1 |
PALAU-RODRIGUEZ M, TULIPANI S, ISABEL QUEIPO-ORTUÑO M, et al. Metabolomic insights into the intricate gut microbial-host interaction in the development of obesity and type 2 diabetes[J]. Front Microbiol, 2015, 6:1151. DOI:10.3389/fmicb.2015.01151 .
|
2 |
GILL T, ASQUITH M, ROSENBAUM J T, et al. The intestinal microbiome in spondyloarthritis[J]. Curr Opin Rheumatol, 2015, 27(4):319-325. DOI:10.1097/BOR.0000000000000187 .
|
3 |
SCHAEVERBEKE T, TRUCHETET M E, RICHEZ C. Gut metagenome and spondyloarthritis[J]. Joint Bone Spine, 2013, 80(4):349-352. DOI:10.1016/j.jbspin.2013.02.005 .
|
4 |
赵杰, 朱维铭, 李宁. 益生菌、益生元、合生元与炎症性肠病[J]. 肠外与肠内营养, 2014, 21(4):251-253, 256. DOI:10.16151/j.1007-810x.2014.04.014 .
|
|
ZHAO J, ZHU W M, LI N. Probiotics, Prebiotics, Synbiotics and inflammatory bowel disease[J]. Parenter Enteral Nutr, 2014, 21(4):251-253, 256. DOI:10.16151/j.1007-810x.2014.04.014 .
|
5 |
CRABBÉ P A, BAZIN H, EYSSEN H, et al. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract[J]. Int Arch Allergy Appl Immunol, 1968, 34(4):362-375. DOI:10.1159/000230130 .
|
6 |
WILLIAMS A M, PROBERT C S J, STEPANKOVA R, et al. Effects of microflora on the neonatal development of gut mucosal T cells and myeloid cells in the mouse[J]. Immunology, 2006, 119(4):470-478. DOI:10.1111/j.1365-2567.2006.02458.x .
|
7 |
WILMORE D W, ROBINSON M K. Short bowel syndrome[J]. World J Surg, 2000, 24(12):1486-1492. DOI:10.1007/s002680010266 .
|
8 |
KABIR S I, KABIR S A, RICHARDS R, et al. Pathophysiology, clinical presentation and management of diversion colitis: a review of current literature[J]. Int J Surg, 2014, 12(10):1088-1092. DOI:10.1016/j.ijsu.2014.08.350 .
|
9 |
KLINGENSMITH N J, COOPERSMITH C M. The gut as the motor of multiple organ dysfunction in critical illness[J]. Crit Care Clin, 2016, 32(2):203-212. DOI:10.1016/j.ccc.2015.11.004 .
|
10 |
黎介寿. 肠内营养与肠屏障功能[J]. 肠外与肠内营养, 2016, 23(5):257-259. DOI:10.16151/j.1007-810x.2016.05.001 .
|
|
LI J S. Enteral nutrition and intestinal barrier function[J]. Parenter Enteral Nutr, 2016, 23(5):257-259. DOI:10.16151/j.1007-810x.2016.05.001 .
|
11 |
孙亚鲁, 尹勇, 王晓梅. 肠道菌群与脑卒中的关系[J]. 医学综述, 2019, 25(9):1782-1786. DOI:10.3969/j.issn.1006-2084.2019.09.022 .
|
|
SUN Y L, YIN Y, WANG X M. Relationship between intestinal flora and stroke[J]. Med Recapitul, 2019, 25(9):1782-1786. DOI:10.3969/j.issn.1006-2084.2019.09.022 .
|
12 |
李波, 侍荣华, 李宗杰. 肠道菌群-肠-脑轴与心身疾病的相互关系[J]. 生理科学进展, 2018, 49(3):221-226. DOI:10.3969/j.issn.0559-7765.2018.03.013 .
|
|
LI B, SHI R H, LI Z J. The correlations between microbiota-gut-brain axis and psychosomatic disorders[J]. Prog Physiol Sci, 2018, 49(3):221-226. DOI:10.3969/j.issn.0559-7765.2018.03.013 .
