Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (3): 288-296.DOI: 10.12300/j.issn.1674-5817.2022.194
• Model Animals and Animal Models • Previous Articles Next Articles
Zhigang TAN1,2(), Jinxin LIU1,2, Chuya ZHENG1,2, Wenfeng LIAO1,2, Luping FENG1,2, Hongli PENG1,2, Xiu YAN3, Zhenjian ZHUO1,2()()
Received:
2022-12-29
Revised:
2023-04-11
Online:
2023-06-25
Published:
2023-07-18
Contact:
Zhenjian ZHUO
CLC Number:
Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma[J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.194
细胞系 Cell line | 小鼠品系 Mouse stain | MYCN基因状态 MYCN status | ALK基因突变 ALK mutation | P53基因突变 P53 mutation | 参考文献 Reference |
---|---|---|---|---|---|
KELLY | BALB/c-nude小鼠 | 扩增 | 野生型 | 野生型 | [ |
CHP-212 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
SKNAS | BALB/c-nude小鼠 | 非扩增 | 野生型 | H168R | [ |
SH-SY-5Y | Foxn1nu/Nju小鼠、ICR小鼠、BALB/c-nude小鼠 | 非扩增 | F1174L | 野生型 | [ |
IMR-32 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
IMR-05 | SHC小鼠 | 扩增 | 野生型 | 野生型 | [ |
LA-N-5 | BALB/c-nude小鼠 | 扩增 | R1275Q | 野生型 | [ |
NB-1 | BALB/c-nude小鼠 | 扩增 | 野生型扩增 | 野生型 | [ |
SK-N-BE(2) | SCID-Beige小鼠 | 扩增 | 野生型 | C135F | [ |
SK-N-BE(2)-C | BALB/c- nude小鼠、Foxn1nu/Nju小鼠 | 扩增 | 野生型 | C135F | [ |
CHP-134 | NOD-SCID小鼠 | 扩增 | 野生型 | 野生型 | [ |
SK-N-DZ | BALB/c-nude小鼠 | 扩增 | 野生型 | R110L | [ |
Table 1 Frequently used preclinical laboratory mouse models derived from NB cell lines
细胞系 Cell line | 小鼠品系 Mouse stain | MYCN基因状态 MYCN status | ALK基因突变 ALK mutation | P53基因突变 P53 mutation | 参考文献 Reference |
---|---|---|---|---|---|
KELLY | BALB/c-nude小鼠 | 扩增 | 野生型 | 野生型 | [ |
CHP-212 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
SKNAS | BALB/c-nude小鼠 | 非扩增 | 野生型 | H168R | [ |
SH-SY-5Y | Foxn1nu/Nju小鼠、ICR小鼠、BALB/c-nude小鼠 | 非扩增 | F1174L | 野生型 | [ |
IMR-32 | NSG小鼠 | 扩增 | 野生型 | 野生型 | [ |
IMR-05 | SHC小鼠 | 扩增 | 野生型 | 野生型 | [ |
LA-N-5 | BALB/c-nude小鼠 | 扩增 | R1275Q | 野生型 | [ |
NB-1 | BALB/c-nude小鼠 | 扩增 | 野生型扩增 | 野生型 | [ |
SK-N-BE(2) | SCID-Beige小鼠 | 扩增 | 野生型 | C135F | [ |
SK-N-BE(2)-C | BALB/c- nude小鼠、Foxn1nu/Nju小鼠 | 扩增 | 野生型 | C135F | [ |
CHP-134 | NOD-SCID小鼠 | 扩增 | 野生型 | 野生型 | [ |
SK-N-DZ | BALB/c-nude小鼠 | 扩增 | 野生型 | R110L | [ |
小鼠模型 Mouse model | 优势 Advantage | 局限性 Limitation | 参考文献 Reference |
---|---|---|---|
Th-MYCN | 代表高危NB型,成瘤率高 | 成瘤时间长,转移少 | [ |
LSL-MYCN;dβh-iCre | 比Th-MYCN更明确的转基因插入,发病率更高 | 转移率低 | [ |
Th-MYCN/CASP8(KO) | 存在转移,成瘤率高 | 引起原发肿瘤细胞外基质结构的改变 | [ |
Th-MYCN/Trp53(KI) | 诱导性P53丢失 | P53突变多发于复发肿瘤中,小鼠的存活率低 | [ |
ALK(F1174) | 符合NB表型 | 临床常见率低 | [ |
Th-MYCN/ALK(F1174) | 成瘤率高,肿瘤生长快 | 相关性低 | [ |
SV40 Tag | 与NB表型一致,肿瘤发病率高,存在转移 | 所有小鼠在28周龄前死亡 | [ |
Table 2 The common genetically engineered mouse models
小鼠模型 Mouse model | 优势 Advantage | 局限性 Limitation | 参考文献 Reference |
---|---|---|---|
Th-MYCN | 代表高危NB型,成瘤率高 | 成瘤时间长,转移少 | [ |
LSL-MYCN;dβh-iCre | 比Th-MYCN更明确的转基因插入,发病率更高 | 转移率低 | [ |
