| [1] | 黄晓燕, 徐娟, 孙晓梅, 等. 树鼩在人类疾病动物模型中应用研究进展[J]. 实验动物科学, 2013, 30(2):59-64. DOI: 10.3969/j.issn.1006-6179.2013.02.014 . | 
																													
																						|  | HUANG X Y, XU J, SUN X M, et al. Development of application of tree shrew in human disease animal models research[J]. Lab Anim Sci, 2013, 30(2):59-64. DOI: 10.3969/j.issn.1006-6179.2013.02.014 . | 
																													
																						| [2] | 王文广, 匡德宣, 仝品芬, 等. 树鼩的标准化研究与应用进展[J]. 实验动物科学, 2020, 37(1):74-78. DOI: 10.3969/j.issn.1006-6179.2020.01.016 . | 
																													
																						|  | WANG W G, KUANG D X, TONG P F, et al. Standardization and application progress of tree shrew[J]. Lab Anim Sci, 2020, 37(1):74-78. DOI: 10.3969/j.issn.1006-6179.2020.01.016 . | 
																													
																						| [3] | 苏傲蕾, 秦银鸽, 郑禹, 等. 树鼩的生物学特性研究概述[J]. 动物医学进展, 2014, 35(10):115-118. DOI: 10.16437/j.cnki.1007-5038.2014.10.031 . | 
																													
																						|  | SU A L, QIN Y G, ZHENG Y, et al. Introduction to biological characteristics of tree shrew[J]. Prog Vet Med, 2014, 35(10):115-118. DOI: 10.16437/j.cnki.1007-5038.2014.10.031 . | 
																													
																						| [4] | HEIDARI F, MADADI S, ALIZADEH N, et al. The potential of monoclonal antibodies for colorectal cancer therapy[J]. Med Oncol, 2023, 40(9):273. DOI:10.1007/s12032-023-02151-1 . | 
																													
																						| [5] | 黄建洪, 张春阳. 单克隆抗体在肾移植免疫抑制治疗中的应用进展[J]. 医学综述, 2008, 14(5):752-754. | 
																													
																						|  | HUANG J H, ZHANG C Y. The application of monoclonal antibodies in immunosuppressive strategies of renal transplantation[J]. Med Recapitul, 2008, 14(5):752-754. | 
																													
																						| [6] | PAUL S, KONIG M F, PARDOLL D M, et al. Cancer therapy with antibodies[J]. Nat Rev Cancer, 2024, 24(6):399-426. DOI:10.1038/s41568-024-00690-x . | 
																													
																						| [7] | SORBARA M, CORDELIER P, BERY N. Antibody-based approaches to target pancreatic tumours[J]. Antibodies, 2022, 11(3):47. DOI: 10.3390/antib11030047 . | 
																													
																						| [8] | KLEIN C, BRINKMANN U, REICHERT J M, et al. The present and future of bispecific antibodies for cancer therapy[J]. Nat Rev Drug Discov, 2024, 23(4):301-319. DOI: 10.1038/s41573-024-00896-6 . | 
																													
																						| [9] | GUO X H, WU Y, XUE Y, et al. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific anti-bodies for targeted treatment[J]. Front Immunol, 2023, 14:1291836. DOI: 10.3389/fimmu.2023.1291836 . | 
																													
																						| [10] | 曹颖颖, 李宝莹, 王婷, 等. 瑶山亚种树鼩IFN-β和IFN-γ原核表达及其多克隆抗体制备[J]. 南方农业学报, 2022, 53(6):1713-1723. DOI: 10.3969/j.issn.2095-1191.2022.06.025 . | 
																													
																						|  | CAO Y Y, LI B Y, WANG T, et al. Prokaryotic expression and polyclonal antibody preparation of IFN-β and IFN-γ of Tupaia belangeri yaoshanensis[J]. J South Agric, 2022, 53(6):1713-1723. DOI: 10.3969/j.issn.2095-1191.2022.06.025 . | 
																													