|
13 |
黄小群, 廖小平. 肠道菌群与抑郁的相关性研究进展[J]. 中国实用神经疾病杂志, 2019, 22(1):112-116. DOI:10.12083/SYSJ.2019.01.023 .
|
|
HUANG X Q, LIAO X P. Research progress on the relationship between intestinal flora and depression[J]. Chin J Pract Nerv Dis, 2019, 22(1):112-116. DOI:10.12083/SYSJ.2019.01.023 .
|
14 |
王林洁, 袁建玲, 鲍波. 肠道菌群对帕金森病影响的研究进展[J]. 医学综述, 2019, 25(8):1501-1505. DOI:10.3969/j.issn.1006-2084.2019.08.009 .
|
|
WANG L J, YUAN J L, BAO B. Research progress in influence of gut Microbiota on Parkinson's disease[J]. Med Recapitul, 2019, 25(8):1501-1505. DOI:10.3969/j.issn.1006-2084.2019.08.009 .
|
15 |
孙功鹏, 高月兰, 魏家燕, 等. 氧化三甲胺与常见慢性疾病相关研究进展[J]. 国际检验医学杂志, 2019, 40(11):1377-1381. DOI:10.3969/j.issn.1673-4130.2019.11.023 .
|
|
SUN G P, GAO Y L, WEI J Y, et al. Research progress on trimethylamine oxide and common chronic diseases[J]. Int J Lab Med, 2019, 40(11):1377-1381. DOI:10.3969/j.issn.1673-4130.2019.11.023 .
|
16 |
王晓钰, 蒋升瑶, 蔺智兵, 等. 基于糖尿病-肿瘤小鼠模型研究糖尿病对结直肠癌/乳腺癌进展及肠道菌群的影响[J]. 实验动物与比较医学, 2021, 41(6):469-479. DOI: 10.3969/j.issn.1674-5817.2018.06.007 .
|
|
WANG X Y, JIANG S Y, LIN Z B, et al. Effects of diabetes on colorectal cancer/breast cancer progression and intestinal flora based on a diabetes-tumor mouse model[J]. Lab Anim Comp Med, 2021, 41(6):469-479. DOI: 10.3969/j.issn.1674-5817.2018.06.007 .
|
17 |
陈梅佳, 沈楠, 杜青. 肠道菌群在风湿免疫性疾病中作用的研究进展[J]. 中华全科医师杂志, 2019, 18(3):279-282. DOI:10.3760/cma.j.issn.1671-7368.2019.03.018 .
|
|
CHEN M J, SHEN N, DU Q. Research progress of intestinal flora in rheumatic immune diseases[J]. Chin J Gen Pract, 2019, 18(3):279-282. DOI:10.3760/cma.j.issn.1671-7368.2019.03.018 .
|
18 |
MAGOČ T, SALZBERG S L. FLASH: fast length adjustment of short reads to improve genome assemblies[J]. Bioinfor-matics, 2011, 27(21):2957-2963. DOI:10.1093/bioinformatics/btr507 .
|
19 |
CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nat Methods, 2010, 7(5):335-336. DOI:10.1038/nmeth.f.303 .
|
20 |
MINCHIN P R. An evaluation of the relative robustness of techniques for ecological ordination[J]. Vegetatio, 1987, 69(1):89-107. DOI:10.1007/BF00038690 .
|
21 |
BROOKS A W, PRIYA S, BLEKHMAN R, et al. Gut microbiota diversity across ethnicities in the United States[J]. PLoS Biol, 2018, 16(12): e2006842. DOI:10.1371/journal.pbio.2006842 .
|
22 |
刘玉婷, 郝微微, 温红珠, 等. 肠道菌群的检测方法及研究进展[J]. 世界华人消化杂志, 2016, 24(20):3142-3148. DOI:10.11569/wcjd.v24.i20.3142 .
|
|
LIU Y T, HAO W W, WEN H Z, et al. Intestinal flora: detection methods and research advances[J]. World Chin J Dig, 2016, 24(20):3142-3148. DOI:10.11569/wcjd.v24.i20.3142 .
