Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 406-414.DOI: 10.12300/j.issn.1674-5817.2023.026
• Animal Models of Human Diseases • Previous Articles Next Articles
Yasheng DENG(), Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN(
)(
)
Received:
2023-02-24
Revised:
2023-04-11
Online:
2023-08-25
Published:
2023-09-14
Contact:
Siyin HAN
CLC Number:
Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.026
动物种类 Animal species | 品种品系 Breed or strain | 频次(所占百分比) Frequency (percentage/%) |
---|---|---|
小鼠Mouse | SKH-1无毛小鼠 | 60 (23.34) |
KM小鼠 | 52 (20.23) | |
BALB/c小鼠 | 23 (8.95) | |
HR-1无毛小鼠 | 22 (8.56) | |
ICR小鼠 | 20 (7.78) | |
C57BL/6小鼠 | 3 (1.17) | |
Swiss小鼠 | 3 (1.17) | |
HRM-2无毛小鼠 | 2 (0.78) | |
未知种类无毛小鼠 | 2 (0.78) | |
大鼠Rat | SD大鼠 | 53 (20.62) |
Wistar大鼠 | 8 (3.11) | |
F344大鼠 | 2 (0.78) | |
HWY/Slc无毛大鼠 | 1 (0.39) | |
豚鼠Guinea pig | 未知种类 | 4 (1.56) |
猪Pig | 广西巴马小型猪 | 2 (0.78) |
Table 1 Species and frequency distribution of skin photoaging model animals
动物种类 Animal species | 品种品系 Breed or strain | 频次(所占百分比) Frequency (percentage/%) |
---|---|---|
小鼠Mouse | SKH-1无毛小鼠 | 60 (23.34) |
KM小鼠 | 52 (20.23) | |
BALB/c小鼠 | 23 (8.95) | |
HR-1无毛小鼠 | 22 (8.56) | |
ICR小鼠 | 20 (7.78) | |
C57BL/6小鼠 | 3 (1.17) | |
Swiss小鼠 | 3 (1.17) | |
HRM-2无毛小鼠 | 2 (0.78) | |
未知种类无毛小鼠 | 2 (0.78) | |
大鼠Rat | SD大鼠 | 53 (20.62) |
Wistar大鼠 | 8 (3.11) | |
F344大鼠 | 2 (0.78) | |
HWY/Slc无毛大鼠 | 1 (0.39) | |
豚鼠Guinea pig | 未知种类 | 4 (1.56) |
猪Pig | 广西巴马小型猪 | 2 (0.78) |
辐射光源与造模部位距离/cm Distance between the radiation source and the moulding site/cm | 频次(所占百分比/%) Frequency (percentage/%) | 累计照射剂量/(J·cm2) Cumulative exposure dose/ (J·cm2) | 频次(所占百分比/%) Frequency (percentage/%) |
---|---|---|---|
2 | 1 (0.92) | UVA≤50 | 6 (9.09) |
6.5 | 1 (0.92) | 50<UVA≤100 | 13 (19.70) |
10 | 4 (3.67) | 100<UVA≤150 | 20 (30.30) |
15 | 6 (5.50) | 150<UVA≤200 | 13 (19.70) |
18 | 2 (1.84) | 200<UVA≤250 | 0 (0.00) |
20 | 11 (10.09) | 250<UVA≤300 | 5 (7.58) |
22 | 1 (0.92) | UVA>300 | 9 (13.63) |
23 | 2 (1.83) | UVB≤5 | 12 (15.58) |
25 | 3 (2.75) | 5<UVB≤10 | 24 (31.17) |
30 | 36 (33.03) | 10<UVB≤15 | 8 (10.39) |
35 | 10 (9.17) | 15<UVB≤20 | 2 (2.60) |
40 | 21 (19.27) | 20<UVB≤25 | 10 (12.99) |
42 | 2 (1.84) | 25<UVB≤30 | 1 (1.30) |
50 | 6 (5.50) | UVB>30 | 20 (25.97) |
100 | 3 (2.75) |
Table 4 Distance between the radiation source and the modelling site as well as cumulative UV exposure doses in the animal model of skin photoaging
辐射光源与造模部位距离/cm Distance between the radiation source and the moulding site/cm | 频次(所占百分比/%) Frequency (percentage/%) | 累计照射剂量/(J·cm2) Cumulative exposure dose/ (J·cm2) | 频次(所占百分比/%) Frequency (percentage/%) |
---|---|---|---|
2 | 1 (0.92) | UVA≤50 | 6 (9.09) |
