Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 415-421.DOI: 10.12300/j.issn.1674-5817.2023.031
• Animal Models of Human Diseases • Previous Articles Next Articles
Received:
2023-02-28
Revised:
2023-05-08
Online:
2023-08-25
Published:
2023-09-14
Contact:
Yonghe HU
CLC Number:
Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.031
疾病模型种类 Disease model type | 构建小鼠 Modeling mice | 主要特征 Main characteristic | 适用范围 Scope of application |
---|---|---|---|
化学诱导1型糖尿病模型 Chemically induced T1DM | 单次高剂量STZ诱导小鼠 | 单纯性高血糖 | 开发新型治疗1型糖尿病胰岛素 |
多次低剂量STZ诱导小鼠 | 诱导性胰腺炎,高血糖 | β细胞功能受损的1型糖尿病的治疗 | |
自发性1型糖尿病模型 Spontaneous | NOD小鼠 | 胰岛被白细胞浸润,β细胞受损 | 自身免疫系统受损所致1型糖尿病的治疗 |
自发性2型糖尿病模型 Spontaneous | ob/ob小鼠 | 一过性高血糖(4周龄~20周龄),低代谢,食欲旺盛 | 肥胖为主、高血糖不严重的2型糖尿病及Ⅰ、Ⅱ期肥胖症的治疗 |
db/db小鼠 | 严重的高胰岛素血症、高血糖和肥胖 | β细胞功能受损的2型糖尿病及其并发症的治疗 | |
KK小鼠 | 2~3月龄开始肥胖,食欲旺盛,高胰岛素血症 | 非胰岛素依赖型2型糖尿病的治疗 | |
KK-Ay小鼠 | 8周龄开始肥胖,30周龄出现高血糖 | 肥胖为主非胰岛素依赖型2型糖尿病,糖尿病肾病及脑病等并发症的治疗 | |
Tallyho/Jng小鼠 | 高血糖,胰岛肥大,葡萄糖耐受不良,高胰岛素血症较轻微 | 基因所致肥胖型2型糖尿病的治疗 | |
TSOD小鼠 | 严重的高胰岛素血症、高血糖和肥胖 | 自发性肥胖型2型糖尿病的治疗 | |
饮食诱导2型糖尿病模型 Diet-induced | 高脂饮食所致肥胖小鼠 | 高血糖不明显,喂养持续时间久 | 改善胰岛素的治疗方法 |
Table 1 Summary of key features and applicability of mouse models of type 1 and 2 diabetes mellitus
疾病模型种类 Disease model type | 构建小鼠 Modeling mice | 主要特征 Main characteristic | 适用范围 Scope of application |
---|---|---|---|
化学诱导1型糖尿病模型 Chemically induced T1DM | 单次高剂量STZ诱导小鼠 | 单纯性高血糖 | 开发新型治疗1型糖尿病胰岛素 |
多次低剂量STZ诱导小鼠 | 诱导性胰腺炎,高血糖 | β细胞功能受损的1型糖尿病的治疗 | |
自发性1型糖尿病模型 Spontaneous | NOD小鼠 | 胰岛被白细胞浸润,β细胞受损 | 自身免疫系统受损所致1型糖尿病的治疗 |
自发性2型糖尿病模型 Spontaneous | ob/ob小鼠 | 一过性高血糖(4周龄~20周龄),低代谢,食欲旺盛 | 肥胖为主、高血糖不严重的2型糖尿病及Ⅰ、Ⅱ期肥胖症的治疗 |
db/db小鼠 | 严重的高胰岛素血症、高血糖和肥胖 | β细胞功能受损的2型糖尿病及其并发症的治疗 | |
KK小鼠 | 2~3月龄开始肥胖,食欲旺盛,高胰岛素血症 | 非胰岛素依赖型2型糖尿病的治疗 | |
KK-Ay小鼠 | 8周龄开始肥胖,30周龄出现高血糖 | 肥胖为主非胰岛素依赖型2型糖尿病,糖尿病肾病及脑病等并发症的治疗 | |
Tallyho/Jng小鼠 | 高血糖,胰岛肥大,葡萄糖耐受不良,高胰岛素血症较轻微 | 基因所致肥胖型2型糖尿病的治疗 | |
TSOD小鼠 | 严重的高胰岛素血症、高血糖和肥胖 | 自发性肥胖型2型糖尿病的治疗 | |
饮食诱导2型糖尿病模型 Diet-induced | 高脂饮食所致肥胖小鼠 | 高血糖不明显,喂养持续时间久 | 改善胰岛素的治疗方法 |
1 | HASSANEIN M, AFANDI B, AHMEDANI M Y, et al. Diabetes and Ramadan: practical guidelines 2021[J]. Diabetes Res Clin Pract, 2022, 185:109185. DOI: 10.1016/j.diabres.2021.109185 . |
2 | RADENKOVIĆ M, STOJANOVIĆ M, PROSTRAN M. Experimental diabetes induced by alloxan and streptozotocin: the current state of the art[J]. J Pharmacol Toxicol Methods, 2016, 78:13-31. DOI: 10.1016/j.vascn. 2015. 11.004 . |
3 | 易承学, 闫曼, 钱欣. 链脲佐菌素联合高脂饮食制备糖尿病小鼠模型研究[J]. 镇江高专学报, 2021, 34(4):67-69. DOI: 10.3969/j.issn.1008-8148.2021.04.016 . |
YI C X, YAN M, QIAN X. A study on the preparation of diabetic mouse model with streptozotocin and high fat diet[J]. J Zhenjiang Coll, 2021, 34(4):67-69. DOI: 10.3969/j.issn.1008-8148.2021.04.016 . | |
4 | FURMAN B L. Streptozotocin-induced diabetic models in mice and rats[J]. Curr Protoc, 2021, 1(4): e78. DOI: 10.1002/cpz1.78 . |
5 | DIENER J L, MOWBRAY S, HUANG W J, et al. FGF21 normalizes plasma glucose in mouse models of type 1 diabetes and insulin receptor dysfunction[J]. Endocrinology, 2021, 162(9): bqab092. DOI: 10.1210/endocr/bqab092 . |