Th-MYCN/CASP8(KO) | 存在转移,成瘤率高 | 引起原发肿瘤细胞外基质结构的改变 | [ |
Th-MYCN/Trp53(KI) | 诱导性P53丢失 | P53突变多发于复发肿瘤中,小鼠的存活率低 | [ |
ALK(F1174) | 符合NB表型 | 临床常见率低 | [ |
Th-MYCN/ALK(F1174) | 成瘤率高,肿瘤生长快 | 相关性低 | [ |
SV40 Tag | 与NB表型一致,肿瘤发病率高,存在转移 | 所有小鼠在28周龄前死亡 | [ |
Figure 1 Process diagram of zebrafish model for NB researchNote:Zebrafish tumor model can be mainly used for the developmental genetics research, studies on tumor mechanisms, and antineoplastic drug evaluation.
1 | ZAFAR A, WANG W, LIU G, et al. Molecular targeting therapies for neuroblastoma: progress and challenges[J]. Med Res Rev, 2021, 41(2):961-1021. DOI: 10.1002/med.21750 . |
2 | CHUNG C, BOTERBERG T, LUCAS J, et al. Neuroblastoma[J]. Pediatr Blood Cancer, 2021, 68:e28473. DOI: 10.1002/pbc. 28473 . |
3 | SUN X F, ZHEN Z J, GUO Y, et al. Oral metronomic maintenance therapy can improve survival in high-risk neuroblastoma patients not treated with ASCT or anti-GD2 antibodies[J]. Cancers, 2021, 13(14):3494. DOI: 10.3390/cancers13143494 . |
4 | HELSON L, DAS S K, HAJDU S I. Human neuroblastoma in nude mice[J]. Cancer Res, 1975, 35(9): 2594-2599. |
5 | BOGDEN A E, COBB W R, LEPAGE D J, et al. Chemotherapy responsiveness of human tumors as first transplant generation xenografts in the normal mouse: six-day subrenal capsule assay[J]. Cancer, 1981, 48(1):10-20. DOI: 10.1002/1097-0142(19810701)48:1<10: AID-CNCR2820480105>3.0.CO;2-I . |
6 | KHANNA C, JABOIN J J, DRAKOS E, et al. Biologically relevant orthotopic neuroblastoma xenograft models: primary adrenal tumor growth and spontaneous distant metastasis[J]. In Vivo, 2002, 16(2):77-85. |
7 | ROWE D H, HUANG J Z, LI J, et al. Suppression of primary tumor growth in a mouse model of human neuroblastoma[J]. J Pediatr Surg, 2000, 35(6):977-981. DOI: 10.1053/jpsu. 2000.6946 . |
8 | FLICKINGER K S, JUDWARE R, LECHNER R, et al. Integrin expression in human neuroblastoma cells with or without N-myc amplification and in ectopic/orthotopic nude mouse tumors[J]. Exp Cell Res, 1994, 213(1):156-163. DOI: 10.1006/excr.1994.1185 . |
9 | KANG J, ISHOLA T A, BAREGAMIAN N, et al. Bombesin induces angiogenesis and neuroblastoma growth[J]. Cancer Lett, 2007, 253(2):273-281. DOI: 10.1016/j.canlet.2007.02.007 . |
10 | 刘波, 苗佳宁, 张斯萌, 等. 神经母细胞瘤肾上腺原位移植瘤动物模型的建立[J]. 中国比较医学杂志, 2021, 31(12):1-6. DOI: 10.3969/j.issn.1671-7856.2021.12.001 . |
LIU B, MIAO J N, ZHANG S M, et al. Establishment of an orthotopic xenografted animal model of neuroblastoma[J]. Chin J Comp Med, 2021, 31(12):1-6. DOI: 10.3969/j.issn.1671-7856.2021.12.001 . | |
11 | SENEVIRATNE J A, CARTER D R, MITTRA R, et al. Inhibition of mitochondrial translocase SLC25A5 and histone deacetylation is an effective combination therapy in neuroblastoma[J]. Int J Cancer, 2023, 152(7):1399-1413. DOI: 10.1002/ijc.34349 . |
