实验动物与比较医学 ›› 2024, Vol. 44 ›› Issue (1): 52-61.DOI: 10.12300/j.issn.1674-5817.2023.094
方茜1, 敖青青2, 李春宏1, 欧阳轶强1, 郭松超1, 胡冰1()
收稿日期:
2023-06-30
修回日期:
2023-12-12
出版日期:
2024-02-25
发布日期:
2024-03-07
通讯作者:
胡 冰(1978—),女,硕士,助理研究员,主要从事实验动物学研究。E-mail:1020360353@qq.com作者简介:
方 茜(1991—),女,硕士,实验师,主要从事实验动物微生物学研究。E-mail:290227387@qq.com
基金资助:
Xi FANG1, Qingqing AO2, Chunhong LI1, Yiqiang OUYANG1, Songchao GUO1, Bing HU1()
Received:
2023-06-30
Revised:
2023-12-12
Published:
2024-02-25
Online:
2024-03-07
Contact:
Hu Bing, E-mail: 1020360353@qq.com摘要:
目的 研究树鼩乳腺肿瘤发生、发展过程中代谢组学的变化,探讨机体代谢物质改变与肿瘤发生、发展的密切关系,以期筛选出反映乳腺肿瘤病情进展的生物标志物。 方法 通过连续3次、每次间隔15 d的方式给20只树鼩每只灌胃7,12-二甲基苯并蒽(7,12-dimethylbenzoanthracene,DMBA)0.15 mg/kg,并添加高脂高糖饲料,诱导实验观察24个月或直至树鼩生成乳腺肿瘤。使用气相色谱-飞行时间质谱联用技术(gas chromatography-time-of-flight mass spectrometry,GC-TOFMS)对DMBA诱导发生乳腺肿瘤的树鼩、DMBA诱导未发生乳腺肿瘤的树鼩以及未诱导正常树鼩(12只)的血清代谢物进行非靶向测定,通过主成分分析(principal component analysis,PCA)、正交偏最小二乘法分析(orthogonal partial least squares analysis,OPLS-DA)等多维统计分析,进一步结合t检验进行组间差异比较,以VIP>1且P<0.05的标准筛选差异性代谢物,并结合HMDB在线数据库对显著变化的差异代谢物进行鉴定,最后应用京都基因与基因组百科全书(Kyoto Encyclopedia of Genesand Genomes,KEGG)通路数据库富集代谢相关基因调控通路。 结果 DMBA诱导后树鼩的乳腺肿瘤发生率为40%(8/20)。DMBA造模成瘤组与正常对照组相比,树鼩血清中检测到有30种代谢差异产物,其中18种下调,12种上调,差异均具有统计学意义(VIP>1,P<0.05);KEGG通路分析发现,谷氨酸代谢、甘油酯代谢、柠檬酸循环、丙氨酸代谢这4个代谢通路发生显著改变。DMBA造模成瘤组与DMBA造模未成瘤组相比,检测到有18种代谢差异产物,其中7种下调,11种上调,差异具有统计学意义(VIP>1,P<0.05);KEGG通路分析发现,柠檬酸循环、谷氨酸代谢这2个代谢通路发生显著改变。DMBA造模未成瘤组与正常对照组相比,检测到有31种代谢差异产物,其中14种下调,17种上调,差异具有统计学意义(VIP>1,P<0.05);KEGG通路分析发现,柠檬酸循环、谷氨酸代谢、甘油酯代谢这3个代谢通路发生显著改变。 结论 代谢组学分析可展示乳腺肿瘤树鼩血清中代谢产物的变化特点,结果提示谷氨酸代谢、甘油酯代谢、柠檬酸循环、丙氨酸代谢途径与高脂高糖饮食下DMBA诱导树鼩乳腺肿瘤的发生与发展有相关性,这为进一步研究乳腺肿瘤发病的生物机制奠定了基础。
中图分类号:
方茜, 敖青青, 李春宏, 欧阳轶强, 郭松超, 胡冰. 树鼩乳腺肿瘤模型的代谢组学分析[J]. 实验动物与比较医学, 2024, 44(1): 52-61.
Xi FANG, Qingqing AO, Chunhong LI, Yiqiang OUYANG, Songchao GUO, Bing HU. Metabolomics Analysis of Tupaia belangeri Breast Tumor Model[J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 52-61.