6 | LIU S, MA L L, REN X Y, et al. A new mouse model of type 2 diabetes mellitus established through combination of high-fat diet, streptozotocin and glucocorticoid[J]. Life Sci, 2021, 286:120062. DOI: 10.1016/j.lfs.2021.120062 . |
7 | LAFFERTY R A, MCSHANE L M, FRANKLIN Z J, et al. Sustained glucagon receptor antagonism in insulin-deficient high-fat-fed mice[J]. J Endocrinol, 2022, 255(2):91-101. DOI: 10.1530/JOE-22-0106 . |
8 | HAYASHI K, KOJIMA R, ITO M. Strain differences in the diabetogenic activity of streptozotocin in mice[J]. Biol Pharm Bull, 2006, 29(6):1110-1119. DOI: 10.1248/bpb.29.1110 . |
9 | DEEDS M C, ANDERSON J M, ARMSTRONG A S, et al. Single dose streptozotocin-induced diabetes: considerations for study design in islet transplantation models[J]. Lab Anim, 2011, 45(3):131-140. DOI: 10.1258/la.2010.010090 . |
10 | ANDERSON M S, BLUESTONE J A. THE NOD MOUSE: a model of immune dysregulation[J]. Annu Rev Immunol, 2005, 23:447-485. DOI: 10.1146/annurev.immunol.23.021704.115643 . |
11 | YU F, ZHOU X, JIN X, et al. Rational construction of controllable autoimmune diabetes model depicting clinical features[J]. PLoS One, 2022, 17(1): e0260100. DOI: 10.1371/journal.pone.0260100 . |
12 | MCNEILLY A D, MCCRIMMON R J. Impaired hypoglycaemia awareness in type 1 diabetes: lessons from the lab[J]. Diabetologia, 2018, 61(4):743-750. DOI: 10.1007/s00125-018-4548-8 . |
13 | AUBIN A M, LOMBARD-VADNAIS F, COLLIN R, et al. The NOD mouse beyond autoimmune diabetes[J]. Front Immunol, 2022, 13:874769. DOI: 10.3389/fimmu.2022.874769 . |
14 | VELD P I. Insulitis in human type 1 diabetes: a comparison between patients and animal models[J]. Semin Immunopathol, 2014, 36(5):569-579. DOI: 10.1007/s00281-014-0438-4 . |
15 | HARRISON L C. The dark side of insulin: a primary autoantigen and instrument of self-destruction in type 1 diabetes[J]. Mol Metab, 2021, 52:101288. DOI: 10.1016/j.molmet.2021.101288 . |
16 | TOKUDA K, IKEMOTO T, YAMASHITA S, et al. Syngeneically transplanted insulin producing cells differentiated from adipose derived stem cells undergo delayed damage by autoimmune responses in NOD mice[J]. Sci Rep, 2022, 12(1):5852. DOI: 10.1038/s41598-022-09838-x . |
17 | ALDRICH V R, HERNANDEZ-ROVIRA B B, CHANDWANI A, et al. NOD mice-good model for T1D but not without limitations[J]. Cell Transplant, 2020, 29:963689720939127. DOI: 10.1177/0963689720939127 . |
18 | GENCHI V A, D'ORIA R, PALMA G, et al. Impaired leptin signalling in obesity: is leptin a new thermolipokine?[J]. Int J Mol Sci, 2021, 22(12):6445. DOI: 10.3390/ijms22126445 . |
19 | GAULT V A, KERR B D, HARRIOTT P, et al. Administration of an acylated GLP-1 and GIP preparation provides added beneficial glucose-lowering and insulinotropic actions over single incretins in mice with Type 2 diabetes and obesity[J]. Clin Sci (Lond), 2011, 121(3):107-117. DOI: 10.1042/CS20110006 . |
20 | DUONG M, UNO K, NANKIVELL V, et al. Induction of obesity impairs reverse cholesterol transport in ob/ob mice[J]. PLoS One, 2018, 13(9): e0202102. DOI: 10.1371/journal.pone.0202102 . |
21 | MARCHETTI P. Islet inflammation in type 2 diabetes[J]. Diabetologia, 2016, 59(4):668-672. DOI: 10.1007/s00125-016-3875-x . |