12 | MISSIOS P, ROCHA E L DA, PEARSON D S, et al. LIN28B alters ribosomal dynamics to promote metastasis in MYCN-driven malignancy[J]. J Clin Invest, 2021, 131(22):e145142. DOI: 10.1172/JCI145142 . |
13 | CANDIDO M F, MEDEIROS M, VERONEZ L C, et al. Drugging hijacked kinase pathways in pediatric oncology: opportunities and current scenario[J]. Pharmaceutics, 2023, 15(2):664. DOI: 10.3390/pharmaceutics15020664 . |
14 | GU Y Y, ZHONG K, PENG L Z, et al. TRAF4 silencing induces cell apoptosis and improves retinoic acid sensitivity in human neuroblastoma[J]. Neurochem Res, 2023, 48(7):2116-2128. DOI: 10.1007/s11064-023-03882-3 . |
15 | CONDURAT A L, AMINZADEH-GOHARI S, MALNAR M, et al. Verteporfin-induced proteotoxicity impairs cell homeostasis and survival in neuroblastoma subtypes independent of YAP/TAZ expression[J]. Sci Rep, 2023, 13(1):3760. DOI: 10.1038/s41598-023-29796-2 . |
16 | HE Y, LUO M H, LEI S, et al. Luteoloside induces G0/G1 phase arrest of neuroblastoma cells by targeting p38 MAPK[J]. Molecules, 2023, 28(4):1748. DOI: 10.3390/molecules28041748 . |
17 | GAO Y, VOLEGOVA M, NASHOLM N, et al. Synergistic anti-tumor effect of combining selective CDK7 and BRD4 inhibition in neuroblastoma[J]. Front Oncol, 2022, 11:773186. DOI: 10.3389/fonc.2021.773186 . |
18 | MAKVANDI M, SAMANTA M, MARTORANO P, et al. Pre-clinical investigation of astatine-211-parthanatine for high-risk neuroblastoma[J]. Commun Biol, 2022, 5(1):1260. DOI: 10.1038/s42003-022-04209-8 . |
19 | ZHU Q Q, FENG C, LIAO W W, et al. Target delivery of MYCN siRNA by folate-nanoliposomes delivery system in a metastatic neuroblastoma model[J]. Cancer Cell Int, 2013, 13(1):65. DOI: 10.1186/1475-2867-13-65 . |
20 | RYU S, HAYASHI M, AIKAWA H, et al. Heterogeneous distribution of alectinib in neuroblastoma xenografts revealed by matrix-assisted laser desorption ionization mass spectrometry imaging: a pilot study[J]. Br J Pharmacol, 2018, 175(1):29-37. DOI: 10.1111/bph.14067 . |
21 | NOMURA M, SHIMBO T, MIYAMOTO Y, et al. 13-Cis retinoic acid can enhance the antitumor activity of non-replicating Sendai virus particle against neuroblastoma[J]. Cancer Sci, 2013, 104(2):238-244. DOI: 10.1111/cas.12063 . |
22 | SEPPORTA M V, PRAZ V, BALMAS BOURLOUD K, et al. TWIST1 expression is associated with high-risk neuroblastoma and promotes primary and metastatic tumor growth[J]. Commun Biol, 2022, 5(1):42. DOI: 10.1038/s42003-021-02958-6 . |
23 | LAMPIS S, RAIELI S, MONTEMURRO L, et al. The MYCN inhibitor BGA002 restores the retinoic acid response leading to differentiation or apoptosis by the mTOR block in MYCN-amplified neuroblastoma[J]. J Exp Clin Cancer Res, 2022, 41(1):160. DOI: 10.1186/s13046-022-02367-5 . |
24 | XIAO H L, LI Y H, ZHANG Y, et al. Long noncoding RNA LINC01296 regulates the cell proliferation, migration and invasion in neuroblastoma[J]. Metab Brain Dis, 2022, 37(4):1247-1258. DOI: 10.1007/s11011-022-00935-4 . |