6.5 | 1 (0.92) | 50<UVA≤100 | 13 (19.70) |
10 | 4 (3.67) | 100<UVA≤150 | 20 (30.30) |
15 | 6 (5.50) | 150<UVA≤200 | 13 (19.70) |
18 | 2 (1.84) | 200<UVA≤250 | 0 (0.00) |
20 | 11 (10.09) | 250<UVA≤300 | 5 (7.58) |
22 | 1 (0.92) | UVA>300 | 9 (13.63) |
23 | 2 (1.83) | UVB≤5 | 12 (15.58) |
25 | 3 (2.75) | 5<UVB≤10 | 24 (31.17) |
30 | 36 (33.03) | 10<UVB≤15 | 8 (10.39) |
35 | 10 (9.17) | 15<UVB≤20 | 2 (2.60) |
40 | 21 (19.27) | 20<UVB≤25 | 10 (12.99) |
42 | 2 (1.84) | 25<UVB≤30 | 1 (1.30) |
50 | 6 (5.50) | UVB>30 | 20 (25.97) |
100 | 3 (2.75) |
分类 Classification | 检测指标 Testing indicators | 频次(所占百分比/%) Frequency(percentage/%) |
---|---|---|
皮肤外观特征 Skin appearance features | 皮肤外观观察 | 80 (9.06) |
皮肤(表皮、真皮)厚度 | 46 (5.21) | |
皱纹测定 | 31 (3.51) | |
皮肤弹性 | 9 (1.02) | |
皮肤含水量变化 Skin moisture content change | 经皮水分损失 | 41 (4.64) |
皮肤(角质层)水合作用测定 | 14 (1.58) | |
皮肤含水量测定 | 5 (0.57) | |
皮肤病理检查 Dermatologic examination | 皮肤组织病理检查 | 173 (19.59) |
纤维染色 | 99 (11.21) | |
免疫组化 | 64 (7.26) | |
免疫荧光 | 9 (1.02) | |
皮肤组织匀浆检测 Skin tissue homogenisation | 丙二醛、羟脯氨酸、过氧化氢酶活性、透明质酸、超氧化物歧化酶活性、谷胱甘肽过氧化酶活性、皮肤组织总抗氧化能力 | 108 (12.23) |
免疫检测 Immunity testing | 免疫印迹 | 81 (9.17) |
酶联免疫吸附试验 | 26 (2.94) | |
PCR分析 PCR analysis | 反转录PCR | 30 (3.40) |
实时荧光PCR | 19 (2.15) | |
血液检查 Blood examination | 血清 | 19 (2.15) |
全血或血浆 | 6 (0.68) | |
其他 Others | β-半乳糖苷酶染色 | 8 (0.91) |
体重变化 | 9 (1.02) | |
活性氧定量分析/髓过氧化物酶活性测定 | 6 (0.68) |
Table 3 Testing indicators and classification of skin photoaging animal models
分类 Classification | 检测指标 Testing indicators | 频次(所占百分比/%) Frequency(percentage/%) |
---|---|---|
皮肤外观特征 Skin appearance features | 皮肤外观观察 | 80 (9.06) |
皮肤(表皮、真皮)厚度 | 46 (5.21) | |
皱纹测定 | 31 (3.51) | |
皮肤弹性 | 9 (1.02) | |
皮肤含水量变化 Skin moisture content change | 经皮水分损失 | 41 (4.64) |
皮肤(角质层)水合作用测定 | 14 (1.58) | |
皮肤含水量测定 | 5 (0.57) | |
皮肤病理检查 Dermatologic examination | 皮肤组织病理检查 | 173 (19.59) |
纤维染色 | 99 (11.21) | |
免疫组化 | 64 (7.26) | |
免疫荧光 | 9 (1.02) | |
皮肤组织匀浆检测 Skin tissue homogenisation | 丙二醛、羟脯氨酸、过氧化氢酶活性、透明质酸、超氧化物歧化酶活性、谷胱甘肽过氧化酶活性、皮肤组织总抗氧化能力 | 108 (12.23) |
免疫检测 Immunity testing | 免疫印迹 | 81 (9.17) |
酶联免疫吸附试验 | 26 (2.94) | |
PCR分析 PCR analysis | 反转录PCR | 30 (3.40) |
实时荧光PCR | 19 (2.15) | |
血液检查 Blood examination | 血清 | 19 (2.15) |
全血或血浆 | 6 (0.68) | |
其他 Others | β-半乳糖苷酶染色 | 8 (0.91) |
体重变化 | 9 (1.02) | |
活性氧定量分析/髓过氧化物酶活性测定 | 6 (0.68) |
1 | CHEN X, YANG C S, JIANG G. Research progress on skin photoaging and oxidative stress[J]. Postepy Dermatol Alergol, 2021, 38(6):931-936. DOI: 10.5114/ada.2021.112275 . |
2 | BOCHEVA G, SLOMINSKI R M, JANJETOVIC Z, et al. Protective role of melatonin and its metabolites in skin aging[J]. Int J Mol Sci, 2022, 23(3):1238. DOI: 10.3390/ijms23031238 . |