分组 Group | 动物数量 n Number of Tupaia belangeri | 体重/g Body weight/g | 体长/cm Body length/cm | 肿瘤质量/g Tumor weight/g | 肿瘤体积/mm3 Tumor size/mm3 |
---|---|---|---|---|---|
DMBA造模未成瘤组 DMBA-induced group with breast cancer | 8 | 135.36±20.31 | 17.91±2.12 | 3.15±1.40 | 4 153.12±213.23 |
DMBA造模未成瘤组 DMBA-induced group without breast cancer | 12 | 131.11±11.54 | 17.68±1.32 | - | - |
正常对照组 Normal control | 12 | 123.65±10.54 | 17.73±0.65 | - | - |
表1 3组树鼩基本情况
Table 1 Basic information of Tupaia belangeri in three groups
分组 Group | 动物数量 n Number of Tupaia belangeri | 体重/g Body weight/g | 体长/cm Body length/cm | 肿瘤质量/g Tumor weight/g | 肿瘤体积/mm3 Tumor size/mm3 |
---|---|---|---|---|---|
DMBA造模未成瘤组 DMBA-induced group with breast cancer | 8 | 135.36±20.31 | 17.91±2.12 | 3.15±1.40 | 4 153.12±213.23 |
DMBA造模未成瘤组 DMBA-induced group without breast cancer | 12 | 131.11±11.54 | 17.68±1.32 | - | - |
正常对照组 Normal control | 12 | 123.65±10.54 | 17.73±0.65 | - | - |
图1 树鼩乳腺肿瘤的病理结果注:A,DMBA造模成瘤组树鼩的乳腺肿瘤组织;B,正常对照组树鼩的乳腺组织。标尺50 μm。
Figure 1 Pathological results of breast cancer in Tupaia belangeriNote:A, Breast tumour tissue of the DMBA-induced breast cancer group; B, Breast tissue of the normal group. Scale bars, 50 μm.
图2 各组树鼩血清的总离子流图注:A,DMBA造模成瘤组(8只);B,DMBA造模未成瘤组(12只);C,正常对照组(12只)。
Figure 2 Total ion flow maps of serum from each group of Tupaia belangeriNote: A, DMBA-induced breast cancer group (n=8); B, DMBA-induced without breast cancer group (n=12); C, Normal control group (n=12).
图3 各树鼩组间对比的OPLS-DA模型得分散点图注:A,DMBA造模成瘤组(DMBA-BC)与正常对照组(NC)血清代谢物对比的OPLS-DA得分图;B,DMBA造模成瘤组(DMBA-BC)与DMBA造模未成瘤组(DMBA-nonBC)血清代谢物对比的OPLS-DA得分图;C,DMBA造模未成瘤组(DMBA-nonBC)与正常对照组(NC)血清代谢物对比的OPLS-DA得分图。
Figure 3 Score scatter plot of OPLS-DA model for each group of Tupaia belangeriNote:A, The OPLS-DA score plot of blood metabolites comparison between DMBA-induced breast cancer (DMBA-BC) group and normal control (NC) group; B, The OPLS-DA score plot of blood metabolites comparison between DMBA-induced with breast cancer (DMBA-BC) group and those without breast cancer (DMBA-nonBC); C, The OPLS-DA score plot of blood metabolites comparison between DMBA-induced without breast cancer (DMBA-nonBC) group and normal control (NC) group.
图4 各树鼩组间对比的差异代谢物火山图(A~C)和层次聚类分析结果热图(D~F)注:A和D,DMBA造模成瘤组(DMBA-BC)与正常对照组(NC)对比;B和E,DMBA造模成瘤组(DMBA-BC)与DMBA造模未成瘤组(DMBA-nonBC)对比;C和F,DMBA造模未成瘤组(DMBA-nonBC)与正常对照组(NC)对比。
Figure 4 The volcano map (A-C) and heatmap of hierarchical clustering analysis (D-F) of differential metabolites between groups of Tupaia belangeriNote:A and D, DMBA-induced group with breast cancer (DMBA-BC) vs normal control (NC) group; B and E, DMBA-induced group with breast cancer (DMBA-BC) vs DMBA-induced group without breast cancer (DMBA-nonBC); C and F, DMBA-induced group without breast cancer (DMBA-nonBC) vs normal control (NC) group.
