1 |
黄晓燕, 徐娟, 孙晓梅, 等. 树鼩在人类疾病动物模型中应用研究进展[J]. 实验动物科学, 2013, 30(2):59-64. DOI: 10.3969/j.issn.1006-6179.2013.02.014 .
|
|
HUANG X Y, XU J, SUN X M, et al. Research progress on the application of tree shrews in animal models of human diseases[J]. Experimental Animal Science, 2013,30(2): 59-64. DOI: 10.3969/j.issn.1006-6179.2013.02.014 .
|
2 |
王文广, 匡德宣, 仝品芬, 等. 树鼩的标准化研究与应用进展[J]. 实验动物科学, 2020, 37(1):74-78. DOI:10.3969/j.issn.1006-6179.2020.01.016 .
|
|
WANG W G, KUANG D X, TONG P F, et al. Standardization research and application progress of tree shrews[J]. Experimental Animal Science, 2020, 37(1): 74-78. DOI:10.3969/j.issn.1006-6179.2020.01.016 .
|
3 |
苏傲蕾, 秦银鸽, 郑禹, 等. 树鼩的生物学特性研究概述[J]. 动物医学进展, 2014, 35 (10): 115-118. DOI: 10.3969/j.issn.1007-5038.2014.10.026 .
|
|
SU A L, QIN Y G, ZHENG Y, et al. Overview of Biological Characteristics Research on Tree Shrews[J]. Advances in Veterinary Medicine, 2014, 35 (10): 115-118. DOI: 10.3969/j.issn.1007-5038.2014.10.026 .
|
4 |
HEIDARI F, MADADI S, ALIZADEH N, et al. The potential of monoclonal antibodies for colorectal cancer therapy[J]. Med Oncol, 2023, 40(9):273. DOI: 10.1007/s12032-023-02151-1 .
|
5 |
黄建洪, 张春阳. 单克隆抗体在肾移植免疫抑制治疗中的应用进展[J]. 医学综述, 2008, 14(5):752-754. DOI: 10.3969/j.issn.1006-2084.2008.05.046 .
|
|
HUANG J H, ZHANG C Y. The application progress of monoclonal antibodies in immunosuppressive therapy for kidney transplantation[J]. Medical Review, 2008, 14 (5): 752-754. DOI: 10.3969/j.issn.1006-2084.2008.05.046 .
|
6 |
PAUL S, KONIG M F, PARDOLL D M, et al. Cancer therapy with antibodies[J]. Nat Rev Cancer, 2024, 24(6):399-426. DOI: 10.1038/s41568-024-00690-x .
|
7 |
SORBARA M, CORDELIER P, BERY N. Antibody-Based Approaches to Target Pancreatic Tumours[J]. Antibodies (Basel), 2022, 11(3):47. DOI: 10.3390/antib11030047 .
|
8 |
KLEIN C, BRINKMANN U, REICHERT J M, et al. The present and future of bispecific antibodies for cancer therapy[J]. Nat Rev Drug Discov, 2024, 23(4):301-319. DOI: 10.1038/s41573-024-00896-6 .
|
9 |
GUO X, WU Y, XUE Y, et al. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment[J]. Front Immunol, 2023, 14:1291836. DOI: 10.3389/fimmu.2023.1291836 .
|
10 |
曹颖颖, 李宝莹, 王婷, 等. 瑶山亚种树鼩IFN-β和IFN-γ原核表达及其多克隆抗体制备[J]. 南方农业学报, 2022, 53(6): 1713-1723. DOI: 10.3969/j.issn.2095-1191.2022.06.025 .
|
|
CAO Y Y, LI B Y, WANG T, et al. Prokaryotic expression of IFN-β and IFN-γ in Yaoshan subspecies tree shrews and their polyclonal antibody preparation[J]. Southern Journal of Agriculture, 2022, 53(6): 1713-1723. DOI: 10.3969/j.issn.2095-1191.2022.06.025 .
