Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (5): 512-523.DOI: 10.12300/j.issn.1674-5817.2023.076
• Frontier Reviews • Previous Articles Next Articles
Yanjuan CHEN(), Ruling SHEN()()
Received:
2023-06-13
Revised:
2023-08-14
Online:
2023-10-25
Published:
2023-11-01
Contact:
Ruling SHEN
CLC Number:
Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer[J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.076
肿瘤细胞系名称 Tumor cell line names | 来源 Source | MSI状态 MSI status | 突变基因 Mutant gene | 参考文献 Reference |
---|---|---|---|---|
HCT116 | 人源 | MSI | KRAS、PIK3CA | [ |
LIM1215 | 人源 | - | - | - |
HT29 | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
SW480 | 人源 | MSS | APC、KRAS、TP53 | [ |
SW620 | 人源 | MSS | APC、KRAS、TP53 | [ |
HCT15 | 人源 | MSI | APC[ | [ |
Colo320DM | 人源 | MSS | APC、TP53 | [ |
Co115 | 人源 | MSI | BRAF、PTEN | [ |
CaCo2 | 人源 | MSS | APC、TP53 | [ |
WiDr | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
COLO205 | 人源 | MSS[ | BRAF[ | - |
DLD-1 | 人源 | MSI | KRAS、PIK3CA、TP53 | [ |
CT26 | BALB/c小鼠 | MSS[ | KRAS[ | [ |
MC38 | C57BL/6J小鼠 | MSI[ | - | [ |
Table 1 Characterization of colorectal cancer cell lines used to construct transplanted tumor mouse models
肿瘤细胞系名称 Tumor cell line names | 来源 Source | MSI状态 MSI status | 突变基因 Mutant gene | 参考文献 Reference |
---|---|---|---|---|
HCT116 | 人源 | MSI | KRAS、PIK3CA | [ |
LIM1215 | 人源 | - | - | - |
HT29 | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
SW480 | 人源 | MSS | APC、KRAS、TP53 | [ |
SW620 | 人源 | MSS | APC、KRAS、TP53 | [ |
HCT15 | 人源 | MSI | APC[ | [ |
Colo320DM | 人源 | MSS | APC、TP53 | [ |
Co115 | 人源 | MSI | BRAF、PTEN | [ |
CaCo2 | 人源 | MSS | APC、TP53 | [ |
WiDr | 人源 | MSS | APC、BRAF、PIK3CA、TP53 | [ |
COLO205 | 人源 | MSS[ | BRAF[ | - |
DLD-1 | 人源 | MSI | KRAS、PIK3CA、TP53 | [ |
CT26 | BALB/c小鼠 | MSS[ | KRAS[ | [ |
MC38 | C57BL/6J小鼠 | MSI[ | - | [ |
模型分类 Model classification | 诱导方式 Induction mode | 动物品种品系 Species | 涉及化合物 及细胞系 Relates to compounds and cell lines | 突变基因Mutant gene | 局限性 Limitation | 有无转移 Metastasis | 应用范围 Application | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
自发性肠道肿瘤模型 | 自发性 | C57BL、 BALB/c-nu小鼠 | - | - | 发生率极低 | 无 | 老龄化研究 | [ |
单纯饮食诱导 | C57BL/6小鼠 | - | - | 诱导时间长 | 无 | 饮食对肿瘤的影响 | [ | |
化合物诱导模型 | 致癌物诱导模型 | F344大鼠 | PhIP、IQ | Apc | PhIP诱导未发现Kras和Tp53基因突变 | 无 | 化合物预防和风险因素识别 | [ |
F344大鼠 | MNNG、MNU | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠 | DMBA | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠、A/J小鼠 | DMH、AOM | Apc、Kras | 诱导时间长,极少转移 | 无 | [ | |||
F344大鼠、ICR小鼠 | AOM/DSS | Apc、Kras | 极少转移 | 无 | [ | |||
移植瘤模型 | CDX模型 | BALB/c、C57BL/6小鼠 | C T26、MC38 | - | 不能准确反映人类CRC发病过程 | 可发生转移 | 发现新的肿瘤标志物,测试化合物,手术模型 | [ |
PDX模型 | 免疫缺陷小鼠、人源化小鼠 | HCT116、HT29、LIM1215、SW480、SW620 | - | 建立周期长(2~4个月),成本高,过程中存在发生突变的可能 | 可发生转移 | [ | ||