25 | KAMILI A, GIFFORD A J, LI N, et al. Accelerating development of high-risk neuroblastoma patient-derived xenograft models for preclinical testing and personalised therapy[J]. Br J Cancer, 2020, 122(5):680-691. DOI: 10.1038/s41416-019-0682-4 . |
26 | BYRNE F L, MCCARROLL J A, KAVALLARIS M. Analyses of tumor burden in vivo and metastasis ex vivo using luciferase-expressing cancer cells in an orthotopic mouse model of neuroblastoma[J]. Methods Mol Biol, 2016, 1372:61-77. DOI: 10.1007/978-1-4939-3148-4_5 . |
27 | GRANT C N, WILLS C A, LIU X M, et al. Thoracic neuroblastoma: a novel surgical model for the study of extra-adrenal neuroblastoma[J]. In Vivo, 2022, 36(1):49-56. DOI: 10.21873/invivo.12675 . |
28 | WEISS W A, ALDAPE K, MOHAPATRA G, et al. Targeted expression of MYCN causes neuroblastoma in transgenic mice[J]. EMBO J, 1997, 16(11):2985-2995. DOI: 10.1093/emboj/16.11.2985 . |
29 | MARSHALL G M, CARTER D R, CHEUNG B B, et al. The prenatal origins of cancer[J]. Nat Rev Cancer, 2014, 14(4):277-289. DOI: 10.1038/nrc3679 . |
30 | Rasmuson A, Segerström L, Nethander M, et al. Tumor development, growth characteristics and spectrum of genetic aberrations in the TH-MYCN mouse model of neuroblastoma[J]. PLoS One, 2012, 7(12):e51297. |
31 | ALTHOFF K, BECKERS A, BELL E, et al. A Cre-conditional MYCN-driven neuroblastoma mouse model as an improved tool for preclinical studies[J]. Oncogene, 2015, 34(26):3357-3368. DOI: 10.1038/onc.2014.269 . |
32 | ROSSWOG C, FASSUNKE J, ERNST A, et al. Genomic ALK alterations in primary and relapsed neuroblastoma[J]. Br J Cancer, 2023, 128(8):1559-1571. DOI: 10.1038/s41416-023-02208-y . |
33 | BRESLER S C, WEISER D A, HUWE P J, et al. ALK mutations confer differential oncogenic activation and sensitivity to ALK inhibition therapy in neuroblastoma[J]. Cancer Cell, 2014, 26(5): 682-694. DOI: 10.1016/j.ccell.2014.09.019 . |
34 | HEUKAMP L C, THOR T, SCHRAMM A, et al. Targeted expression of mutated ALK induces neuroblastoma in transgenic mice[J]. Sci Transl Med, 2012, 4(141):141ra91. DOI: 10.1126/scitranslmed.3003967 . |
35 | BERRY T, LUTHER W, BHATNAGAR N, et al. The ALK(F1174L) mutation potentiates the oncogenic activity of MYCN in neuroblastoma[J]. Cancer Cell, 2012, 22(1):117-130. DOI: 10.1016/j.ccr.2012.06.001 . |
36 | UEDA T, NAKATA Y, YAMASAKI N, et al. ALK(R1275Q) perturbs extracellular matrix, enhances cell invasion and leads to the development of neuroblastoma in cooperation with MYCN[J]. Oncogene, 2016, 35(34):4447-4458. DOI: 10.1038/onc.2015.519 . |
37 | LIN Z H, RADAEVA M, CHERKASOV A, et al. Lin28 regulates cancer cell stemness for tumour progression[J]. Cancers, 2022, 14(19):4640. DOI: 10.3390/cancers14194640 . |
38 | MOLENAAR J J, DOMINGO-FERNÁNDEZ R, EBUS M E, et al. LIN28B induces neuroblastoma and enhances MYCN levels via let-7 suppression[J]. Nat Genet, 2012, 44(11):1199-1206. DOI: 10.1038/ng.2436 . |