DMBA造模成瘤组vs正常对照组 DMBA-BC vs NC | DMBA造模成瘤组vsDMBA造模未成瘤组 DMBA-BC vs DMBA-nonBC | DMBA造模未成瘤组vs正常对照组 DMBA-nonBC vs NC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
代谢物 Metabolites | VIP | P | Log-FC | CT | 代谢物 Metabolites | VIP | P | Log-FC | CT | 代谢物 Metabolites | VIP | P | Log-FC | CT |
甘油酸-3-磷酸 Glycerate-3-phosphate | 2.762 | <0.001 | -0.650 | ↑ | 十七烷酸 Margaric acid | 2.236 | 0.013 | 1.783 | ↑ | 甲氧基色胺 Methoxytry ptamine | 3.020 | <0.001 | 7.659 | ↑ |
谷氨酸 Glutamate | 2.086 | <0.001 | 3.051 | ↑ | 香芹酮 Carvone | 2.096 | 0.019 | 0.812 | ↑ | 肌苷 Inosine | 1.280 | <0.001 | 4.104 | ↑ |
腺苷 Adenosine | 2.561 | 0.001 | 2.995 | ↑ | 羟基脲 Hydroxyurea | 1.160 | 0.021 | 0.539 | ↑ | 葡萄糖庚糖 Glucose heptose | 1.303 | <0.001 | -1.476 | ↓ |
2,6-二磷酸果糖 2,6-Fructose diphosphate | 1.273 | 0.002 | 1.035 | ↑ | 1-磷酸鞘氨醇 Sphingosine 1- phosphate | 1.431 | 0.024 | 0.839 | ↑ | 甘油 Glycerol | 2.420 | <0.001 | -0.419 | ↓ |
4-羟基苯甲酸 4-Hydroxyben- zoic acid | 1.101 | 0.002 | 0.916 | ↑ | 1,5-脱水葡萄糖醇 1,5-Dehydrated glucose alcohol | 1.878 | 0.035 | 0.418 | ↑ | 月桂酸 Lauric acid | 2.291 | 0.001 | -1.011 | ↓ |
壬酸 Pelargonic acid | 3.167 | <0.001 | -1.640 | ↓ | 鸟氨酸 Ornithine | 1.344 | 0.036 | 1.042 | ↑ | 腺苷 Adenosine | 2.737 | 0.001 | 3.399 | ↑ |
1,5-脱水葡萄糖醇 1, 5-Anhydro- gluosol | 2.779 | <0.001 | -1.216 | ↓ | 丙醇二酸 Tartronic acid | 1.375 | 0.037 | 0.508 | ↑ | 氨基丁酸 Aminobutyric acid | 2.140 | 0.001 | 0.914 | ↑ |
α-酮戊二酸 α-Ketoglutaric acid | 2.382 | <0.001 | -1.771 | ↓ | 3-苯基乳酸 3-Phenyllactic acid | 1.248 | 0.038 | 1.373 | ↑ | 苏氨酸 Threonine | 1.738 | 0.004 | -0.702 | ↓ |
富马酸 Fumaric acid | 2.301 | 0.001 | -1.174 | ↓ | N-乙酰基-D-氨基胺 N-acetyl-D- aminoamine | 2.648 | 0 | -2.090 | ↓ | 1,2-脱水肌醇 1,2-Dehydrated Inositol | 2.925 | 0.005 | 18.130 | ↑ |
羟胺 Hydroxylamine | 1.492 | 0.001 | -0.975 | ↓ | α-酮异己酸 α-Ketoisocaproic acid | 2.371 | 0.007 | -0.891 | ↓ | 丝氨酸 Serine | 1.568 | 0.008 | -0.830 | ↓ |
2-羟基丁酸 2-Hydroxybutyric acid | 2.176 | 0.002 | -0.625 | ↓ | 己二酸 Adipic acid | 1.757 | 0.021 | -2.106 | ↓ | 吲哚乙酸 Indoleacetic acid | 2.373 | 0.010 | 14.098 | ↑ |