3 | PARRADO C, MERCADO-SAENZ S, PEREZ-DAVO A, et al. Environmental stressors on skin aging. mechanistic insights[J]. Front Pharmacol, 2019, 10:759. DOI: 10.3389/fphar.2019.00759 . |
4 | SALMINEN A, KAARNIRANTA K, KAUPPINEN A. Photoaging: UV radiation-induced inflammation and immunosuppression accelerate the aging process in the skin[J]. Inflamm Res, 2022, 71(7):817-831. DOI: 10.1007/s00011-022-01598-8 . |
5 | SWIADER A, CAMARÉ C, GUERBY P, et al. 4-hydroxynonenal contributes to fibroblast senescence in skin photoaging evoked by UV-A radiation[J]. Antioxidants (Basel), 2021, 10(3):365. DOI: 10.3390/antiox10030365 . |
6 | KANG M K, KIM D Y, OH H, et al. Dietary collagen hydrolysates ameliorate furrowed and parched skin caused by photoaging in hairless mice[J]. Int J Mol Sci, 2021, 22(11):6137. DOI: 10.3390/ijms22116137 . |
7 | JIN X X, ZHANG X D, LI Y B, et al. Long-acting microneedle patch loaded with adipose collagen fragment for preventing the skin photoaging in mice[J]. Biomater Adv, 2022, 135:212744. DOI: 10.1016/j.bioadv.2022.212744 . |
8 | CHEN Q Y, ZHANG H Y, YANG Y M, et al. Metformin attenuates UVA-induced skin photoaging by suppressing mitophagy and the PI3K/AKT/mTOR pathway[J]. Int J Mol Sci, 2022, 23(13):6960. DOI: 10.3390/ijms23136960 . |
9 | GUAN L L, LIM H W, MOHAMMAD T F. Sunscreens and Photoaging: A Review of Current Literature[J]. Am J Clin Dermatol, 2021, 22(6): 819-828. DOI: 10.1007/s40257-021-00632-5 . |
10 | POON F, KANG S, CHIEN A L. Mechanisms and treatments of photoaging[J]. Photodermatol Photoimmunol Photomed, 2015, 31(2): 65-74. DOI: 10.1111/phpp.12145 . |
11 | LIANG Y, SIMAITI A, XU M, et al. Antagonistic Skin Toxicity of Co-Exposure to Physical Sunscreen Ingredients Zinc Oxide and Titanium Dioxide Nanoparticles[J]. Nanomaterials (Basel), 2022, 12(16). DOI: 10.3390/nano12162769 . |
12 | 丁苗苗, 魏玲, 陈春宇, 等. 中药有效成分抗皮肤光老化作用及其机制研究进展[J]. 中国中药杂志, 2022, 47(14): 3709-3717. DOI: 10.19540/j.cnki.cjcmm.20220415.601 . |
DING M M, WEI L, CHEN C Y, et al. Anti-photoaging effects and mechanisms of active ingredients of Chinese medicine: a review[J]. China J Chin Mater Med, 2022, 47(14): 3709-3717. DOI: 10.19540/j.cnki.cjcmm.20220415.601 . | |
13 | 朱姗, 赵志月, 王子静, 等. 皮肤老化分子机制及中药防治皮肤老化研究进展[J]. 天津中医药大学学报, 2021, 40(4): 431-439. DOI: 10.11656/j.issn.1673-9043.2021.04.06 . |
ZHU S, ZHAO Z Y, WANG Z J, et al. Research progress of molecular mechanism of skin aging and prevention of skin aging with traditional Chinese medicine[J]. J Tianjin Univ Tradit Chin Med, 2021, 40(4): 431-439. DOI: 10.11656/j.issn.1673-9043.2021.04.06 . | |
14 | 王璐, 李中平, 曹艳亚, 等. 沙参麦冬汤对皮肤光老化模型小鼠的保护作用[J]. 中国老年学杂志, 2015, 35(6): 1628-1631. DOI: 10.3969/j.issn.1005-9202.2015.06.091 . |