39 | MASSUDI H, LUO J S, HOLIEN J K, et al. Inhibitors of the oncogenic PA2G4-MYCN protein-protein interface[J]. Cancers, 2023, 15(6):1822. DOI: 10.3390/cancers15061822 . |
40 | KAMBE K, IGUCHI M, HIGASHI M, et al. Development of minimally invasive cancer immunotherapy using anti-disialoganglioside GD2 antibody-producing mesenchymal stem cells for a neuroblastoma mouse model[J]. Pediatr Surg Int, 2022, 39(1):43. DOI: 10.1007/s00383-022-05310-z . |
41 | TEITZ T, INOUE M, VALENTINE M B, et al. Th-MYCN mice with caspase-8 deficiency develop advanced neuroblastoma with bone marrow metastasis[J]. Cancer Res, 2013, 73(13):4086-4097. DOI: 10.1158/0008-5472.CAN-12-2681 . |
42 | YOGEV O, BARKER K, SIKKA A, et al. p53 loss in MYC-driven neuroblastoma leads to metabolic adaptations supporting radioresistance[J]. Cancer Res, 2016, 76(10):3025-3035. DOI: 10.1158/0008-5472.CAN-15-1939 . |
43 | EIBL R H, SCHNEEMANN M. Medulloblastoma: from TP53 mutations to molecular classification and liquid biopsy[J]. Biology, 2023, 12(2):267. DOI: 10.3390/biology12020267 . |
44 | MITREVSKA K, MERLOS RODRIGO M A, CERNEI N, et al. Chick chorioallantoic membrane (CAM) assay for the evaluation of the antitumor and antimetastatic activity of platinum-based drugs in association with the impact on the amino acid metabolism[J]. Mater Today Bio, 2023, 19:100570. DOI: 10.1016/j.mtbio.2023.100570 . |
45 | RIBATTI D, ALESSANDRI G, VACCA A, et al. Human neuroblastoma cells produce extracellular matrix-degrading enzymes, induce endothelial cell proliferation and are angiogenic in vivo [J]. Int J Cancer, 1998, 77(3):449-454. DOI: 10.1002/(sici)1097-0215(19980729)77:3449: aid-ijc22>3.0.co;2-1 . |
46 | MANGIERI D, NICO B, COLUCCIA A M L, al at. An alternative in vivo system for testing angiogenic potential of human neuroblastoma cells[J]. Cancer Lett, 2009, 277(2):199-204. DOI: 10.1016/j.canlet.2008.12.014 . |
47 | HERRMANN A, RICE M, LÉVY R, et al. Cellular memory of hypoxia elicits neuroblastoma metastasis and enables invasion by non-aggressive neighbouring cells[J]. Oncogenesis, 2015, 4(2): e138. DOI: 10.1038/oncsis.2014.52 . |
48 | SWADI R, MATHER G, PIZER B L, et al. Optimising the chick chorioallantoic membrane xenograft model of neuroblastoma for drug delivery[J]. BMC Cancer, 2018, 18(1):28. DOI: 10.1186/s12885-017-3978-x . |
49 | LI S, YEO K S, LEVEE T M, et al. Zebrafish as a neuroblastoma model: progress made, promise for the future[J]. Cells, 2021, 10(3):580. DOI: 10.3390/cells10030580 . |
50 | STANTON M F. Diethylnitrosamine-induced hepatic degeneration and neoplasia in the aquarium fish, brachydanio rerio[J]. J Natl Cancer Inst, 1965, 34:117-130. DOI: 10.1093/jnci/34.1.117 . |
51 | LANGENAU D M, TRAVER D, FERRANDO A A, et al. Myc-induced T cell leukemia in transgenic zebrafish[J]. Science, 2003, 299(5608):887-890. DOI: 10.1126/science.1080280 . |