L-苹果酸 L-malic acid | 2.313 | 0.002 | -1.319 | ↓ | 柠檬酸 Citric acid | 1.043 | 0.021 | -0.742 | ↓ | 胸苷 Thymidine | 1.882 | 0.010 | 2.960 | ↑ |
邻苯二甲酸 Phthalate | 1.860 | 0.002 | -4.509 | ↓ | 邻苯二甲酸 Phthalic acid | 2.109 | 0.024 | -3.879 | ↓ | 柠檬酸 Citric acid | 2.049 | 0.010 | 3.048 | ↑ |
丙酮酸 Pyruvate | 2.085 | 0.008 | -1.193 | ↓ | 肌苷 Inosine | 1.690 | 0.037 | -1.451 | ↓ | 甘油酸-3-磷酸 Glycerate-3- phosphate | 1.664 | 0.015 | -0.574 | ↓ |
花生四烯酸 Arachidonic acid | 1.356 | 0.033 | -0.543 | ↓ | α-酮戊二酸 α-Ketoglutaric acid | 1.978 | 0.038 | -0.996 | ↓ | 谷氨酸 Glutamate | 1.292 | 0.016 | 2.622 | ↑ |
表2 DMBA造模成瘤组与正常对照组树鼩对比关键差异代谢产物
Table 2 Key differential metabolites between DMBA-induced group with breast cancer and control group of Tupaia belangeri
DMBA造模成瘤组vs正常对照组 DMBA-BC vs NC | DMBA造模成瘤组vsDMBA造模未成瘤组 DMBA-BC vs DMBA-nonBC | DMBA造模未成瘤组vs正常对照组 DMBA-nonBC vs NC | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
代谢物 Metabolites | VIP | P | Log-FC | CT | 代谢物 Metabolites | VIP | P | Log-FC | CT | 代谢物 Metabolites | VIP | P | Log-FC | CT |
甘油酸-3-磷酸 Glycerate-3-phosphate | 2.762 | <0.001 | -0.650 | ↑ | 十七烷酸 Margaric acid | 2.236 | 0.013 | 1.783 | ↑ | 甲氧基色胺 Methoxytry ptamine | 3.020 | <0.001 | 7.659 | ↑ |
谷氨酸 Glutamate | 2.086 | <0.001 | 3.051 | ↑ | 香芹酮 Carvone | 2.096 | 0.019 | 0.812 | ↑ | 肌苷 Inosine | 1.280 | <0.001 | 4.104 | ↑ |
腺苷 Adenosine | 2.561 | 0.001 | 2.995 | ↑ | 羟基脲 Hydroxyurea | 1.160 | 0.021 | 0.539 | ↑ | 葡萄糖庚糖 Glucose heptose | 1.303 | <0.001 | -1.476 | ↓ |
2,6-二磷酸果糖 2,6-Fructose diphosphate | 1.273 | 0.002 | 1.035 | ↑ | 1-磷酸鞘氨醇 Sphingosine 1- phosphate | 1.431 | 0.024 | 0.839 | ↑ | 甘油 Glycerol | 2.420 | <0.001 | -0.419 | ↓ |
4-羟基苯甲酸 4-Hydroxyben- zoic acid | 1.101 | 0.002 | 0.916 | ↑ | 1,5-脱水葡萄糖醇 1,5-Dehydrated glucose alcohol | 1.878 | 0.035 | 0.418 | ↑ | 月桂酸 Lauric acid | 2.291 | 0.001 | -1.011 | ↓ |
壬酸 Pelargonic acid | 3.167 | <0.001 | -1.640 | ↓ | 鸟氨酸 Ornithine | 1.344 | 0.036 | 1.042 | ↑ | 腺苷 Adenosine | 2.737 | 0.001 | 3.399 | ↑ |
