Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (5): 432-439.DOI: 10.12300/j.issn.1674-5817.2021.182
• Animal Models of Human Diseases • Previous Articles Next Articles
Feng WEI(
), Weiwei CHENG, Yafu YIN(
)
Received:2021-12-13
Revised:2022-05-21
Online:2022-10-25
Published:2022-10-25
Contact:
Yafu YIN
CLC Number:
Feng WEI,Weiwei CHENG,Yafu YIN. Characteristics and Application of Transgenic Mouse Models in Alzheimer's Disease[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 432-439. DOI: 10.12300/j.issn.1674-5817.2021.182.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2021.182
| 1 | JIA L F, DU Y F, CHU L, et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: a cross-sectional study[J]. Lancet Public Health, 2020, 5(12): e661-e671. DOI:10.1016/S2468-2667(20)30185-7 . |
| 2 | WANG Y Q, JIA R X, LIANG J H, et al. Dementia in China (2015-2050) estimated using the 1% population sampling survey in 2015[J]. Geriatr Gerontol Int, 2019, 19(11):1096-1100. DOI:10.1111/ggi.13778 . |
| 3 | 中国老龄协会.认知症老年人照护服务现状与发展报告[EB/OL].(2021-05-12)[2021-05-13]. . |
| 4 | BALLARD C, GAUTHIER S, CORBETT A, et al. Alzheimer's disease[J]. Lancet, 2011, 377(9770):1019-1031. DOI:10.1016/S0140-6736(10)61349-9 . |
| 5 | WELLER J, BUDSON A. Current understanding of Alzheimer's disease diagnosis and treatment[J]. F1000Res, 2018, 7: F1000 Faculty Rev-F1000 Faculty1161. DOI:10.12688/f1000research.14506.1 . |
| 6 | HANE F T, LEE B Y, LEONENKO Z. Recent progress in Alzheimer's disease research, part 1: pathology[J]. J Alzheimers Dis, 2017, 57(1):1-28. DOI:10.3233/JAD-160882 . |
| 7 | JONSSON T, ATWAL J K, STEINBERG S, et al. A mutation in APP protects against Alzheimer's disease and age-related cognitive decline[J]. Nature, 2012, 488(7409):96-99. DOI:10.1038/nature11283 . |
| 8 | CHONG F P, NG K Y, KOH R Y, et al. Tau proteins and tauopathies in Alzheimer's disease[J].Cell Mol Neurobiol, 2018, 38(5):965-980. DOI:10.1007/s10571-017-0574-1 . |
| 9 | SAITO T, MATSUBA Y, MIHIRA N, et al. Single App knock-in mouse models of Alzheimer's disease[J]. Nat Neurosci, 2014, 17(5):661-663. DOI:10.1038/nn.3697 . |
| 10 | Masliah E, Sisk A, Mallory M, et al. Comparison of neurodegenerative pathology in transgenic mice overexpressing V717F beta-amyloid precursor protein and Alzheimer's disease [J]. J Neurosci, 1996, 16(18): 5795-5811. |
| 11 | CHEN G Q, CHEN K S, KNOX J, et al. A learning deficit related to age and β-amyloid plaques in a mouse model of Alzheimer's disease[J]. Nature, 2000, 408(6815):975-979. DOI:10.1038/35050103 . |
| 12 | BEGLOPOULOS V, TULLOCH J, ROE A D, et al. Early detection of cryptic memory and glucose uptake deficits in pre-pathological APP mice[J]. Nat Commun, 2016, 7:11761. DOI:10.1038/ncomms11761 . |
| 13 | SCOPA C, MARROCCO F, LATINA V, et al. Impaired adult neurogenesis is an early event in Alzheimer's disease neurodegeneration, mediated by intracellular Aβ oligomers[J]. Cell Death Differ, 2020, 27(3):934-948. DOI:10.1038/s41418-019-0409-3 . |