52 | ETCHIN J, KANKI J P, LOOK A T. Zebrafish as a model for the study of human cancer[J]. Methods Cell Biol, 2011, 105:309-337. DOI: 10.1016/B978-0-12-381320-6.00013-8 . |
53 | FEITSMA H, CUPPEN E. Zebrafish as a cancer model[J]. Mol Cancer Res, 2008, 6(5):685-694. DOI: 10.1158/1541-7786.MCR-07-2167 . |
54 | BENJAMIN D C, HYNES R O. Intravital imaging of metastasis in adult Zebrafish[J]. BMC Cancer, 2017, 17(1):660. DOI: 10.1186/s12885-017-3647-0 . |
55 | TAO T, SONDALLE S B, SHI H, et al. The pre-rRNA processing factor DEF is rate limiting for the pathogenesis of MYCN-driven neuroblastoma[J]. Oncogene, 2017, 36(27):3852-3867. DOI: 10.1038/onc.2016.527 . |
56 | ZHU S Z, LEE J S, GUO F, et al. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis[J]. Cancer Cell, 2012, 21(3):362-373. DOI: 10.1016/j.ccr.2012.02.010 . |
57 | ZHANG X L, DONG Z W, ZHANG C, et al. Critical role for GAB2 in neuroblastoma pathogenesis through the promotion of SHP2/MYCN cooperation[J]. Cell Rep, 2017, 18(12):2932-2942. DOI: 10.1016/j.celrep.2017.02.065 . |
58 | COSTA B, ESTRADA M F, MENDES R V, et al. Zebrafish avatars towards personalized medicine-a comparative review between avatar models[J]. Cells, 2020, 9(2):293. DOI: 10.3390/cells9020293 . |
59 | FIOR R, PÓVOA V, MENDES R V, et al. Single-cell functional and chemosensitive profiling of combinatorial colorectal therapy in zebrafish xenografts[J]. Proc Natl Acad Sci USA, 2017, 114(39):E8234-E8243. DOI: 10.1073/pnas.1618389114 . |
60 | ALMSTEDT E, ELGENDY R, HEKMATI N, et al. Integrative discovery of treatments for high-risk neuroblastoma[J]. Nat Commun, 2020, 11(1):71. DOI: 10.1038/s41467-019-13817-8 . |
61 | VEINOTTE C J, DELLAIRE G, BERMAN J N. Hooking the big one: the potential of zebrafish xenotransplantation to reform cancer drug screening in the genomic era[J]. Dis Model Mech, 2014, 7(7):745-754. DOI: 10.1242/dmm.015784 . |
62 | HANEY M G, MOORE L H, BLACKBURN J S. Drug screening of primary patient derived tumor xenografts in zebrafish[J]. J Vis Exp, 2020(158):10.3791/60996. DOI: 10.3791/60996 . |
63 | CABEZAS-SÁINZ P, PENSADO-LÓPEZ A, SÁINZ B Jr, et al. Modeling cancer using zebrafish xenografts: drawbacks for mimicking the human microenvironment[J]. Cells, 2020, 9(9):1978. DOI: 10.3390/cells9091978 . |
64 | IBARRA B A, JIANG X H, TREFFY R W, et al. Injection of human neuroblastoma cells into neural crest streams in live zebrafish embryos[J]. STAR Protoc, 2022, 3(2):101380. DOI: 10.1016/j.xpro.2022.101380 . |
65 | DELLOYE-BOURGEOIS C, BERTIN L, THOINET K,et al. Microenvironment-driven shift of cohesion/detachment balance within tumors induces a switch toward metastasis in neuroblastoma[J]. Cancer Cell, 2017, 32(4):427-443.e8. DOI: 10.1016/j.ccell.2017.09.006 . |