基因工程模型 | Apc突变相关模型 | Apcmin小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | 研究特定基因,化合物预防,风险因素识别 | [ |
ApcΔ716、ApcΔ14和Apc1638N小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | [ | |||
Apc CKO/LSL-Kras小鼠 | - | Apc、Kras | 肝转移 | [ | ||||
ApcminSmad3-/-、Apc∆716/+Smad4+/-小鼠 | - | Apc、Smad3或者Smad4 | 寿命短,缺乏转移 | 缺乏转移 | [ | |||
Apcfl/+p53fl/+、Apcfl/+p53R172H/+小鼠 | - | Apc、p53 | 缺乏转移 | 无 | [ | |||
iKAP小鼠 | - | Apc、Kras、p53 | 寿命短 | 肝和肺 | [ | |||
其他基因突变模型 | KrasG12DTgfbr2-/-小鼠 | - | Kras、Tgfbr2 | - | 12%~25%的小鼠肿瘤转移到局部淋巴结、胰腺或肺 | [ | ||
Vil-Cre;BrafV637E/+;p53LSL-R172H/+-/-小鼠 | - | BRAF、p53 | - | 15%转移到淋巴结和肺部 | [ | |||
HNPCC | Mlh1-/-、Msh2-/-、Msh6-/-小鼠 | - | - | 过早死于侵袭性淋巴瘤 | 无 | [ | ||
IBD-CRC | Il-10-/-、Il-2-/-、Muc2-/-小鼠 | - | - | 较低肿瘤发生率,受肠道菌群影响 | 无 | [ | ||
Apc突变模型 | Pirc:F344/NTac-Apcam1137大鼠 | - | Apc | 4个月自发肠道腺瘤,缺乏转移 | 无 | 化合物预防 | [69-70, 63] | |
Apc突变模型 | KAD大鼠 | - | Apc | 不自发肿瘤,经过AOM/DSS联合诱导发生肿瘤 | 无 | 化合物预防 | [ | |
Apc突变模型 | Apc1311猪 | - | Apc | 肠道肿瘤为腺瘤 | 无 | 转化医学研究 | [ |
Table 2 The summary of characteristics and applications of currently used CRC animal models
模型分类 Model classification | 诱导方式 Induction mode | 动物品种品系 Species | 涉及化合物 及细胞系 Relates to compounds and cell lines | 突变基因Mutant gene | 局限性 Limitation | 有无转移 Metastasis | 应用范围 Application | 参考文献 Reference |
---|---|---|---|---|---|---|---|---|
自发性肠道肿瘤模型 | 自发性 | C57BL、 BALB/c-nu小鼠 | - | - | 发生率极低 | 无 | 老龄化研究 | [ |
单纯饮食诱导 | C57BL/6小鼠 | - | - | 诱导时间长 | 无 | 饮食对肿瘤的影响 | [ | |
化合物诱导模型 | 致癌物诱导模型 | F344大鼠 | PhIP、IQ | Apc | PhIP诱导未发现Kras和Tp53基因突变 | 无 | 化合物预防和风险因素识别 | [ |
F344大鼠 | MNNG、MNU | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠 | DMBA | Apc、Kras | 引起多器官恶性肿瘤 | - | [ | |||
F344大鼠、A/J小鼠 | DMH、AOM | Apc、Kras | 诱导时间长,极少转移 | 无 | [ | |||
F344大鼠、ICR小鼠 | AOM/DSS | Apc、Kras | 极少转移 | 无 | [ | |||
移植瘤模型 | CDX模型 | BALB/c、C57BL/6小鼠 | C T26、MC38 | - | 不能准确反映人类CRC发病过程 | 可发生转移 | 发现新的肿瘤标志物,测试化合物,手术模型 | [ |
PDX模型 | 免疫缺陷小鼠、人源化小鼠 | HCT116、HT29、LIM1215、SW480、SW620 | - | 建立周期长(2~4个月),成本高,过程中存在发生突变的可能 | 可发生转移 | [ | ||
基因工程模型 | Apc突变相关模型 | Apcmin小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | 研究特定基因,化合物预防,风险因素识别 | [ |
ApcΔ716、ApcΔ14和Apc1638N小鼠 | - | Apc | 缺乏转移,肿瘤集中在小肠 | 缺乏转移 | [ | |||
Apc CKO/LSL-Kras小鼠 | - | Apc、Kras | 肝转移 | [ | ||||
ApcminSmad3-/-、Apc∆716/+Smad4+/-小鼠 | - | Apc、Smad3或者Smad4 | 寿命短,缺乏转移 | 缺乏转移 | [ | |||
Apcfl/+p53fl/+、Apcfl/+p53R172H/+小鼠 | - | Apc、p53 | 缺乏转移 | 无 | [ | |||
iKAP小鼠 | - | Apc、Kras、p53 | 寿命短 | 肝和肺 | [ | |||
其他基因突变模型 | KrasG12DTgfbr2-/-小鼠 | - | Kras、Tgfbr2 | - | 12%~25%的小鼠肿瘤转移到局部淋巴结、胰腺或肺 | [ | ||
Vil-Cre;BrafV637E/+;p53LSL-R172H/+-/-小鼠 | - | BRAF、p53 | - | 15%转移到淋巴结和肺部 | [ | |||
HNPCC | Mlh1-/-、Msh2-/-、Msh6-/-小鼠 | - | - | 过早死于侵袭性淋巴瘤 | 无 | [ | ||
IBD-CRC | Il-10-/-、Il-2-/-、Muc2-/-小鼠 | - | - | 较低肿瘤发生率,受肠道菌群影响 | 无 | [ | ||