|
23 |
李旖旎. 粪菌移植联合小儿化食丸对高热量饮食模型大鼠肠道菌群-SCFAs-GPR43-IL1-8通路的影响[D]. 北京: 北京中医药大学, 2019.
|
|
LI Y N. Effects of bacteria transplantation combined with Xiaoerhuashi Pill on "intestinal flora- SCFAs-GPR43-IL18" pathway in high-calorie diet model rats[D]. Beijing: Beijing University of Chinese Medicine, 2019.
|
24 |
COSTELLO E K, LAUBER C L, HAMADY M, et al. Bacterial community variation in human body habitats across space and time[J]. Science, 2009, 326(5960):1694-1697. DOI:10.1126/science.1177486 .
|
25 |
李宁. 肠道菌群紊乱与粪菌移植[J]. 肠外与肠内营养, 2014, 21(4):193-197. DOI:10.16151/j.1007-810x.2014.04.015 .
|
|
LI N. Intestinal flora disorder and fecal bacteria transplantation[J]. Parenter Enteral Nutr, 2014, 21(4):193-197. DOI:10.16151/j.1007-810x.2014.04.015 .
|
26 |
朱华, 肖冲, 尚海泉, 等. 基于高通量测序的不同年龄恒河猴肠道菌群结构差异分析[J]. 中国实验动物学报, 2019, 27(1):72-78. DOI:10.3969/j.issn.1005-4847.2019.01.012 .
|
|
ZHU H, XIAO C, SHANG H Q, et al. Analysis of gut microbiomes of Rhesus macaques of different ages by high-throughput sequencing[J]. Acta Lab Anim Sci Sin, 2019, 27(1):72-78. DOI:10.3969/j.issn.1005-4847.2019.01.012 .
|
27 |
翟子豪, 宋飏, 王俊茵, 等. 峨眉山与黄山藏酋猴肠道菌群组成的比较[J]. 四川动物, 2019, 38(1):1-10. DOI:10.11984/j.issn.1000-7083.20180183 .
|
|
ZHAI Z H, SONG Y, WANG J Y, et al. Comparison of gut microbiome in Macaca thibetana between mount Emei and mount Huangshan[J]. Sichuan J Zool, 2019, 38(1):1-10. DOI:10.11984/j.issn.1000-7083.20180183 .
|
28 |
黄树武, 闵凡贵, 王静, 等. 常见SPF级小鼠和大鼠肠道菌群多样性研究[J]. 中国实验动物学报, 2019, 27(2):229-235. DOI:10.3969/j.issn.1005-4847.2019.02.016 .
|
|
HUANG S W, MIN F G, WANG J, et al. Diversity of intestinal flora in commonly used SPF mice and rats[J]. Acta Lab Anim Sci Sin, 2019, 27(2):229-235. DOI:10.3969/j.issn.1005-4847.2019.02.016 .
|
29 |
简平, 王强, 王剑, 等. 不同年龄段川金丝猴肠道菌群结构差异分析[J]. 动物营养学报, 2015, 27(4):1302-1309. DOI:10.3969/j.issn.1006-267x.2015.04.037 .
|
|
JIAN P, WANG Q, WANG J, et al. Difference analysis of gut microbiome of Rhinopithecus roxellana in different ages[J]. Chin J Anim Nutr, 2015, 27(4):1302-1309. DOI:10.3969/j.issn.1006-267x.2015.04.037 .
|
30 |
KIMBLE R, GOUINGUENET P, ASHOR A, et al. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies[J]. Crit Rev Food Sci Nutr, 2022:1-22. DOI: 10.1080/10408398.2022.2057416 .
|
31 |
王保宁, 陈昱作, 贡嘎, 等. 不同海拔区域内牦牛肠道菌群结构组成多样性研究[J]. 四川大学学报(自然科学版), 2021, 58(5):152-158. DOI:10.19907/j.0490-6756.2021.056003 .
|
|
WANG B N, CHEN Y Z, GONG G, et al. Study on diversity of structural composition of yaks intestinal flora in different altitudes[J]. J Sichuan Univ Nat Sci Ed, 2021, 58(5):152-158. DOI:10.19907/j.0490-6756.2021.056003 .
|