66 | ZHU S Z, ZHANG X L, WEICHERT-LEAHEY N, et al. LMO1 synergizes with MYCN to promote neuroblastoma initiation and metastasis[J]. Cancer Cell, 2017, 32(3):310-323.e5. DOI: 10.1016/j.ccell.2017.08.002 . |
67 | DONG Z W, YEO K S, LOPEZ G, et al. GAS7 deficiency promotes metastasis in MYCN-Driven neuroblastoma[J]. Cancer Res, 2021, 81(11):2995-3007. DOI: 10.1158/0008-5472.CAN-20-1890 . |
68 | YANG T Y, LI J H, ZHUO Z J, et al. TTF1 suppresses neuroblastoma growth and induces neuroblastoma differentiation by targeting TrkA and the miR-204/TrkB axis[J]. iScience, 2022, 25(7):104655. DOI: 10.1016/j.isci. 2022. 104655 . |
69 | MIAO L, ZHUO Z J, TANG J, et al. FABP4 deactivates NF-κB-IL1α pathway by ubiquitinating ATPB in tumor-associated macrophages and promotes neuroblastoma progression[J]. Clin Transl Med, 2021, 11(4): e395. DOI: 10.1002/ctm2.395 . |
70 | GARBATI P, BARBIERI R, CALDERONI M, et al. Efficacy of a three drug-based therapy for neuroblastoma in mice[J]. Int J Mol Sci, 2021, 22(13):6753. DOI: 10.3390/ijms22136753 . |
71 | HARUKI H, PEDERSEN M G, GORSKA K I, et al. Tetrahydrobiopterin biosynthesis as an off-target of sulfa drugs[J]. Science, 2013, 340(6135):987-991. DOI: 10.1126/science.1232972 . |
72 | SHANG T S, KOTAMRAJU S, ZHAO H T, et al. Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide, and proteasome activation[J]. Free Radic Biol Med, 2005, 39(8):1059-1074. DOI: 10.1016/j.freeradbiomed.2005.05.022 . |
73 | MOONEY M R, GEERTS D, KORT E J, et al. Anti-tumor effect of sulfasalazine in neuroblastoma[J]. Biochem Pharmacol, 2019, 162:237-249. DOI: 10.1016/j.bcp.2019.01.007 . |
74 | MAÑAS A, AALTONEN K, ANDERSSON N, et al. Clinically relevant treatment of PDX models reveals patterns of neuroblastoma chemoresistance[J]. Sci Adv, 2022, 8(43): eabq4617. DOI: 10.1126/sciadv.abq4617 . |
75 | ZHANG H M, XIA H F, CHEN H, et al. The inhibition of GHR enhanced cytotoxic effects of etoposide on neuroblastoma[J]. Cell Signal, 2021, 86:110081. DOI: 10.1016/j.cellsig. 2021.110081 . |
76 | NUNES C, DEPESTEL L, MUS L, et al. RRM2 enhances MYCN- driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition[J]. Sci Adv, 2022, 8(28): eabn1382. DOI: 10.1126/sciadv.abn1382 . |
77 | COSTA A, THIRANT C, KRAMDI A, et al. Single-cell transcriptomics reveals shared immunosuppressive landscapes of mouse and human neuroblastoma[J]. J Immunother Cancer, 2022, 10(8): e004807. DOI: 10.1136/jitc-2022-004807 . |
78 | LI N, TORRES M B, SPETZ M R, et al. CAR T cells targeting tumor-associated exons of glypican 2 regress neuroblastoma in mice[J]. Cell Rep Med, 2021, 2(6):100297. DOI: 10.1016/j.xcrm.2021.100297 . |
79 | THERUVATH J, MENARD M, SMITH B A H, et al. Anti-GD2 synergizes with CD47 blockade to mediate tumor eradication[J]. Nat Med, 2022, 28(2):333-344. DOI: 10.1038/s41591-021-01625-x . |