| 14 | KAWARABAYASHI T, YOUNKIN L H, SAIDO T C, et al. Age-dependent changes in brain, CSF, and plasma amyloid (beta) protein in the Tg2576 transgenic mouse model of Alzheimer's disease[J]. J Neurosci, 2001, 21(2):372-381. DOI:10.1523/JNEUROSCI.21-02-00372.2001 . |
| 15 | DAM D V, VLOEBERGHS E, ABRAMOWSKI D, et al. APP23 mice as a model of Alzheimer's disease: an example of a transgenic approach to modeling a CNS disorder[J]. CNS Spectr, 2005, 10(3):207-222. DOI:10.1017/s1092852900010051 . |
| 16 | RIJAL UPADHAYA A, SCHEIBE F, KOSTERIN I, et al. The type of Aβ-related neuronal degeneration differs between amyloid precursor protein (APP23) and amyloid β-peptide (APP48) transgenic mice[J]. Acta Neuropathol Commun, 2013, 1(1):77. DOI:10.1186/2051-5960-1-77 . |
| 17 | STURCHLER-PIERRAT C, ABRAMOWSKI D, DUKE M, et al. Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology[J]. Proc Natl Acad Sci USA, 1997, 94(24):13287-13292. DOI:10.1073/pnas.94.24.13287 . |
| 18 | FLOOD D G, REAUME A G, DORFMAN K S, et al. FAD mutant PS-1 gene-targeted mice: increased Aβ42 and Aβ deposition without APP overproduction[J]. Neurobiol Aging, 2002, 23(3):335-348. DOI:10.1016/S0197-4580(01)00330-X . |
| 19 | ZHAO R H, HU W L, TSAI J, et al. Microglia limit the expansion of β-amyloid plaques in a mouse model of Alzheimer's disease[J]. Mol Neurodegeneration, 2017, 12(1):47. DOI:10.1186/s13024-017-0188-6 . |
| 20 | SHI Q Q, CHOWDHURY S, MA R, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice[J]. Sci Transl Med, 2017, 9(392): eaaf6295. DOI:10.1126/scitranslmed.aaf6295 . |
| 21 | KIM T K, LEE J E, PARK S K, et al. Analysis of differential plaque depositions in the brains of Tg2576 and Tg-APPswe/PS1dE9 transgenic mouse models of Alzheimer disease[J]. Exp Mol Med, 2012, 44(8):492-502. DOI:10.3858/emm.2012.44.8.056 . |
| 22 | EIMER W A, VASSAR R. Neuron loss in the 5XFAD mouse model of Alzheimer's disease correlates with intraneuronal Aβ42 accumulation and Caspase-3 activation[J]. Mol Neurodegener, 2013, 8:2. DOI:10.1186/1750-1326-8-2 . |
| 23 | MAZI A R, ARZUMAN A S, GUREL B, et al. Neonatal neurodegeneration in Alzheimer's disease transgenic mouse model[J]. J Alzheimers Dis Rep, 2018, 2(1):79-91. DOI:10.3233/ADR-170049 . |
| 24 | HSIAO K, CHAPMAN P, NILSEN S, et al. Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice[J]. Science, 1996, 274(5284):99-102. DOI:10.1126/science.274.5284.99 . |
| 25 | SPANGENBERG E E, LEE R J, NAJAFI A R, et al. Eliminating microglia in Alzheimer's mice prevents neuronal loss without modulating amyloid-β pathology[J]. Brain, 2016, 139(4):1265-1281. DOI:10.1093/brain/aww016 . |
| 26 | BAGLIETTO-VARGAS D, FORNER S, CAI L N, et al. Generation of a humanized Aβ expressing mouse demonstrating aspects of Alzheimer's disease-like pathology[J]. Nat Commun, 2021, 12:2421. DOI:10.1038/s41467-021-22624-z . |
| 27 | HUR J Y, FROST G R, WU X Z, et al. The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease[J]. Nature, 2020, 586(7831):735-740. DOI:10.1038/s41586-020-2681-2 . |
| 28 | BALU D, KARSTENS A J, LOUKENAS E, et al. The role of APOE in transgenic mouse models of AD[J]. Neurosci Lett, 2019, 707:134285. DOI:10.1016/j.neulet.2019.134285 . |