1,5-脱水葡萄糖醇 1, 5-Anhydro- gluosol | 2.779 | <0.001 | -1.216 | ↓ | 丙醇二酸 Tartronic acid | 1.375 | 0.037 | 0.508 | ↑ | 氨基丁酸 Aminobutyric acid | 2.140 | 0.001 | 0.914 | ↑ |
α-酮戊二酸 α-Ketoglutaric acid | 2.382 | <0.001 | -1.771 | ↓ | 3-苯基乳酸 3-Phenyllactic acid | 1.248 | 0.038 | 1.373 | ↑ | 苏氨酸 Threonine | 1.738 | 0.004 | -0.702 | ↓ |
富马酸 Fumaric acid | 2.301 | 0.001 | -1.174 | ↓ | N-乙酰基-D-氨基胺 N-acetyl-D- aminoamine | 2.648 | 0 | -2.090 | ↓ | 1,2-脱水肌醇 1,2-Dehydrated Inositol | 2.925 | 0.005 | 18.130 | ↑ |
羟胺 Hydroxylamine | 1.492 | 0.001 | -0.975 | ↓ | α-酮异己酸 α-Ketoisocaproic acid | 2.371 | 0.007 | -0.891 | ↓ | 丝氨酸 Serine | 1.568 | 0.008 | -0.830 | ↓ |
2-羟基丁酸 2-Hydroxybutyric acid | 2.176 | 0.002 | -0.625 | ↓ | 己二酸 Adipic acid | 1.757 | 0.021 | -2.106 | ↓ | 吲哚乙酸 Indoleacetic acid | 2.373 | 0.010 | 14.098 | ↑ |
L-苹果酸 L-malic acid | 2.313 | 0.002 | -1.319 | ↓ | 柠檬酸 Citric acid | 1.043 | 0.021 | -0.742 | ↓ | 胸苷 Thymidine | 1.882 | 0.010 | 2.960 | ↑ |
邻苯二甲酸 Phthalate | 1.860 | 0.002 | -4.509 | ↓ | 邻苯二甲酸 Phthalic acid | 2.109 | 0.024 | -3.879 | ↓ | 柠檬酸 Citric acid | 2.049 | 0.010 | 3.048 | ↑ |
丙酮酸 Pyruvate | 2.085 | 0.008 | -1.193 | ↓ | 肌苷 Inosine | 1.690 | 0.037 | -1.451 | ↓ | 甘油酸-3-磷酸 Glycerate-3- phosphate | 1.664 | 0.015 | -0.574 | ↓ |
花生四烯酸 Arachidonic acid | 1.356 | 0.033 | -0.543 | ↓ | α-酮戊二酸 α-Ketoglutaric acid | 1.978 | 0.038 | -0.996 | ↓ | 谷氨酸 Glutamate | 1.292 | 0.016 | 2.622 | ↑ |
图5 各组树鼩之间差异代谢通路分析图注:A,DMBA造模成瘤组(DMBA-BC)与正常对照组(NC)对比的差异代谢物代谢通路;B,DMBA造模成瘤组(DMBA-BC)与DMBA造模未成瘤组(DMBA-nonBC)对比的差异代谢物代谢通路;C,DMBA造模未成瘤组(DMBA-nonBC)与正常对照组(NC)对比的差异代谢物代谢通路。
Figure 5 Analysis of different metabolic pathways among groups of Tupaia belangeriNote:A, Differential metabolic pathways between DMBA-induced group with breast cancer (DMBA-BC) and normal control (NC) group; B, Differential metabolic pathways between DMBA-induced (DMBA-BC) group with breast cancer and those without breast cancer (DMBA-nonBC); C, Differential metabolic pathways between DMBA-induced without breast cancer (DMBA-nonBC)group and normal control (NC) group.