80 | SWADI R R, SAMPAT K, HERRMANN A, et al. CDK inhibitors reduce cell proliferation and reverse hypoxia-induced metastasis of neuroblastoma tumours in a chick embryo model[J]. Sci Rep, 2019, 9(1):9136. DOI: 10.1038/s41598-019-45571-8 . |
81 | LEIBA J, ÖZBILGIÇ R, HERNÁNDEZ L, et al. Molecular actors of inflammation and their signaling pathways: mechanistic insights from zebrafish[J]. Biology, 2023, 12(2):153. DOI: 10.3390/biology12020153 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Min LIANG, Yang GUO, Jinjin WANG, Mengyan ZHU, Jun CHI, Yanjuan CHEN, Chengji WANG, Zhilan YU, Ruling SHEN. Construction of Dmd Gene Mutant Mice and Phenotype Verification in Muscle and Immune Systems [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 42-51. |
[3] | Jianhua ZHENG, Yunzhi FA, Qiaoyan DONG, Yefeng QIU, Jingqing CHEN. Construction and Evaluation of a Mouse Model with Intestinal Injury by Acute Hypoxic Stress in Plateau [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 31-41. |
[4] | Qianqian TANG, Xiuli ZHANG, Zai CHANG. Statistical Analysis of the Leakage Situation in the Automated Watering System for Mice in Tsinghua University Laboratory Animal Resources Center [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 85-91. |
[5] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[6] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[7] | Dan WANG, Xiaolu ZHANG, Yan WANG, Bo FU, Wendong WANG, Jing LIU, Suyin ZHANG, Yihe WU, Deguo WU, Xiaoyan DU, Dawei ZHAN, Xiulin ZHANG, Changlong LI. Study on the Antibody Production Efficiency in Modified Big-BALB/c Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 612-618. |
[8] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[9] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[10] | Jinxing LIN, Xindong WANG, Xuebing BAI, Liping FENG, Shuwu XIE, Qiusheng CHEN. Fine Structure of the Trunk Kidney and Distribution of Its Secreted Exosomes in the Adult Zebrafish [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 531-540. |
[11] | Lingzhi YU, Jianyun XIE, Liping FENG, Xiaofeng WEI. Establishment of Fluorescence qPCR Method for Detection of Staphylococcus Aureus and Its Application in Feces Detection of Rats and Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 566-573. |
[12] | Chengji WANG, Jue WANG, Haijie WANG, Weisheng LU, Yan SHI, Zhengye GU, Mingqiu WAN, Ruling SHEN. Application of Optimized Latex Perfusion Technique in the Establishment of Craniofacial Venous Model in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 574-578. |
[13] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[14] | Xiaoqian TAN, Hao YANG, Huiqing TANG, Wei QU, Liang LI, Zhen QIAN, Jianzhong GU, Ping XU, Junhua XIAO. Creation and Analysis of Related Genetic Characteristics of BALB/cA.Cg.SHJH hr Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 363-370. |
[15] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||