| 29 | DUAN A R, JONASSON E M, ALBERICO E O, et al. Interactions between tau and different conformations of tubulin: implications for tau function and mechanism[J]. J Mol Biol, 2017, 429(9):1424-1438. DOI:10.1016/j.jmb.2017.03.018 . |
| 30 | GIACOBINI E, GOLD G. Alzheimer disease therapy—moving from amyloid-β to tau[J]. Nat Rev Neurol, 2013, 9(12):677-686. DOI:10.1038/nrneurol.2013.223 . |
| 31 | JOHNSON K A, SCHULTZ A, BETENSKY R A, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease[J]. Ann Neurol, 2016, 79(1):110-119. DOI:10.1002/ana.24546 . |
| 32 | LEWIS J, MCGOWAN E, ROCKWOOD J, et al. Neurofibrillary tangles, amyotrophy and progressive motor disturbance in mice expressing mutant (P301L) tau protein[J]. Nat Genet, 2000, 25(4):402-405. DOI:10.1038/78078 . |
| 33 | SAHARA N, LEWIS J, DETURE M, et al. Assembly of tau in transgenic animals expressing P301L tau: alteration of phosphorylation and solubility[J]. J Neurochem, 2002, 83(6):1498-1508. DOI:10.1046/j.1471-4159.2002.01241.x . |
| 34 | LEWIS J, DICKSON D W, LIN W L, et al. Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP[J]. Science, 2001, 293(5534):1487-1491. DOI:10.1126/science.1058189 . |
| 35 | D'ABRAMO C, ACKER C M, JIMENEZ H, et al. Passive immunization in JNPL3 transgenic mice using an array of phospho-tau specific antibodies[J]. PLoS One, 2015, 10(8): e0135774. DOI:10.1371/journal.pone.0135774 . |
| 36 | LAMBOURNE S L, HUMBY T, ISLES A R, et al. Impairments in impulse control in mice transgenic for the human FTDP-17 tau V337M mutation are exacerbated by age[J]. Hum Mol Genet, 2007, 16(14):1708-1719. DOI:10.1093/hmg/ddm119 . |
| 37 | TANEMURA K, MURAYAMA M, AKAGI T, et al. Neuro-degeneration with tau accumulation in a transgenic mouse expressing V337M human tau[J]. J Neurosci, 2002, 22(1):133-141. DOI:10.1523/jneurosci.22-01-00133.2002 . |
| 38 | SCHNÖDER L, GASPARONI G, NORDSTRÖM K, et al. Neuronal deficiency of p38α-MAPK ameliorates symptoms and pathology of APP or Tau-transgenic Alzheimer's mouse models[J]. FASEB J, 2020, 34(7):9628-9649. DOI:10.1096/fj. 201902731RR . |
| 39 | SAHARA N, VEGA I E, ISHIZAWA T, et al. Phosphorylated p38MAPK specific antibodies cross-react with sarkosyl-insoluble hyperphosphorylated tau proteins[J]. J Neurochem, 2004, 90(4):829-838. DOI:10.1111/j.1471-4159.2004.02558.x . |
| 40 | ODDO S, CACCAMO A, SHEPHERD J D, et al. Triple-transgenic model of Alzheimer's disease with plaques and tangles[J]. Neuron, 2003, 39(3):409-421. DOI:10.1016/S0896-6273(03)00434-3 . |
| 41 | BILLINGS L M, ODDO S, GREEN K N, et al. Intraneuronal aβ causes the onset of early Alzheimer's disease-related cognitive deficits in transgenic mice[J]. Neuron, 2005, 45(5):675-688. DOI:10.1016/j.neuron.2005.01.040 . |
| 42 | HUBER C M, YEE C, MAY T, et al. Cognitive decline in preclinical Alzheimer's disease: amyloid-beta versus tauopathy[J]. J Alzheimers Dis, 2018, 61(1):265-281. DOI:10. 3233/JAD-170490 . |
| 43 | ESCARTIN C, GALEA E, LAKATOS A, et al. Reactive astrocyte nomenclature, definitions, and future directions[J]. Nat Neurosci, 2021, 24(3):312-325. DOI:10.1038/s41593-020-00783-4 . |