Apc突变模型 | Pirc:F344/NTac-Apcam1137大鼠 | - | Apc | 4个月自发肠道腺瘤,缺乏转移 | 无 | 化合物预防 | [69-70, 63] | |
Apc突变模型 | KAD大鼠 | - | Apc | 不自发肿瘤,经过AOM/DSS联合诱导发生肿瘤 | 无 | 化合物预防 | [ | |
Apc突变模型 | Apc1311猪 | - | Apc | 肠道肿瘤为腺瘤 | 无 | 转化医学研究 | [ |
1 | 张正杰, 程云章, 黄陈. 影像组学在结直肠癌诊疗中的应用及研究进展[J]. 生物医学工程研究, 2023, 42(1):96-99. DOI: 10.19529/j.cnki.1672-6278.2023.01.14 . |
ZHANG Z J, CHENG Y Z, HUANG C. Application and research progress of radiomics in the diagnosis and treatment of colorectal cancer[J]. J Biomed Eng Res, 2023, 42(1):96-99. DOI: 10.19529/j.cnki.1672-6278.2023.01.14 . | |
2 | SUNG H, FERLAY J, SIEGEL R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA A Cancer J Clin, 2021, 71(3):209-249. DOI: 10.3322/caac.21660 . |
3 | XIA C F, DONG X S, LI H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants[J]. Chin Med J (Engl), 2022, 135(5):584-590. DOI: 10.1097/CM9.0000000000002108 . |
4 | WEITZ J, KOCH M, DEBUS J, et al. Colorectal cancer[J]. Lancet, 2005, 365(9454):153-165. DOI: 10.1016/s0140-6736(05)17706-x . |
5 | GAO X H, LI J, LIU L J, et al. Trends, clinicopathological features, surgical treatment patterns and prognoses of early-onset versus late-onset colorectal cancer: a retrospective cohort study on 34067 patients managed from 2000 to 2021 in a Chinese tertiary center[J]. Int J Surg, 2022, 104:106780. DOI: 10.1016/j.ijsu.2022.106780 . |
6 | SARAIVA M R, ROSA I, CLARO I. Early-onset colorectal cancer: a review of current knowledge[J]. World J Gastroenterol, 2023, 29(8):1289-1303. DOI: 10.3748/wjg.v29.i8.1289 . |
7 | BÜRTIN F, MULLINS C S, LINNEBACHER M. Mouse models of colorectal cancer: past, present and future perspectives[J]. World J Gastroenterol, 2020, 26(13):1394-1426. DOI: 10.3748/wjg.v26.i13.1394 . |
8 | MOSER A R, PITOT H C, DOVE W F. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse[J]. Science, 1990, 247(4940):322-324. DOI: 10.1126/science.2296722 . |
9 | STASTNA M, JANECKOVA L, HRCKULAK D, et al. Human colorectal cancer from the perspective of mouse models[J]. Genes, 2019, 10(10):788. DOI: 10.3390/genes10100788 . |
10 | COLUSSI D, BRANDI G, BAZZOLI F, et al. Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention[J]. Int J Mol Sci, 2013, 14(8):16365-16385. DOI: 10.3390/ijms140816365 . |
11 | 周雄, 胡明, 蒋栋铭, 等. 结直肠癌进展相关关键分子事件研究进展[J]. 肿瘤防治研究, 2023, 50(6): 609-615. DOI: 10.3971/j.issn.1000-8578.2023.22.1242 . |
ZHOU X, HU M, JIANG D M, et al. Research progress of key molecular events related to progression of colorectal cancer[J]. Cancer Res Prev Treat, 2023, 50(6): 609-615. DOI: 10.3971/j.issn.1000-8578.2023.22.1242 . | |
12 | DEKKER E, TANIS P J, VLEUGELS J L A, et al. Colorectal cancer[J]. Lancet, 2019, 394(10207):1467-1480. DOI: 10.1016/S0140-6736(19)32319-0 . |