WANG L, LI Z P, CAO Y Y, et al. Protective effect of Shashen Maidong Decoction on skin photoaging model mice[J]. Chin J Gerontol, 2015, 35(6): 1628-1631. DOI: 10.3969/j.issn.1005-9202.2015.06.091 . | |
15 | 张宇, 曹南开, 张小卿, 等. 桃红四物汤对光老化小鼠皮肤组织中MMP-1、MMP-3 mRNA及血清中TNF-α、IL-1含量表达的影响[J]. 中华中医药学刊, 2015, 33(4): 919-921, 后插8. DOI: 10.13193/j.issn.1673-7717.2015.04.048 . |
ZHANG Y, CAO N K, ZHANG X Q, et al. Effect of Taohongsiwu Decoction on expressions of MMP-1, MMP-3 mRNA in skin tissue and TNF-a, IL-1 in blood serum of photoaged mice[J]. Chin Arch Tradit Chin Med, 2015, 33(4): 919-921, 10008. DOI: 10.13193/j.issn.1673-7717.2015.04.048 . | |
16 | SHAMLOUL N, HASHIM P W, NIA J J, et al. The role of vitamins and supplements on skin appearance[J]. Cutis, 2019, 104(4): 220-224. |
17 | 邓映, 杜宇, 刘萍, 等. 氧化应激在皮肤光老化中的作用[J]. 中国医疗美容, 2020, 10(8): 117-122. DOI: 10.19593/j.issn.2095-0721.2020.08.030 . |
DENG Y, DU Y, LIU P, et al. The role of oxidative stress in skin photoaging[J]. Chin Med Cosmetol, 2020, 10(8): 117-122. DOI: 10.19593/j.issn.2095-0721.2020.08.030 . | |
18 | CHENOUARD V, REMY S, TESSON L, et al. Advances in genome editing and application to the generation of genetically modified rat models[J]. Front Genet, 2021, 12:615491. DOI: 10.3389/fgene.2021.615491 . |
19 | MEEK S, MASHIMO T, BURDON T. From engineering to editing the rat genome[J]. Mamm Genome, 2017, 28(7):302-314. DOI: 10.1007/s00335-017-9705-8 . |
20 | 王诗萌, 李甜, 杨田野, 等. 紫外线照射实验动物的皮肤光老化模型研究进展[J]. 中国美容医学, 2018, 27(7):146-150. DOI: 10.14163/j.cnki.11-5547/r.2016.30.160 . |
WANG S M, LI T, YANG T Y, et al. Progressof skin photoaging models of ultraviolet irradiated experimental animals[J]. Chin J Aesthetic Med, 2018, 27(7):146-150. DOI: 10.14163/j.cnki.11-5547/r.2016.30.160 . | |
21 | RUIZ-LARREA M B, MARTÍN C, MARTÍNEZ R, et al. Antioxidant activities of estrogens against aqueous and lipophilic radicals; differences between phenol and catechol estrogens[J]. Chem Phys Lipids, 2000, 105(2):179-188. DOI: 10.1016/S0009-3084(00)00120-1 . |
22 | LEPHART E D. Skin aging and oxidative stress: Equol's anti-aging effects via biochemical and molecular mechanisms[J]. Ageing Res Rev, 2016, 31:36-54. DOI: 10.1016/j.arr.2016.08.001 . |
23 | LEPHART E D, NAFTOLIN F. Menopause and the skin: old Favorites and new innovations in cosmeceuticals for estrogen-deficient skin[J]. Dermatol Ther (Heidelb), 2021, 11(1):53-69. DOI: 10.1007/s13555-020-00468-7 . |
24 | PARK H M, CHO M H, CHO Y, et al. Royal jelly increases collagen production in rat skin after ovariectomy[J]. J Med Food, 2012, 15(6):568-575. DOI: 10.1089/jmf.2011.1888 . |
25 | LEPHART E D. A review of the role of estrogen in dermal aging and facial attractiveness in women[J]. J Cosmet Dermatol, 2018, 17(3):282-288. DOI: 10.1111/jocd.12508 . |
