DOI:10.1017/s1092852900010051 . |
16 | RIJAL UPADHAYA A, SCHEIBE F, KOSTERIN I, et al. The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice[J]. Acta Neuropathol Commun, 2013, 1(1):77. DOI:10.1186/2051-5960-1-77 . |
17 | STURCHLER-PIERRAT C, ABRAMOWSKI D, DUKE M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology[J]. Proc Natl Acad Sci USA, 1997, 94(24):13287-13292. DOI:10.1073/pnas.94.24.13287 . |
18 | FLOOD D G, REAUME A G, DORFMAN K S, et al. FAD mutant PS-1 gene-targeted mice: increased Aβ42 and Aβ deposition without APP overproduction[J]. Neurobiol Aging, 2002, 23(3):335-348. DOI:10.1016/S0197-4580(01)00330-X . |
19 | ZHAO R H, HU W L, TSAI J, et al. Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer's disease[J]. Mol Neurodegeneration, 2017, 12(1):47. DOI:10.1186/s13024-017-0188-6 . |
20 | SHI Q Q, CHOWDHURY S, MA R, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice[J]. Sci Transl Med, 2017, 9(392): eaaf6295. DOI:10.1126/scitranslmed.aaf6295 . |
21 | KIM T K, LEE J E, PARK S K, et al. Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease[J]. Exp Mol Med, 2012, 44(8):492-502. DOI:10.3858/emm.2012.44.8.056 . |
22 | EIMER W A, VASSAR R. Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation[J]. Mol Neurodegener, 2013, 8:2. DOI:10.1186/1750-1326-8-2 . |
23 | MAZI A R, ARZUMAN A S, GUREL B, et al. Neonatal neurodegeneration in Alzheimer's disease transgenic mouse model[J]. J Alzheimers Dis Rep, 2018, 2(1):79-91. DOI:10.3233/ADR-170049 . |
24 | HSIAO K, CHAPMAN P, NILSEN S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice[J]. Science, 1996, 274(5284):99-102. DOI:10.1126/science.274.5284.99 . |
25 | SPANGENBERG E E, LEE R J, NAJAFI A R, et al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology[J]. Brain, 2016, 139(4):1265-1281. DOI:10.1093/brain/aww016 . |
26 | BAGLIETTO-VARGAS D, FORNER S, CAI L N, et al. Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology[J]. Nat Commun, 2021, 12:2421. DOI:10.1038/s41467-021-22624-z . |
27 | HUR J Y, FROST G R, WU X Z, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740. DOI:10.1038/s41586-020-2681-2 . |
28 | BALU D, KARSTENS A J, LOUKENAS E, et al. The role of APOE in transgenic mouse models of AD[J]. Neurosci Lett, 2019, 707:134285. DOI:10.1016/j.neulet.2019.134285 . |
29 | DUAN A R, JONASSON E M, ALBERICO E O, et al. Interactions between tau and different conformations of tubulin: implications for tau function and mechanism[J]. J Mol Biol, 2017, 429(9):1424-1438. DOI:10.1016/j.jmb.2017.03.018 . |
30 | GIACOBINI E, GOLD G. Alzheimer disease therapy—moving from amyloid-β to tau[J]. Nat Rev Neurol, 2013, 9(12):677-686. DOI:10.1038/nrneurol.2013.223 . |
31 | JOHNSON K A, SCHULTZ A, BETENSKY R A, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease[J]. Ann Neurol, 2016, 79(1):110-119. DOI:10.1002/ana.24546 . |
32 | LEWIS J, MCGOWAN E, ROCKWOOD J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein[J]. Nat Genet, 2000, 25(4):402-405. DOI:10.1038/78078 . |
33 | SAHARA N, LEWIS J, DETURE M, et al. Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility[J]. J Neurochem, 2002, 83(6):1498-1508. DOI:10.1046/j.1471-4159.2002.01241.x . |
34 | LEWIS J, DICKSON D W, LIN W L, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP[J]. Science, 2001, 293(5534):1487-1491. DOI:10.1126/science.1058189 . |
35 | D'ABRAMO C, ACKER C M, JIMENEZ H, et al. Passive immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies[J]. PLoS One, 2015, 10(8): e0135774. DOI:10.1371/journal.pone.0135774 . |
36 | LAMBOURNE S L, HUMBY T, ISLES A R, et al. Impairments in impulse control in mice transgenic for the human FTDP-17 tau V337M mutation are exacerbated by age[J]. Hum Mol Genet, 2007, 16(14):1708-1719. DOI:10.1093/hmg/ddm119 . |