13 | CARBALLAL S, BALAGUER F, IJSPEERT J G. Serrated polyposis syndrome; epidemiology and management[J]. Best Pract Res Clin Gastroenterol, 2022, 58-59:101791. DOI: 10.1016/j.bpg.2022.101791 . |
14 | ZHOU Y J, LU X F, CHEN H M, et al. Single-cell transcriptomics reveals early molecular and immune alterations underlying the serrated neoplasia pathway toward colorectal cancer[J]. Cell Mol Gastroenterol Hepatol, 2023, 15(2):393-424. DOI: 10.1016/j.jcmgh.2022.10.001 . |
15 | CIARDIELLO F, CIARDIELLO D, MARTINI G, et al. Clinical management of metastatic colorectal cancer in the era of precision medicine[J]. CA A Cancer J Clin, 2022, 72(4):372-401. DOI: 10.3322/caac.21728 . |
16 | JOHNSON R L, FLEET J C. Animal models of colorectal cancer[J]. Cancer Metastasis Rev, 2013, 32(1):39-61. DOI: 10.1007/s10555-012-9404-6 . |
17 | ANISIMOV V N, ZABEZHINSKI M A, ROSSOLINI G, et al. Long-live euthymic BALB/c-nu mice. II: spontaneous tumors and other pathologies[J]. Mech Ageing Dev, 2001, 122(5):477-489. DOI: 10.1016/s0047-6374(01)00228-7 . |
18 | NEWMARK H L, YANG K, KURIHARA N, et al. Western-style diet-induced colonic tumors and their modulation by calcium and vitamin D in C57Bl/6 mice: a preclinical model for human sporadic colon cancer[J]. Carcinogenesis, 2009, 30(1):88-92. DOI: 10.1093/carcin/bgn229 . |
19 | YANG J, WEI H, ZHOU Y F, et al. High-fat diet promotes colorectal tumorigenesis through modulating gut microbiota and metabolites[J]. Gastroenterology, 2022, 162(1):135-149.e2. DOI: 10.1053/j.gastro.2021.08.041 . |
20 | SONG M Y, CHAN A T, SUN J. Influence of the gut microbiome, diet, and environment on risk of colorectal cancer[J]. Gastroenterology, 2020, 158(2):322-340. DOI: 10.1053/j.gastro.2019.06.048 . |
21 | DE ROBERTIS M, MASSI E, POETA M L, et al. The AOM/DSS murine model for the study of colon carcinogenesis: from pathways to diagnosis and therapy studies[J]. J Carcinog, 2011, 10:9. DOI: 10.4103/1477-3163.78279 . |
22 | SUGIMURA T. Nutrition and dietary carcinogens[J]. Carcinogenesis, 2000, 21(3):387-395. DOI: 10.1093/carcin/21.3.387 . |
23 | MCLELLAN E A, BIRD R P. Specificity study to evaluate induction of aberrant crypts in murine colons[J]. Cancer Res, 1988, 48(21):6183-6186. |
24 | EVANS J P, SUTTON P A, WINIARSKI B K, et al. From mice to men: Murine models of colorectal cancer for use in translational research[J]. Crit Rev Oncol, 2016, 98:94-105. DOI: 10.1016/j.critrevonc.2015.10.009 . |
25 | NARISAWA T, MAGADIA NE, WEISBURGER J H, et al. Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-methyl-N'-nitro-N-nitroso-guanidine in rats[J]. J Natl Cancer Inst, 1974, 53(4):1093-1097. DOI: 10.1093/jnci/53.4.1093 . |
26 | NEUFERT C, BECKER C, NEURATH M F. An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression[J]. Nat Protoc, 2007, 2(8):1998-2004. DOI: 10.1038/nprot.2007.279 . |