																						| [11] | 曹颖颖, 李慧君, 李宝莹, 等. 瑶山亚种树鼩ISG15蛋白表达及其多克隆抗体制备[J]. 中国畜牧兽医, 2022, 49(1):273-282. DOI: 10.16431/j.cnki.1671-7236.2022.01.030 . | 
																													
																						|  | CAO Y Y, LI H J, LI B Y, et al. Expression of ISG15 protein of Tupaia belangeri yaoshanensis and preparation of its polyclonal antibody[J]. China Anim Husb Vet Med, 2022, 49(1):273-282. DOI: 10.16431/j.cnki.1671-7236.2022.01.030 . | 
																													
																						| [12] | 吴晋元, 周艳, 解裕萍, 等. 树鼩IgG纯化鉴定及其多克隆抗体制备和检测[J]. 现代生物医学进展, 2016, 16(7):1201-1204. DOI: 10.13241/j.cnki.pmb.2016.07.001 . | 
																													
																						|  | WU J Y, ZHOU Y, XIE Y P, et al. Purification of tree shrews(Tupaia) immunoglobulin G and preparation of anti-IgG polyclonal antibody[J]. Prog Mod Biomed, 2016, 16(7):1201-1204. DOI: 10.13241/j.cnki.pmb.2016.07.001 . | 
																													
																						| [13] | MALAPEIRA J, ESSELENS C, BECH-SERRA J J, et al. ADAM17 (TACE) regulates TGF-β signaling through the cleavage of vasorin[J]. Oncogene, 2011, 30(16):1912-1922. DOI: 10.1038/onc.2010.565 . | 
																													
																						| [14] | IKEDA Y, IMAI Y, KUMAGAI H, et al. Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo [J]. Proc Natl Acad Sci USA, 2004, 101(29):10732-10737. DOI:10.1073/pnas.0404117101 . | 
																													
																						| [15] | QIN Z X, ZHONG Y, LI P W, et al. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2[J]. FASEB J, 2024, 38(10): e23682. DOI: 10.1096/fj.202400159R . | 
																													
																						| [16] | LIANG W Y, ZUO J, LIU M K, et al. VASN promotes colorectal cancer progression by activating the YAP/TAZ and AKT signaling pathways via YAP[J]. FASEB J, 2023, 37(1): e22688. DOI: 10.1096/fj.202201181R . | 
																													
																						| [17] | CHEN W S, WANG Q, XU X L, et al. Vasorin/ATIA promotes cigarette smoke-induced transformation of human bronchial epithelial cells by suppressing autophagy-mediated apop-tosis[J]. Transl Oncol, 2020, 13(1):32-41. DOI: 10.1016/j.tranon.2019.09.001 . | 
																													
																						| [18] | YANG L C, CHENG X J, SHI W, et al. Vasorin deletion in C57BL/6J mice induces hepatocyte autophagy through glycogen-mediated mTOR regulation[J]. Nutrients, 2022, 14(17):3600. DOI: 10.3390/nu14173600 . | 
																													
																						| [19] | WAN F J, LI H, HUANG S P, et al. Vasorin promotes proliferation and migration via STAT3 signaling and acts as a promising therapeutic target of hepatocellular carcinoma[J]. Cell Signal, 2023, 110:110809. DOI: 10.1016/j.cellsig.2023.110809 . | 
																													
																						| [20] | WU D N, ZHANG K L, CHEN R H, et al. VASN promotes the aggressive phenotype in ARID1A-deficient lung adenocar-cinoma[J]. BMC Cancer, 2024, 24(1):1327. DOI: 10.1186/s12885-024-13083-y . | 
																													
																						| [21] | GUO X P, SUN J M, LIANG J N, et al. Vasorin contributes to lung injury via FABP4-mediated inflammation[J]. Mol Biol Rep, 2022, 49(10):9335-9344. DOI: 10.1007/s11033-022-07780-9 . | 
																													
																						| [22] | YAO Y G, LU L, NI R J, et al. Study of tree shrew biology and models: a booming and prosperous field for biomedical research[J]. Zool Res, 2024, 45(4):877-909. DOI: 10.24272/j.issn.2095-8137.2024.199 . | 
																													