37 | TANEMURA K, MURAYAMA M, AKAGI T, et al. Neuro-degeneration with tau accumulation in a transgenic mouse expressing V337M human tau[J]. J Neurosci, 2002, 22(1):133-141. DOI:10.1523/jneurosci.22-01-00133.2002 . |
38 | SCHNÖDER L, GASPARONI G, NORDSTRÖM K, et al. Neuronal deficiency of p38α-MAPK ameliorates symptoms and pathology of APP or Tau-transgenic Alzheimer's mouse models[J]. FASEB J, 2020, 34(7):9628-9649. DOI:10.1096/fj. 201902731RR . |
39 | SAHARA N, VEGA I E, ISHIZAWA T, et al. Phosphorylated p38MAPK specific antibodies cross-react with sarkosyl-insoluble hyperphosphorylated tau proteins[J]. J Neurochem, 2004, 90(4):829-838. DOI:10.1111/j.1471-4159.2004.02558.x . |
40 | ODDO S, CACCAMO A, SHEPHERD J D, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles[J]. Neuron, 2003, 39(3):409-421. DOI:10.1016/S0896-6273(03)00434-3 . |
41 | BILLINGS L M, ODDO S, GREEN K N, et al. Intraneuronal aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice[J]. Neuron, 2005, 45(5):675-688. DOI:10.1016/j.neuron.2005.01.040 . |
42 | HUBER C M, YEE C, MAY T, et al. Cognitive decline in preclinical Alzheimer's disease: amyloid-beta versus tauopathy[J]. J Alzheimers Dis, 2018, 61(1):265-281. DOI:10. 3233/JAD-170490 . |
43 | ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nat Neurosci, 2021, 24(3):312-325. DOI:10.1038/s41593-020-00783-4 . |
44 | BELFIORE R, RODIN A, FERREIRA E, et al. Temporal and regional progression of Alzheimer's disease-like pathology in 3xTg-AD mice[J]. Aging Cell, 2019, 18(1): e12873. DOI:10.1111/acel.12873 |
45 | LE DOUCE J, MAUGARD M, VERAN J, et al. Impairment of glycolysis-derived 1-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease[J]. Cell Metab, 2020, 31(3):503-517. DOI:10.1016/j.cmet.2020. 02.004 . |
[1] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[2] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[3] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[4] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[5] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[6] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
[7] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
[8] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
[9] | Hui LI. A Comparative Biological Study of Language [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 255-261. |
[10] | LIN Jiang, LUO Fei, LIU Peng, HAN Siyin, CHEN Zhenxing, LIANG Zhongxiu, LAN Taijin. Research Progress Related to Candidate Treatment Methods and Modeling Factors for Diabetic Animal Models with Skin Injury [J]. Laboratory Animal and Comparative Medicine, 2021, 41(6): 515-520. |
[11] | LI Feng, LI Shun, REN Xiaonan, ZHOU Xiaohui. A Brief Review on Development and Application of Animal Models of Emerging Infectious Diseases Caused by Three Genus Viruses [J]. Laboratory Animal and Comparative Medicine, 2020, 40(3): 173-. |
[12] | GAO Shiping, LI Feng, ZHA Sifan. High-fat Diet Induced Cynomolgus Monkey Model of Non-alcoholic Fatty Liver Disease [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 123-127. |
[13] | XIA Mengxiong, HAN Haihui, LIANG Qianqian, ZHAI Weitao, XU Hao. Research Progress on Animal Models of Osteoarthritis [J]. Laboratory Animal and Comparative Medicine, 2020, 40(2): 159-165. |
[14] | DONG Guoju, LIU Jiangang, Guan Jie. The Research Progress of Pathological Characteristics of Animal Models with Heart Failure with Ejection Fraction Preservation [J]. Laboratory Animal and Comparative Medicine, 2020, 40(1): 74-79. |
[15] | WANG Cong, CHEN Xiao-xue, YANG Shao-ling, WANG Feng-ling, FAN Lin-yan, HE Qian-qian. Comparative Analysis of Rabbit Carotid Atherosclerosis Models Established by Collar And Air-drying Method [J]. Laboratory Animal and Comparative Medicine, 2019, 39(3): 208-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||