26 | LEPHART E D, NAFTOLIN F. Factors influencing skin aging and the important role of estrogens and selective estrogen receptor modulators (SERMs)[J]. Clin Cosmet Investig Dermatol, 2022, 15:1695-1709. DOI: 10.2147/CCID.S333663 . |
27 | LI W G, LUO X Y. An invariant-based damage model for human and animal skins[J]. Ann Biomed Eng, 2016, 44(10):3109-3122. DOI: 10.1007/s10439-016-1603-9 . |
28 | 陶丛敏, 马文宇. 光老化的动物模型研究进展[J]. 临床皮肤科杂志, 2018, 47(6):386-388. DOI: 10.16761/j.cnki.1000-4963.2018.06.017 . |
TAO C M, MA W Y. Research progress of animal model of skin photoaging[J]. J Clin Dermatol, 2018, 47(6):386-388. DOI: 10.16761/j.cnki.1000-4963.2018.06.017 . | |
29 | GUO K K, LIU R, JING R R, et al. Cryptotanshinone protects skin cells from ultraviolet radiation-induced photoaging via its antioxidant effect and by reducing mitochondrial dysfunction and inhibiting apoptosis[J]. Front Pharmacol, 2022, 13:1036013. DOI: 10.3389/fphar.2022.1036013 . |
30 | 孔悦, 郭砚. 皮肤光老化小鼠模型的构建及效果评估[J]. 实验动物与比较医学, 2021, 41(2):116-121. DOI: 10.12300/j.issn.1674-5817.2020.191 |
KONG Y, GUO Y. Construction and evaluation of skin photoaging mouse model[J]. Lab Animal Comp Med, 2021, 41(2):116-121. DOI: 10.12300/j.issn.1674-5817.2020.191 . | |
31 | GENDRISCH F, ESSER P R, SCHEMPP C M, et al. Luteolin as a modulator of skin aging and inflammation[J]. Biofactors, 2021, 47(2):170-180. DOI: 10.1002/biof.1699 . |
32 | ZAMARRÓN A, LORRIO S, GONZÁLEZ S, et al. Fernblock prevents dermal cell damage induced by visible and infrared A radiation[J]. Int J Mol Sci, 2018, 19(8):2250. DOI: 10.3390/ijms19082250 . |
33 | CHOI K S, KUNDU J K, CHUN K S, et al. Rutin inhibits UVB radiation-induced expression of COX-2 and iNOS in hairless mouse skin: p38 MAP kinase and JNK as potential targets[J]. Arch Biochem Biophys, 2014, 559:38-45. DOI: 10.1016/j.abb.2014.05.016 . |
34 | KUNDU J K, CHANG E J, FUJII H, et al. Oligonol inhibits UVB-induced COX-2 expression in HR-1 hairless mouse skin: AP-1 and C/EBP as potential upstream targets[J]. Photochem Photobiol, 2008, 84(2):399-406. DOI: 10.1111/j.1751-1097.2007.00277.x . |
35 | PAL H C, ATHAR M, ELMETS C A, et al. Fisetin inhibits UVB-induced cutaneous inflammation and activation of PI3K/AKT/NFκB signaling pathways in SKH-1 hairless mice[J]. Photochem Photobiol, 2015, 91(1):225-234. DOI: 10.1111/php.12337 . |
36 | MOON N R, KANG S, PARK S. Consumption of ellagic acid and dihydromyricetin synergistically protects against UV-B induced photoaging, possibly by activating both TGF-β1 and Wnt signaling pathways[J]. J Photochem Photobiol B Biol, 2018, 178:92-100. DOI: 10.1016/j.jphotobiol.2017.11.004 . |