1 | 郭心怡, 吕青. 2023年«NCCN乳腺癌风险降低指南»解读[J]. 中国胸心血管外科临床杂志, 2023, 30(6):787-804.DOI:10.7507/1007-4848.202303034 . |
GUO X Y, LV Q. Interpretations of the NCCN guidelines for breast cancer risk reduction(version 2023)[J]. Chin J Clin Thorac Cardiovasc Surg, 2023, 30(6):787-804.DOI:10.7507/1007-4848.202303034 . | |
2 | 王英哲, 殷咏梅, 江泽飞. 2023年CSCO«乳腺癌诊疗指南»更新要点解读[J]. 中国肿瘤外科杂志, 2023, 15(3): 209-213, 218. DOI: 10.3969/j.issn.1674-4136.2023.03.001 . |
WANG Y Z, YIN Y M, JIANG Z F. Interpretation of updated key points of Chinese society of clinical oncology(CSCO)breast cancer guidelines 2023[J]. Chin J Surg Oncol, 2023, 15(3): 209-213, 218. DOI: 10.3969/j.issn.1674-4136.2023.03.001 . | |
3 | 姜艺, 顾天豪, 夏添松. 特殊乳腺癌动物模型研究进展[J]. 南京医科大学学报(自然科学版), 2021, 41(2):292-295, 309.DOI:10.7655/NYDXBNS20210227 . |
JIANG Y, GU T H, XIA T S. Research progress of special animal models of breast cancer[J]. J Nanjing Med Univ Nat Sci, 2021, 41(2):292-295, 309.DOI:10.7655/NYDXBNS20210227 . | |
4 | 夏巍, 赖永静, 杜龙, 等. 树鼩在人类肿瘤疾病动物模型中的应用进展[J]. 动物医学进展, 2019, 40(3):109-113. DOI: 10.16437/j.cnki.1007-5038.2019.03.020 . |
XIA W, LAI Y J, DU L, et al. Application of tree shrew in animal models of human tumor diseases[J]. Prog Vet Med, 2019, 40(3):109-113. DOI: 10.16437/j.cnki.1007-5038.2019.03.020 . | |
5 | 贾杰, 代解杰. 树鼩在生物医学研究中的优势与挑战[J]. 实验动物与比较医学, 2019, 39(1): 3-8. DOI: 10.3969/j.issn.1674-5817.2019.01.002 . |
JIA J, DAI J J. Advantages and challenges of tree shrews in biomedical research[J]. Lab Anim Comp Med, 2019, 39(1): 3-8. DOI: 10.3969/j.issn.1674-5817.2019.01.002 . | |
6 | OLIVARES O, DÄBRITZ J H M, KING A, et al. Research into cancer metabolomics: towards a clinical metamorphosis[J]. Semin Cell Dev Biol, 2015, 43:52-64. DOI: 10.1016/j.semcdb. 2015.09.008 . |
7 | 马小雨, 罗彩萍, 刘悦. 代谢组学在乳腺癌诊疗中应用的研究进展[J]. 药学实践与服务, 2023, 41(3):139-145.DOI:10.12206/j.issn.2097-2024.202109112 . |
MA X Y, LUO C P, LIU Y. Application of metabonomics in breast cancer[J]. J Pharm Pract Serv, 2023, 41(3):139-145.DOI:10.12206/j.issn.2097-2024.202109112 . | |
8 | 石倩倩, 敖青青, 韦兰成, 等. 树鼩自发性乳腺癌的代谢组学分析[J]. 广西医科大学学报, 2021, 38(10):1860-1864. DOI: 10.16190/j.cnki.45-1211/r.2021.10.005 . |
SHI Q Q, AO Q Q, WEI L C, et al. Metabonomics analysis of spontaneous breast cancer in tree shrew[J]. J Guangxi Med Univ, 2021, 38(10):1860-1864. DOI: 10.16190/j.cnki.45-1211/r.2021.10.005 . | |
9 | 韩春平, 许佳琪, 宋旭阳. 南阳地区育龄期女性乳腺癌流行特征及相关因素[J]. 中国卫生工程学, 2023, 22(2):217-219. DOI: 10.19937/j.issn.1671-4199.2023.02.021 . |