22 | WANG F, ZHANG C, DAI L N, et al. Bafilomycin A1 accelerates chronic refractory wound healing in db/db mice[J]. Biomed Res Int, 2020, 2020:6265701. DOI: 10.1155/2020/6265701 . |
23 | GOOSSENS G H, BLAAK E E. Unraveling the pathophysiology of obesity-related insulin resistance-a perspective on adipose tissue inflammation is directly linked to obesity-induced insulin resistance, while gut dysbiosis and mitochondrial dysfunction are not required[J]. Function (Oxf), 2020, 1(2): zqaa021. DOI: 10.1093/function/zqaa021 . |
24 | CHAKRABORTY G, THUMPAYIL S, LAFONTANT D E, et al. Age dependence of glucose tolerance in adult KK-Ay mice, a model of non-insulin dependent diabetes mellitus[J]. Lab Anim (NY), 2009, 38(11):364-368. DOI: 10.1038/laban1109-364 . |
25 | OHTOMO T, INO K, MIYASHITA R, et al. Chronic high-fat feeding impairs adaptive induction of mitochondrial fatty acid combustion-associated proteins in brown adipose tissue of mice[J]. Biochem Biophys Rep, 2017, 10:32-38. DOI: 10.1016/j.bbrep.2017.02.002 . |
26 | DENVIR J, BOSKOVIC G, FAN J, et al. Whole genome sequence analysis of the TALLYHO/Jng mouse[J].BMC Genom, 2016, 17(1):1-15. DOI: 10.1186/s12864-016-3245-6 . |
27 | PARKMAN J K, SKLIOUTOVSKAYA-LOPEZ K, MENIKDIWELA K R, et al. Effects of high fat diets and supplemental tart cherry and fish oil on obesity and type 2 diabetes in male and female C57BL/6J and TALLYHO/Jng mice[J]. J Nutr Biochem, 2021, 94:108644. DOI: 10.1016/j.jnutbio.2021.108644 . |
28 | SHAO W H, JARGALSAIKHAN O, ICHIMURA-SHIMIZU M, et al. Spontaneous occurrence of various types of hepatocellular adenoma in the livers of metabolic syndrome-associated steatohepatitis model TSOD mice[J]. Int J Mol Sci, 2022, 23(19):11923. DOI: 10.3390/ijms231911923 . |
29 | ISHIBASHI K, TAKEDA Y, NAKATANI E, et al. Activation of PPARγ at an early stage of differentiation enhances adipocyte differentiation of MEFs derived from type II diabetic TSOD mice and alters lipid droplet morphology[J]. Biol Pharm Bull, 2017, 40(6):852-859. DOI: 10.1248/bpb.b17-00030 . |
30 | NAGY C, EINWALLNER E. Study of in vivo glucose metabolism in high-fat diet-fed mice using oral glucose tolerance test (OGTT) and insulin tolerance test (ITT)[J]. J Vis Exp, 2018(131):56672. DOI: 10.3791/56672 . |
31 | INGVORSEN C, KARP N A, LELLIOTT C J. The role of sex and body weight on the metabolic effects of high-fat diet in C57BL/6N mice[J]. Nutr Diabetes, 2017, 7(4): e261. DOI: 10.1038/nutd.2017.6 . |
32 | GUERRA-CANTERA S, FRAGO L M, COLLADO-PÉREZ R, et al. Sex differences in metabolic recuperation after weight loss in high fat diet-induced obese mice[J]. Front Endocrinol (Lausanne), 2021, 12:796661. DOI: 10.3389/fendo.2021.796661 . |
33 | DROZ B A, SNEED B L, JACKSON C V, et al. Correlation of disease severity with body weight and high fat diet in the FATZO/Pco mouse[J]. PLoS One, 2017, 12(6): e0179808. DOI: 10.1371/journal.pone.0179808 . |
34 | SPEAKMAN J R. Use of high-fat diets to study rodent obesity as a model of human obesity[J]. Int J Obes, 2019, 43(8):1491-1492. DOI: 10.1038/s41366-019-0363-7 . |