27 | SEDLAK J C, YILMAZ Ö H, ROPER J. Metabolism and colorectal cancer[J]. Annu Rev Pathol, 2023, 18:467-492. DOI: 10.1146/annurev-pathmechdis-031521-041113 . |
28 | FERNÁNDEZ-PONCE C, GERIBALDI-DOLDÁN N, SÁNCHEZ-GOMAR I, et al. The role of glycosyltransferases in colorectal cancer[J]. Int J Mol Sci, 2021, 22(11):5822. DOI: 10.3390/ijms 22115822 . |
29 | LIANG X, HU J N, HE J M. An optimized protocol of azoxymethane-dextran sodium sulfate induced colorectal tumor model in mice[J]. Chin Med Sci J, 2019, 34(4):281-288. DOI: 10.24920/003495 . |
30 | TANAKA T, KOHNO H, SUZUKI R, et al. A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate[J]. Cancer Sci, 2003, 94(11):965-973. DOI: 10.1111/j.1349-7006.2003.tb01386.x . |
31 | MODESTO R, ESTARREJA J, SILVA I, et al. Chemically induced colitis-associated cancer models in rodents for pharmacological modulation: A systematic review[J]. J Clin Med, 2022, 11(10):2739. DOI: 10.3390/jcm11102739 . |
32 | CORPET D E, PIERRE F. Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in Min mice and choice of the model system[J]. Cancer Epidemiol Biomarkers Prev, 2003, 12(5):391-400. |
33 | YANG Y S, LIU C Y, WEN D, et al. Recent advances in the development of transplanted colorectal cancer mouse models[J]. Transl Res, 2022, 249:128-143. DOI: 10.1016/j.trsl. 2022.07.003 . |
34 | LI C G, LAU H C H, ZHANG X, et al. Mouse models for application in colorectal cancer: understanding the pathogenesis and relevance to the human condition[J]. Biomedicines, 2022, 10(7):1710. DOI: 10.3390/biomedicines 10071710 . |
35 | RODRIGUEZ R, RITTER M A, FOWLER J F, et al. Kinetics of cell labeling and thymidine replacement after continuous infusion of halogenated pyrimidines in vivo [J]. Int J Radiat Oncol Biol Phys, 1994, 29(1):105-113. DOI: 10.1016/0360-3016(94)90232-1 . |
36 | BELLAMKONDA K, SATAPATHY S R, DOUGLAS D, et al. Montelukast, a CysLT1 receptor antagonist, reduces colon cancer stemness and tumor burden in a mouse xenograft model of human colon cancer[J]. Cancer Lett, 2018, 437:13-24. DOI: 10.1016/j.canlet.2018.08.019 . |
37 | BERNHARD O K, GREENING D W, BARNES T W, et al. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma[J]. Biochim Biophys Acta, 2013, 1834(11):2372-2379. DOI: 10.1016/j.bbapap.2013.03.022 . |
38 | FLATMARK K, MAELANDSMO G M, MARTINSEN M, et al. Twelve colorectal cancer cell lines exhibit highly variable growth and metastatic capacities in an orthotopic model in nude mice[J]. Eur J Cancer, 2004, 40(10):1593-1598. DOI: 10.1016/j.ejca.2004.02.023 . |
39 | CÉSPEDES M V, ESPINA C, GARCÍA-CABEZAS M A, et al. Orthotopic microinjection of human colon cancer cells in nude mice induces tumor foci in all clinically relevant metastatic sites[J]. Am J Pathol, 2007, 170(3):1077-1085. DOI: 10.2353/ajpath.2007.060773 . |