37 | TSUKAHARA K, MORIWAKI S, FUJIMURA T, et al. Inhibitory effect of an extract of Sanguisorba officinalis L. on ultraviolet-B-induced photodamage of rat skin[J]. Biol Pharm Bull, 2001, 24(9):998-1003. DOI: 10.1248/bpb.24.998 . |
38 | TANG Z T, TONG X L, HUANG J H, et al. Research progress of keratinocyte-programmed cell death in UV-induced Skin photodamage[J]. Photodermatol Photoimmunol Photomed, 2021, 37(5):442-448. DOI: 10.1111/phpp.12679 . |
39 | Oh J H, KARADENIZ F, LEE J I, et al. Antiphotoaging Effect of (2'S)-Columbianetin from Corydalis heterocarpa in UVA-Irradiated Human Dermal Fibroblasts[J]. App Sci, 2020, 10(7): 2568. DOI:10.3390/app10072568 . |
40 | VATS K, KRUGLOV O, MIZES A, et al. Keratinocyte death by ferroptosis initiates skin inflammation after UVB exposure[J]. Redox Biol, 2021, 47:102143. DOI: 10.1016/j.redox.2021.102143 . |
41 | RANA S, FATIMA N, YAQOOB S, et al. Probing photoprotection properties of lipophilic chain conjugated thiourea-aryl group molecules to attenuate ultraviolet-A induced cellular and DNA damages[J]. Sci Rep, 2022, 12(1):20907. DOI: 10.1038/s41598-022-25515-5 . |
42 | ZAMARRÓN A, MOREL E, LUCENA S R, et al. Extract of Deschampsia antarctica (EDA) prevents dermal cell damage induced by UV radiation and 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin[J]. Int J Mol Sci, 2019, 20(6):1356. DOI: 10.3390/ijms20061356 . |
43 | ATALAY S, GĘGOTEK A, WROŃSKI A, et al. Therapeutic application of cannabidiol on UVA and UVB irradiated rat skin. A proteomic study[J]. J Pharm Biomed Anal, 2021, 192:113656. DOI: 10.1016/j.jpba.2020.113656 . |
44 | KHAN A Q, TRAVERS J B, KEMP M G. Roles of UVA radiation and DNA damage responses in melanoma pathogenesis[J]. Environ Mol Mutagen, 2018, 59(5):438-460. DOI: 10.1002/em.22176 . |
45 | KHAN A, BAI H L, KHAN A, et al. Neferine prevents ultraviolet radiation-induced skin photoaging[J]. Exp Ther Med, 2020, 19(5):3189-3196. DOI: 10.3892/etm.2020.8587 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[6] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[7] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[8] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[9] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[10] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[11] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[12] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[13] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[14] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[15] | Danyang YIN, Yi HU, Rengfei SHI. Advances in Animal Aging Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 156-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||