HAN C P, XU J Q, SONG X Y. Epidemiological characteristics and related factors of breast cancer in women of childbearing age in Nanyang area[J]. Chin J Public Heath Eng, 2023, 22(2):217-219. DOI: 10.19937/j.issn.1671-4199.2023.02.021 . | |
10 | 徐小珊, 侯小明, 王伟, 等. DMBA诱导树鼩乳腺肿瘤(中缅树鼩)[J]. 现代生物医学进展, 2015, 15(2):228-232. DOI: 10.13241/j.cnki.pmb.2015.02.007 . |
XU X S, HOU X M, WANG W, et al. DMBA induced breast tumors in tree shrews(Tupaia belangeri Chinese)[J]. Prog Mod Biomed, 2015, 15(2):228-232. DOI: 10.13241/j.cnki.pmb.2015.02.007 . | |
11 | 何保丽, 夏厚军, 角建林, 等. 人工诱导树鼩乳腺肿瘤的病理分析[J]. 中国比较医学杂志, 2016, 26(3): 6-10. DOI: 10.3969.j.issn.1671-7856.2016.03.002 . |
HE B L, XIAO H J, JIAO J L, et al. Pathological analysis of the induced breast tumor models in tree shrew[J]. Chin J Comp Med, 2016, 26(3): 6-10. DOI: 10.3969.j.issn.1671-7856.2016.03.002 . | |
12 | 杜沛, 沈红艺, 李中平, 等. 大豆异黄酮对DMBA诱导高脂饮食幼龄大鼠乳腺肿瘤的作用[J]. 南京中医药大学学报, 2014, 30(5):498-500. DOI: 10.14148/j.issn.1672-0482.2014.05.060 . |
DU P, SHEN H Y, LI Z P, et al. Effects of soy isoflavones and high-fat diet on genesis and progress of 7, 12-dimethylbenz(α)anthrancence-induced breast cancer in young female SD rats[J]. J Nanjing Univ Tradit Chin Med, 2014, 30(5):498-500. DOI: 10.14148/j.issn.1672-0482.2014.05.060 . | |
13 | HOSSEINPOUR Z, REZAEI TAVIRANI M, AKBARI M E. Stage analysis of breast cancer metabolomics: a system biology approach[J]. Asian Pac J Cancer Prev, 2023, 24(5):1571-1582. DOI: 10.31557/APJCP.2023.24.5.1571 . |
14 | JOBARD E, PONTOIZEAU C, BLAISE B J, et al. A serum nuclear magnetic resonance-based metabolomic signature of advanced metastatic human breast cancer[J]. Cancer Lett, 2014, 343(1):33-41. DOI: 10.1016/j.canlet.2013.09.011 . |
15 | ZHANG Y P, SHIPKOVA P A, WARRACK B M, et al. Metabolomic profiling and drug interaction characterization reveal riboflavin As a breast cancer resistance protein-specific endogenous biomarker that demonstrates prediction of transporter activity in vivo [J]. Drug Metab Dispos, 2023, 51(7):851-861. DOI: 10.1124/dmd.123.001284 . |
16 | KODAMA M, OSHIKAWA K, SHIMIZU H, et al. A shift in glutamine nitrogen metabolism contributes to the malignant progression of cancer[J]. Nat Commun, 2020, 11(1):1320. DOI: 10.1038/s41467-020-15136-9 . |
17 | XIAO D F, ZENG L M, YAO K, et al. The glutamine-alpha-ketoglutarate (AKG) metabolism and its nutritional implications[J]. Amino Acids, 2016, 48(9):2067-2080. DOI: 10.1007/s00726-016-2254-8 . |
18 | WISE D R, THOMPSON C B. Glutamine addiction: a new therapeutic target in cancer[J]. Trends Biochem Sci, 2010, 35(8):427-433. DOI: 10.1016/j.tibs.2010.05.003 . |