| 44 | BELFIORE R, RODIN A, FERREIRA E, et al. Temporal and regional progression of Alzheimer's disease-like pathology in 3xTg-AD mice[J]. Aging Cell, 2019, 18(1): e12873. DOI:10.1111/acel.12873 |
| 45 | LE DOUCE J, MAUGARD M, VERAN J, et al. Impairment of glycolysis-derived 1-serine production in astrocytes contributes to cognitive deficits in Alzheimer's disease[J]. Cell Metab, 2020, 31(3):503-517. DOI:10.1016/j.cmet.2020. 02.004 . |
| [1] | LIU Yayi, JIA Yunfeng, ZUO Yiming, ZHANG Junping, LÜ Shichao. Progress and Evaluation of Animal Model of Heart Qi-Yin Deficiency Syndrome [J]. Laboratory Animal and Comparative Medicine, 2025, 45(4): 411-421. |
| [2] | PAN Yicong, JIANG Wenhong, HU Ming, QIN Xiao. Optimization of Surgical Procedure and Efficacy Evaluation of Aortic Calcification Model in Rats with Chronic Kidney Disease [J]. Laboratory Animal and Comparative Medicine, 2025, 45(3): 279-289. |
| [3] | LIAN Hui, JIANG Yanling, LIU Jia, ZHANG Yuli, XIE Wei, XUE Xiaoou, LI Jian. Construction and Evaluation of a Rat Model of Abnormal Uterine Bleeding [J]. Laboratory Animal and Comparative Medicine, 2025, 45(2): 130-146. |
| [4] | YANG Jiahao, DING Chunlei, QIAN Fenghua, SUN Qi, JIANG Xusheng, CHEN Wen, SHEN Mengwen. Research Progress on Animal Models of Sepsis-Related Organ Injury [J]. Laboratory Animal and Comparative Medicine, 2024, 44(6): 636-644. |
| [5] | HUANG Dongyan, WU Jianhui. Establishment Methods and Application Evaluation of Animal Models in Reproductive Toxicology Research [J]. Laboratory Animal and Comparative Medicine, 2024, 44(5): 550-559. |
| [6] | ZHENG Yiqing, DENG Yasheng, FAN Yanping, LIANG Tianwei, HUANG Hui, LIU Yonghui, NI Zhaobing, LIN Jiang. Application Analysis of Animal Models for Pelvic Inflammatory Disease Based on Data Mining [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 405-418. |
| [7] | WU Yue, LI Lu, ZHANG Yang, WANG Jue, FENG Tingting, LI Yitong, WANG Kai, KONG Qi. Integrative Analysis of Omics Data in Animal Models of Coronavirus Infection [J]. Laboratory Animal and Comparative Medicine, 2024, 44(4): 357-373. |
| [8] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
| [9] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
| [10] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
| [11] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
| [12] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
| [13] | Zhejin SHENG, Limei LI. Research Progress in Animal Model of Alzheimer's Disease [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 342-350. |
| [14] | Yaohua HU, Jumei ZHAO, Changhong SHI. Application of Animal Models in the Functional Studies of Eph Family Proteins [J]. Laboratory Animal and Comparative Medicine, 2022, 42(4): 351-357. |
| [15] | Xiao LI, Haipeng YAN, Zhenghui XIAO. Construction Methods and Influencing Factors on Animal Model of Sepsis [J]. Laboratory Animal and Comparative Medicine, 2022, 42(3): 207-212. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||