40 | AHMED D, EIDE P W, EILERTSEN I A, et al. Epigenetic and genetic features of 24 colon cancer cell lines[J]. Oncogenesis, 2013, 2(9): e71. DOI: 10.1038/oncsis.2013.35 . |
41 | GAYET J, ZHOU X P, DUVAL A, et al. Extensive characterization of genetic alterations in a series of human colorectal cancer cell lines[J]. Oncogene, 2001, 20(36):5025-5032. DOI: 10.1038/sj.onc.1204611 . |
42 | KOUSTAS E, SARANTIS P, THEOHARIS S, et al. Autophagy-related proteins as a prognostic factor of patients with colorectal cancer[J]. Am J Clin Oncol, 2019, 42(10):767-776. DOI: 10.1097/coc.0000000000000592 . |
43 | KOUMAKI K, KONTOGIANNI G, KOSMIDOU V, et al. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis[J]. Biochim Biophys Acta Mol Basis Dis, 2021, 1867(4):166061. DOI: 10.1016/j.bbadis.2020.166061 . |
44 | RIOS-DORIA J, STEVENS C, MADDAGE C, et al. Characterization of human cancer xenografts in humanized mice[J]. J Immunother Cancer, 2020, 8(1): e000416. DOI: 10.1136/jitc-2019-000416 . |
45 | CASTLE J C, LOEWER M, BOEGEL S, et al. Immunomic, genomic and transcriptomic characterization of CT26 colorectal carcinoma[J]. BMC Genomics, 2014, 15(1):190. DOI: 10.1186/1471-2164-15-190 . |
46 | RIVERA M, FICHTNER I, WULF-GOLDENBERG A, et al. Patient-derived xenograft (PDX) models of colorectal carcinoma (CRC) as a platform for chemosensitivity and biomarker analysis in personalized medicine[J]. Neoplasia, 2021, 23(1):21-35. DOI: 10.1016/j.neo.2020.11.005 . |
47 | ZHAO X F, JIANG Y H, LIU C L, et al. Organoid technology and clinical applications in digestive system cancer[J]. Engineering, 2022, 9:123-130. DOI: 10.1016/j.eng.2021.04.017 . |
48 | SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature, 2009, 459(7244):262-265. DOI: 10.1038/nature07935 . |
49 | SATO T, STANGE D E, FERRANTE M, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium[J]. Gastroenterology, 2011, 141(5):1762-1772. DOI: 10.1053/j.gastro. 2011.07.050 . |
50 | DROST J, VAN JAARSVELD R H, PONSIOEN B, et al. Sequential cancer mutations in cultured human intestinal stem cells[J]. Nature, 2015, 521(7550):43-47. DOI: 10.1038/nature14415 . |
51 | PAULI C, HOPKINS B D, PRANDI D, et al. Personalized in vitro and in vivo cancer models to guide precision medicine[J]. Cancer Discov, 2017, 7(5):462-477. DOI: 10.1158/2159-8290.CD-16-1154 . |
52 | PONSIOEN B, POST J B, BUISSANT DES AMORIE J R, et al. Quantifying single-cell ERK dynamics in colorectal cancer organoids reveals EGFR as an amplifier of oncogenic MAPK pathway signalling[J]. Nat Cell Biol, 2021, 23(4):377-390. DOI: 10.1038/s41556-021-00654-5 . |
53 | GOBERT A P, LATOUR Y L, ASIM M, et al. Protective role of spermidine in colitis and colon carcinogenesis[J]. Gastroenterology, 2022, 162(3):813-827.e8. DOI: 10.1053/j.gastro.2021.11.005 . |