																						| [23] | TONG Y H, HAO J J, TU Q, et al. A tree shrew glioblastoma model recapitulates features of human glioblastoma[J]. Oncotarget, 2017, 8(11):17897-17907. DOI: 10.18632/oncotarget.15225 . | 
																													
																						| [24] | LIU H R, WU G, ZHOU B, et al. Structure and function of cholesteryl ester transfer protein in the tree shrew[J]. Lipids, 2011, 46(7):607-616. DOI: 10.1007/s11745-011-3552-2 . | 
																													
																						| [25] | ZHENG L T, CHEN S Y, WU Q L, et al. Tree shrews as a new animal model for systemic sclerosis research[J]. Front Immunol, 2024, 15:1315198. DOI: 10.3389/fimmu.2024.1315198 . | 
																													
																						| [26] | KOTHARI M, WANJARI A, ACHARYA S, et al. A comprehensive review of monoclonal antibodies in modern medicine: tracing the evolution of a revolutionary therapeutic approach[J]. Cureus, 2024, 16(6): e61983. DOI: 10.7759/cureus.61983 . | 
																													
																						| [27] | LITTLE M, KIPRIYANOV S M, LE GALL F, et al. Of mice and men: hybridoma and recombinant antibodies[J]. Immunol Today, 2000, 21(8):364-370. DOI: 10.1016/s0167-5699(00)01668-6 . | 
																													
																						| [28] | SKOWICKI M, LIPIŃSKI T. The development of methods for obtaining monoclonal antibody-producing cells[J]. Postepy Hig Med Dosw, 2016, 70:367-379. DOI: 10.5604/1732269 3.1200552 . | 
																													
																						| [29] | 邝贞结. 基因工程重组抗体技术的研究进展[J]. 广东畜牧兽医科技, 2010, 35(5):3-6. DOI: 10.3969/j.issn.1005-8567.2010.05.001 . | 
																													
																						|  | KUANG Z J. Research progress of recombinant antibody technology in genetic engineering[J]. Guangdong J Anim Vet Sci, 2010, 35(5):3-6. DOI: 10.3969/j.issn.1005-8567.2010.05.001 . | 
																													
																						| [30] | 董新莹, 高晓薇, 宋浩, 等. 纳米抗体的研究进展及其应用现状[J]. 生物工程学报, 2024, 40(12):4324-4338. DOI: 10.13345/j.cjb.240366 . | 
																													
																						|  | DONG X Y, GAO X W, SONG H, et al. Research progress and application of nanobodies[J]. Chin J Biotechnol, 2024, 40(12):4324-4338. DOI: 10.13345/j.cjb.240366 . | 
																													
																						| [31] | 武瑞君, 桑晓冬, 李治非, 等. 抗体技术的研发现状与展望[J]. 中国药理学与毒理学杂志, 2021, 35(5):374-381. DOI: 10.3867/j.issn.1000-3002.2021.05.007 . | 
																													
																						|  | WU R J, SANG X D, LI Z F, et al. Development and prospect of antibody technology[J]. Chin J Pharmacol Toxicol, 2021, 35(5):374-381. DOI: 10.3867/j.issn.1000-3002.2021.05.007 . | 
																													
																						| [32] | GILEADI O. Recombinant protein expression in E. coli: a historical perspective[J]. Methods Mol Biol, 2017, 1586:3-10. DOI: 10.1007/978-1-4939-6887-9_1 . | 
																													
																						| [33] | ROSANO G L, CECCARELLI E A. Recombinant protein expression in Escherichia coli: advances and challenges[J]. Front Microbiol, 2014, 5:172. DOI: 10.3389/fmicb.2014.00172 . | 
																													
																						| [34] | SUN J M, GUO X P, YU P, et al. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice[J]. J Cell Mol Med, 2022, 26(1):88-98. DOI: 10.1111/jcmm.17034 . | 
																													
																						| [35] | SUN J M, YIN S W, LI Q R, et al. VASN knockout induces myocardial fibrosis in mice by downregulating non-collagen fibers and promoting inflammation[J]. Front Pharmacol, 2025, 15:1500617. DOI: 10.3389/fphar.2024.1500617 . |