[1] |
王刚, 齐金蕾, 刘馨雅, 等. 中国阿尔茨海默病报告2024[J]. 诊断学理论与实践, 2024, 23(3):219-256. DOI: 10.16150/j.1671-2870.2024.03.001 .
|
|
WANG G, QI J L, LIU X Y, et al. China Alzheimer report 2024[J]. J Diagn Concepts Pract, 2024, 23(3):219-256. DOI: 10.16150/j.1671-2870.2024.03.001 .
|
[2] |
SCHELTENS P, DE STROOPER B, KIVIPELTO M, et al. Alzheimer's disease[J]. Lancet, 2021, 397(10284):1577-1590. DOI:10.1016/s0140-6736(20)32205-4 .
|
[3] |
SCHELTENS P, BLENNOW K, BRETELER M M, et al. Alzheimer's disease[J]. Lancet, 2016, 388(10043):505-517. DOI:10.1016/s0140-6736(15)01124-1 .
|
[4] |
BREIJYEH Z, KARAMAN R. Comprehensive review on Alzheimer's disease: causes and treatment[J]. Molecules, 2020, 25(24):5789. DOI:10.3390/molecules25245789 .
|
[5] |
JUCKER M, WALKER L C. Alzheimer's disease: From immunotherapy to immunoprevention[J]. Cell, 2023, 186(20):4260-4270. DOI:10.1016/j.cell.2023.08.021 .
|
[6] |
ZHOU B, LU J G, SIDDU A, et al. Synaptogenic effect of APP-Swedish mutation in familial Alzheimer's disease[J]. Sci Transl Med, 2022, 14(667): eabn9380. DOI:10.1126/scitranslmed.abn9380 .
|
[7] |
KIM M, BEZPROZVANNY I. Analysis of non-amyloidogenic mutations in APP supports loss of function hypothesis of Alzheimer's disease[J]. Int J Mol Sci, 2023, 24(3):2092. DOI:10.3390/ijms24032092 .
|
[8] |
ARMBRUST F, BICKENBACH K, MARENGO L, et al. The Swedish dilemma - the almost exclusive use of APPswe-based mouse models impedes adequate evaluation of alternative β-secretases[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(3):119164. DOI:10.1016/j.bbamcr.2021.119164 .
|
[9] |
SCHILLING S, PRADHAN A, HEESCH A, et al. Differential effects of familial Alzheimer's disease-causing mutations on amyloid precursor protein (APP) trafficking, proteolytic conversion, and synaptogenic activity[J]. Acta Neuropathol Commun, 2023, 11(1):87. DOI:10.1186/s40478-023-01577-y .
|
[10] |
JAWORSKI T, DEWACHTER I, LECHAT B, et al. AAV-tau mediates pyramidal neurodegeneration by cell-cycle re-entry without neurofibrillary tangle formation in wild-type mice[J]. PLoS One, 2009, 4(10): e7280. DOI:10.1371/journal.pone. 0007280 .
|
[11] |
XIA D, LIANOGLOU S, SANDMANN T, et al. Novel App knock-in mouse model shows key features of amyloid pathology and reveals profound metabolic dysregulation of microglia[J]. Mol Neurodegener, 2022, 17(1):41. DOI:10.1186/s13024-022-00547-7 .
|
[12] |
CLAYTON K, DELPECH J C, HERRON S, et al. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model[J]. Mol Neurodegener, 2021, 16(1):18. DOI:10.1186/s13024-021-00440-9 .
|
[13] |
TESSON L, COZZI J, MÉNORET S, et al. Transgenic modifications of the rat genome[J]. Transgenic Res, 2005, 14(5):531-546. DOI:10.1007/s11248-005-5077-z .
|
[14] |
PANG K L, JIANG R C, ZHANG W, et al. An App knock-in rat model for Alzheimer's disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments[J]. Cell Res, 2022, 32(2):157-175. DOI:10.1038/s41422-021-00582-x .
|
[15] |
PUPO A, FERNÁNDEZ A, LOW S H, et al. AAV vectors: The Rubik's cube of human gene therapy[J]. Mol Ther, 2022, 30(12):3515-3541. DOI:10.1016/j.ymthe.2022.09.015 .
|
[16] |
ASCHAUER D F, KREUZ S, RUMPEL S. Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain[J]. PLoS One, 2013, 8(9): e76310. DOI:10.1371/journal.pone.0076310 .
|
[17] |
ROSTAGNO A A. Pathogenesis of Alzheimer's disease[J]. Int J Mol Sci, 2022, 24(1):107. DOI:10.3390/ijms24010107 .
|
[18] |
KAYED R, LASAGNA-REEVES C A. Molecular mechanisms of amyloid oligomers toxicity[J]. J Alzheimers Dis, 2013, 33(): S67-S78. DOI:10.3233/JAD-2012-129001 .
|
[19] |
FOLKESSON R, MALKIEWICZ K, KLOSKOWSKA E, et al. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation[J]. Biochem Biophys Res Commun, 2007, 358(3):777-782. DOI:10.1016/j.bbrc.2007.04.195 .
|
[20] |
KLOSKOWSKA E, PHAM T M, NILSSON T, et al. Cognitive impairment in the Tg6590 transgenic rat model of Alzheimer's disease[J]. J Cell Mol Med, 2010, 14(6B):1816-1823. DOI:10.1111/j.1582-4934.2009.00809.x .
|
[21] |
FENG W X, ZHANG Y L, WANG Z, et al. Microglia prevent beta-amyloid plaque formation in the early stage of an Alzheimer's disease mouse model with suppression of glymphatic clearance[J]. Alzheimers Res Ther, 2020, 12(1):125. DOI:10.1186/s13195-020-00688-1 .
|
[22] |
LI Z Y, ZHANG Y, MENG X B, et al. A novel DPP-4 inhibitor Gramcyclin A attenuates cognitive deficits in APP/PS1/tau triple transgenic mice via enhancing brain GLP-1-dependent glucose uptake[J]. Phytother Res, 2022, 36(3):1297-1309. DOI:10.1002/ptr.7387 .
|
[23] |
HAMPTON D W, WEBBER D J, BILICAN B, et al. Cell-mediated neuroprotection in a mouse model of human tauopathy[J]. J Neurosci, 2010, 30(30):9973-9983. DOI:10.1523/JNEUROSCI. 0834-10.2010 .
|
[24] |
KIM H Y, LEE D K, CHUNG B R, et al. Intracerebroventricular injection of amyloid-β peptides in normal mice to acutely induce Alzheimer-like cognitive deficits[J]. J Vis Exp, 2016(109):53308. DOI:10.3791/53308 .
|
[25] |
SU Y C, WALKER J R, PARK Y, et al. Novel NanoLuc substrates enable bright two-population bioluminescence imaging in animals[J]. Nat Methods, 2020, 17(8):852-860. DOI:10.1038/s41592-020-0889-6 .
|
[26] |
TIAN X D, ZHANG Y Y, LI X Y, et al. A luciferase prosubstrate and a red bioluminescent calcium indicator for imaging neuronal activity in mice[J]. Nat Commun, 2022, 13(1):3967. DOI:10.1038/s41467-022-31673-x .
|