|
11 |
曹颖颖, 李慧君, 李宝莹, 等. 瑶山亚种树鼩ISG15蛋白表达及其多克隆抗体制备[J]. 中国畜牧兽医, 2022, 49 (1): 273-282. DOI: 10.16431/j.cnki.1671-7236.2022.01.030 .
|
|
Cao YY, Li HJ, Li BY, et al. Protein expression of ISG15 in the Yaoshan subspecies of tree shrew and its polyclonal antibody preparation[J]. China Animal Husbandry & Veterinary Medicine, 2022, 49(1): 273-282. DOI: 10.16431/j.cnki.1671-7236.2022.01.030 .
|
12 |
吴晋元, 周艳, 解裕萍, 等. 树鼩IgG纯化鉴定及其多克隆抗体制备和检测[J]. 现代生物医学进展, 2016, 16(7): 1201-1204. DOI: 10.13241/j.cnki.pmb.2016.07.001 .
|
|
WU J Y, ZHOU Y, XIE Y P, et al. Purification and identification of tree shrew IgG and its polyclonal antibody preparation and detection[J]. Advances in Modern Biomedicine, 2016, 16(7): 1201-1204. DOI: 10.13241/j.cnki.pmb.2016.07.001 .
|
13 |
MALAPEIRA J, ESSELENS C, BECH-SERRA J, et al. ADAM17 (TACE) regulates TGFβ signaling through the cleavage of vasorin[J]. Oncogene, 2011,30(16): 1912-1922. DOI: 10.1038/onc.2010.565 .
|
14 |
IKEDA Y, IMAI Y, KUMAGAI H, et al. Vasorin, a transforming growth factor beta-binding protein expressed in vascular smooth muscle cells, modulates the arterial response to injury in vivo[J]. Proc Natl Acad Sci U S A, 2004, 101(29): 10732-7. DOI: 10.1073/pnas.0404117101 .
|
15 |
QIN Z, ZHONG Y, LI P, et al. Vasorin promotes endothelial differentiation of glioma stem cells via stimulating the transcription of VEGFR2[J]. FASEB J, 2024, 38(10): e23682. DOI: 10.1096/fj.202400159R .
|
16 |
LIANG W, ZUO J, LIU M, et al. VASN promotes colorectal cancer progression by activating the YAP/TAZ and AKT signaling pathways via YAP[J]. FASEB J, 2023, 37(1): e22688. DOI: 10.1096/fj.202201181R .
|
17 |
CHEN W, WANG Q, XU X, et al. Vasorin/ATIA Promotes Cigarette SmokeInduced Transformation of Human Bronchial Epithelial Cells by Suppressing Autophagy-Mediated Apoptosis [J]. Translational oncology, 2020, 13(1): 32-41. DOI: 10.1016/j.tranon.2019.09.001 .
|
18 |
WAN F, LI H, HUANG S, et al. Vasorin promotes proliferation and migration via STAT3 signaling and acts as a promising therapeutic target of hepatocellular carcinoma[J]. Cell Signal, 2023, 110:110809. DOI: 10.1016/j.cellsig.2023.110809 .
|
19 |
YANG L, CHENG X, SHI W, et al. Vasorin Deletion in C57BL/6J Mice Induces Hepatocyte Autophagy through Glycogen-Mediated mTOR Regulation[J]. Nutrients, 2022, 14(17). DOI: 10.3390/nu14173600 .
|
20 |
WU D N, ZHANG K L, CHEN R H, et al. VASN promotes the aggressive phenotype in ARID1A-deficient lung adenocarcinoma[J]. BMC Cancer, 2024, 24(1):1327. DOI: 10.1186/s12885-024-13083-y .
|
21 |
GUO X, SUN J, LIANG J, et al. Vasorin contributes to lung injury via FABP4-mediated inflammation[J]. Mol Biol Rep, 2022, 49(10):9335-9344. DOI: 10.1007/s11033-022-07780-9 .
|
22 |
YAO Y G, LU L, NI R J, et al. Study of tree shrew biology and models: A booming and prosperous field for biomedical research[J]. Zool Res, 2024, 45(4):877-909. DOI: 10.24272/j.issn.2095-8137.2024.199 .