19 | 吴静, 杨睿, 刘树业. 代谢组学技术在乳腺癌标志物筛选中的应用进展[J]. 天津医药, 2018, 46(9):1019-1022. DOI: 10.11958/20180365 . |
WU J, YANG R, LIU S Y. Application of metabonomics in screening markers for breast cancer[J]. Tianjin Med J, 2018, 46(9):1019-1022. DOI: 10.11958/20180365 . | |
20 | HOU J, REID N E, TROMBERG B J, et al. Kinetic analysis of lipid metabolism in breast cancer cells via nonlinear optical microscopy[J]. Biophys J, 2020, 119(2):258-264. DOI: 10.1016/j.bpj.2020.06.007 . |
21 | ZHAO Z W, XIAO Y J, ELSON P, et al. Plasma lysophosphatidylcholine levels: potential biomarkers for colorectal cancer[J]. J Clin Oncol, 2007, 25(19):2696-2701. DOI: 10.1200/JCO.2006.08.5571 . |
22 | 邱振东, 邓文宏, 洪育蒲, 等. ATP柠檬酸裂解酶对结肠癌细胞脂质代谢及肿瘤生物学行为的作用[J]. 中国普外基础与临床杂志, 2021, 28(1):48-52. DOI: 10.7507/1007-9424.202004133 . |
QIU Z D, DENG W H, HONG Y P, et al. Effects of ATP citrate lyase on lipid metabolism and tumor biological behavior of colon cancer cells[J]. China Ind Econ, 2021, 28(1):48-52. DOI: 10.7507/1007-9424.202004133 . |
[1] | 梁敏, 郭洋, 王津津, 朱梦妍, 池骏, 陈艳娟, 王成稷, 喻智澜, 沈如凌. Dmd基因突变小鼠构建及在肌肉及免疫系统的表型验证[J]. 实验动物与比较医学, 2024, 44(1): 42-51. |
[2] | 李竹欣, 梁亮, 曹颖颖, 翟珊珊, 戴颖涵, 何夏, 陶俊宇, 冷静, 唐海波. 一例瑶山亚种树鼩原发多形性脂肪肉瘤的诊断[J]. 实验动物与比较医学, 2023, 43(6): 647-653. |
[3] | 翟珊珊, 梁亮, 曹颖颖, 李竹欣, 王青, 陶俊宇, 运晨霞, 冷静, 唐海波. 一例树鼩毛发上皮瘤的诊断及细胞生物学特性观察[J]. 实验动物与比较医学, 2023, 43(4): 440-445. |
[4] | 陆涛峰, 张慧, 周洁, 李倩, 吴曙光, 吴延军. 广藿香对贵州小型猪血清代谢组的影响及其机制探讨[J]. 实验动物与比较医学, 2023, 43(3): 253-261. |
[5] | 李晗, 张笑瑞, 张成芳. 间歇禁食法在改善奥氮平诱导小鼠代谢紊乱中的机制研究[J]. 实验动物与比较医学, 2023, 43(1): 3-10. |
[6] | 朱彦兵, 白帆, 陶少鑫, 潘雨花蕾, 王欢, 赵羽商, 王崧, 于艳. 抑制磷脂酶D1活性可促进缺血性脑卒中模型小鼠神经功能恢复[J]. 实验动物与比较医学, 2022, 42(4): 322-332. |
[7] | 魏杰, 左琴, 王洪, 李欢, 周佳琪, 光姣娜, 范涛, 刘佐民, 付瑞, 岳秉飞. 基于团体标准T/CALAS 21—2017的Wistar大鼠微卫星DNA群体遗传质量分析[J]. 实验动物与比较医学, 2021, 41(6): 528-534. |
[8] | 翁嘉懿, 马雪兴, 李渊, 孙康云. CD137信号调控内皮细胞间质转化促进小鼠心脑血管新生[J]. 实验动物与比较医学, 2021, 41(5): 418-425. |
[9] | 李自发, 张浩, 任萌, 徐凯勇, 胡明会, 周苗苗, 王可洲. 槲皮素对镉致小鼠肝脏脂质代谢紊乱模型的保护效应[J]. 实验动物与比较医学, 2021, 41(4): 305-312. |
[10] | 施梅言, 王璇, 王文广, 阮蕾颖, 代解杰. 树鼩脊髓微血管内皮细胞的分离培养及EV71感染实验[J]. 实验动物与比较医学, 2021, 41(2): 148-154. |
[11] | 施梅言, 陆彩霞, 代解杰. 肠道病毒71型致病机制及免疫反应研究进展[J]. 实验动物与比较医学, 2020, 40(5): 449-. |
[12] | 洪胜辉, 张旭亮, 王芊芊, 刘 平, 刘迪文. 抑制素基因敲除小鼠模型的构建及表型初步分析[J]. 实验动物与比较医学, 2020, 40(4): 306-. |
[13] | 李雷斌, 许 佳, 方远书, 姜正前, 裘颖儿, 王文倩, 赵先哲. 基于自发糖尿病模型小鼠代谢组学的全植物蛋白配方饲料研究#br#[J]. 实验动物与比较医学, 2020, 40(3): 204-. |
[14] | 李晓飞, 孙晓梅, 王文广, 匡德宣, 陆彩霞, 仝品芬, 罕园园, 李 娜, 代解杰. 树鼩连接黏附分子A的基因克隆及初步功能研究#br#[J]. 实验动物与比较医学, 2020, 40(3): 196-. |
[15] | 王 雪, 刘可春, 杨学亮, 马玉奎, 张 云. 冈田酸对斑马鱼幼鱼神经行为功能的影响[J]. 实验动物与比较医学, 2020, 40(3): 190-. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||