54 | BAYDI Z, LIMAMI Y, KHALKI L, et al. An update of research animal models of inflammatory bowel disease[J]. Sci World J, 2021, 2021:7479540. DOI: 10.1155/2021/7479540 . |
55 | MIYOSHI Y, ANDO H, NAGASE H, et al. Germ-line mutations of the APC gene in 53 familial adenomatous polyposis patients[J]. Proc Natl Acad Sci USA, 1992, 89(10):4452-4456. DOI: 10.1073/pnas.89.10.4452 . |
56 | KUCHERLAPATI M H. Mouse models in colon cancer, inferences, and implications[J]. iScience, 2023, 26(6):106958. DOI: 10.1016/j.isci.2023.106958 . |
57 | MULLER P A J, CASWELL P T, DOYLE B, et al. Mutant p53 drives invasion by promoting integrin recycling[J]. Cell, 2009, 139(7):1327-1341. DOI: 10.1016/j.cell.2009.11.026 . |
58 | SANSOM O J, MENIEL V, WILKINS J A, et al. Loss of Apc allows phenotypic manifestation of the transforming properties of an endogenous K-ras oncogene in vivo [J]. Proc Natl Acad Sci USA, 2006, 103(38):14122-14127. DOI: 10.1073/pnas.0604130103 . |
59 | ROMANO G, CHAGANI S, KWONG L N. The path to metastatic mouse models of colorectal cancer[J]. Oncogene, 2018, 37(19):2481-2489. DOI: 10.1038/s41388-018-0155-x . |
60 | HUNG K E, MARICEVICH M A, RICHARD L G, et al. Development of a mouse model for sporadic and metastatic colon tumors and its use in assessing drug treatment[J]. Proc Natl Acad Sci USA, 2010, 107(4):1565-1570. DOI: 10.1073/pnas. 0908682107 . |
61 | BOUTIN A T, LIAO W T, WANG M, et al. Oncogenic Kras drives invasion and maintains metastases in colorectal cancer[J]. Genes Dev, 2017, 31(4):370-382. DOI: 10.1101/gad.293449.116 . |
62 | RAD R, CADIÑANOS J, RAD L. A genetic progression model of BrafV600E-induced intestinal tumorigenesis reveals targets for therapeutic intervention[J]. Cancer Cell, 2013, 24(1):15-29. DOI: 10.1016/j.ccr.2013.05.014 . |
63 | TROBRIDGE P, KNOBLAUGH S, WASHINGTON M K, et al. TGF-beta receptor inactivation and mutant Kras induce intestinal neoplasms in mice via a beta-catenin-independent pathway[J]. Gastroenterology, 2009, 136(5):1680-1688.e7. DOI: 10.1053/j.gastro.2009.01.066 . |
64 | TONG Y G, YANG W C, KOEFFLER H P. Mouse models of colorectal cancer[J]. Chin J Cancer, 2011, 30(7):450-462. DOI: 10.5732/cjc.011.10041 . |
65 | VELCICH A, YANG W C, HEYER J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2[J]. Science, 2002, 295(5560):1726-1729. DOI: 10.1126/science.1069094 . |
66 | VAN DER KRAAK L, GROS P, BEAUCHEMIN N. Colitis-associated colon cancer: is it in your genes?[J]. World J Gastroenterol, 2015, 21(41):11688-11699. DOI: 10.3748/wjg.v21.i41.11688 . |
67 | BRISTOL I J, FARMER M A, CONG Y Z, et al. Heritable susceptibility for colitis in mice induced by IL-10 deficiency[J]. Inflamm Bowel Dis, 2000, 6(4):290-302. DOI: 10.1097/00054725-200011000-00006 . |