|
23 |
YAO T, JUNJUN H, QIU T, et al. A tree shrew glioblastoma model recapitulates features of human glioblastoma [J]. Oncotarget, 2017, 8(11). DOI: 10.18632/oncotarget.15225 .
|
24 |
LIU H, WU G, ZHOU B,et al. Structure and function of cholesteryl ester transfer protein in the tree shrew [J]. Lipids, 2011,46(7): 607-616. DOI: 10.1007/s11745-011-3552-2 .
|
25 |
ZHENG L, CHEN S, WU Q, et al. Tree shrews as a new animal model for systemic sclerosis research[J]. Front Immunol, 2024, 15:1315198. DOI: 10.3389/fimmu.2024.1315198 .
|
26 |
KOTHARI M, WANJARI A, ACHARYA S, et al. A Comprehensive Review of Monoclonal Antibodies in Modern Medicine: Tracing the Evolution of a Revolutionary Therapeutic Approach[J]. Cureus, 2024, 16(6): e61983. DOI: 10.7759/cureus.61983 .
|
27 |
LITTLE M, KIPRIYANOV S M, GALL F L, et al. Of mice and men: hybridoma and recombinant antibodies[J]. Immunology Today, 2000, 21(8):364-370. DOI: 10.1016/s0167-5699(00)01668-6 .
|
28 |
MICHAL S, TOMASZ L. The development of methods for obtaining monoclonal antibody-producing cells [J]. Postępy Higieny I Medycyny Doświadczalnej, 2016, 70:367-379. DOI: 10.5604/17322693.1200552 .
|
29 |
邝贞结. 基因工程重组抗体技术的研究进展[J]. 广东畜牧兽医科技, 2010, 35 (5): 3-6. DOI: 10.3969/j.issn.1005-8567.2010.05.001 .
|
|
KUANG, ZJ. Research progress of genetically engineered recombinant antibody technology[J]. Guangdong Animal Husbandry and Veterinary Science and Technology, 2010, 35 (5): 3-6. DOI: 10.3969/j.issn.1005-8567.2010.05.001 .
|
30 |
董新莹, 高晓薇, 宋浩, 等. 纳米抗体的研究进展及其应用现状[J]. 生物工程学报, 2024, 40(12): 4324-4338. DOI: 10.13345/j.cjb.240366 .
|
|
DONG X Y, GAO X W, SONG H, et al. Research progress of nanobodies and their current applications[J]. Journal of Bioengineering, 2024, 40 (12): 4324-4338. DOI: 10.13345/j.cjb.240366 .
|
31 |
武瑞君, 桑晓冬, 李治非, 等. 抗体技术的研发现状与展望[J]. 中国药理学与毒理学杂志, 2021, 35 (5): 374-381. DOI: 10.3867/j.issn.1000-3002.2021.05.007 .
|
|
WU R J, SAN X D, LI Z F, et al. Current status and prospects of antibody technology[J]. Chinese Journal of Pharmacology and Toxicology, 2021, 35 (5): 374-381. DOI: 10.3867/j.issn.1000-3002.2021.05.007 .
|
32 |
GILEADI O. Recombinant protein expression in E. coli: A historical perspective[J]. Methods Mol Biol, 2017, 1586: 3-10. DOI: 10.1007/978-1-4939-6887-9_1 .
|
33 |
ROSANO G L, CECCARELLI E A. Recombinant protein expression in escherichia coli: advances and challenges[J]. Front Microbiol, 2014, 5: 172. DOI: 10.3389/fmicb.2014.00172 .
|
34 |
SUN J, GUO X, YU P, et al. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice[J]. Cell Mol Med, 2022, 26(1):88-98. DOI: 10.1111/jcmm.17034 .
|
35 |
SUN J, YIN S, LI Q, et al. VASN knockout induces myocardial fibrosis in mice by downregulating non-collagen fibers and promoting inflammation[J]. Front Pharmacol, 2025, 15:1500617. DOI: 10.3389/fphar.2024.1500617 .
|