35 | CHAIX A, DEOTA S, BHARDWAJ R, et al. Sex- and age-dependent outcomes of 9-hour time-restricted feeding of a Western high-fat high-sucrose diet in C57BL/6J mice[J]. Cell Rep, 2021, 36(7):109543. DOI: 10.1016/j.celrep.2021.109543 . |
36 | ROHAM P H, SAVE S N, SHARMA S. Human islet amyloid polypeptide: a therapeutic target for the management of type 2 diabetes mellitus[J]. J Pharm Anal, 2022, 12(4):556-569. DOI: 10.1016/j.jpha.2022.04.001 . |
37 | KING M, PEARSON T, SHULTZ L D, et al. Development of new-generation HU-PBMC-NOD/SCID mice to study human islet alloreactivity[J]. Ann N Y Acad Sci, 2007, 1103:90-93. DOI: 10.1196/annals.1394.011 . |
38 | RIGOLLI M, WHALLEY G A. Heart failure with preserved ejection fraction[J]. J Geriatr Cardiol, 2013, 10(4):369-376. DOI: 10.3969/j.issn.1671-5411.2013.04.011 . |
39 | MIYACHI Y, MIYAZAWA T, OGAWA Y. HNF1A mutations and beta cell dysfunction in diabetes[J]. Int J Mol Sci, 2022, 23(6):3222. DOI: 10.3390/ijms23063222 . |
40 | SMITH L I F, HILL T G, BOWE J E. Generating beta-cell-specific transgenic mice using the cre-lox system[J]. Methods Mol Biol, 2020, 2128:181-205. DOI: 10.1007/978-1-0716-0385-7_13 . |
41 | MILLERSHIP S J, TUNSTER S J, VAN DE PETTE M, et al. Neuronatin deletion causes postnatal growth restriction and adult obesity in 129S2/Sv mice[J]. Mol Metab, 2018, 18:97-106. DOI: 10.1016/j.molmet.2018.09.001 . |
42 | SINGHA A, PALAVICINI J P, PAN M X, et al. Leptin receptors in RIP-Cre25Mgn neurons mediate anti-dyslipidemia effects of leptin in insulin-deficient mice[J]. Front Endocrinol (Lausanne), 2020, 11:588447. DOI: 10.3389/fendo.2020.588447 . |
43 | FEX M, WIERUP N, NITERT M D, et al. Rat insulin promoter 2-Cre recombinase mice bred onto a pure C57BL/6J background exhibit unaltered glucose tolerance[J]. J Endocrinol, 2007, 194(3):551-555. DOI: 10.1677/JOE-07-0161 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Yongqiang NIE, Zhaoxia WANG. Rescue Technology and Its Application of Endangered Gene-Edited Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 636-640. |
[5] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[6] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[7] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[8] | Ying HUANG, Siyu WEI, Li CAI, Sujing QIANG, Dongting LI, Yuqiang DING. Microbiological Monitoring Analysis of Laboratory Rats and Mice from Vendors: Department of Laboratory Animal Science of Fudan University as an Example [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 347-354. |
[9] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[10] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[11] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[12] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[13] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[14] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[15] | Fangni LIU, Junping LU, Yuehua KE, Changjun WANG, Jinpeng GUO. Prevalence of Mouse Norovirus in Experimental Mice in Beijing [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 205-212. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||