68 | TAKEDA H, WEI Z B, KOSO H, et al. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression[J]. Nat Genet, 2015, 47(2):142-150. DOI: 10.1038/ng.3175 . |
69 | FEMIA A P, BECHERUCCI C, CRUCITTA S, et al. Apc-driven colon carcinogenesis in Pirc rat is strongly reduced by polyethylene glycol[J]. Int J Cancer, 2015, 137(9):2270-2273. DOI: 10.1002/ijc.29581 . |
70 | AMOS-LANDGRAF J M, KWONG L N, KENDZIORSKI C M, et al. A target-selected Apc-mutant rat kindred enhances the modeling of familial human colon cancer[J]. Proc Natl Acad Sci USA, 2007, 104(10):4036-4041. DOI: 10.1073/pnas. 0611690104 . |
71 | IRVING A A, YOSHIMI K, HART M L, et al. The utility of Apc-mutant rats in modeling human colon cancer[J]. Dis Model Mech, 2014, 7(11):1215-1225. DOI: 10.1242/dmm.016980 . |
72 | KALLA D, KIND A, SCHNIEKE A. Genetically engineered pigs to study cancer[J]. Int J Mol Sci, 2020, 21(2):488. DOI: 10.3390/ijms21020488 . |
73 | FLISIKOWSKA T, MERKL C, LANDMANN M, et al. A Porcine model of familial adenomatous polyposis[J]. Gastroenterology, 2012, 143(5):1173-1175.e7. DOI: 10.1053/j.gastro.2012.07.110 . |
74 | LI H H, CHENG W M, CHEN B W, et al. Efficient generation of P53 biallelic mutations in Diannan miniature pigs using RNA-guided base editing[J]. Life (Basel), 2021, 11(12):1417. DOI: 10.3390/life11121417 . |
75 | CALLESEN M M, ÁRNADÓTTIR S S, LYSKJÆR I, et al. A genetically inducible porcine model of intestinal cancer[J]. Mol Oncol, 2017, 11(11):1616-1629. DOI: 10.1002/1878-0261. 12136 . |
76 | TOBIA C, GARIANO G, DE SENA G, et al. Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk[J]. Biochim Biophys Acta, 2013, 1832(9):1371-1377. DOI: 10.1016/j.bbadis. 2013.01.016 . |
77 | LOBERT V H, MOURADOV D, HEATH J K. Focusing the spotlight on the zebrafish intestine to illuminate mechanisms of colorectal cancer[J]. Adv Exp Med Biol, 2016, 916:411-437. DOI: 10.1007/978-3-319-30654-4_18 . |
78 | MARADONNA F, FONTANA C M, SELLA F, et al. A zebrafish HCT116 xenograft model to predict anandamide outcomes on colorectal cancer[J]. Cell Death Dis, 2022, 13(12):1069. DOI: 10.1038/s41419-022-05523-z . |
79 | HUEBNER K, ERLENBACH-WUENSCH K, PROCHAZKA J, et al. ATF2 loss promotes tumor invasion in colorectal cancer cells via upregulation of cancer driver TROP2[J]. Cell Mol Life Sci, 2022, 79(8):423. DOI: 10.1007/s00018-022-04445-5 . |
80 | JACKSTADT R, SANSOM O J. Mouse models of intestinal cancer[J]. J Pathol, 2016, 238(2):141-151. DOI: 10.1002/path. 4645 . |
81 | KAKIUCHI H, WATANABE M, USHIJIMA T, et al. Specific 5'-GGGA-3'-->5'-GGA-3' mutation of the Apc gene in rat colon tumors induced by 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine[J]. Proc Natl Acad Sci USA, 1995, 92(3):910-914. DOI: 10.1073/pnas.92.3.910 . |
[1] | Fangqi BAO, Haiye TU, Mingsun FANG, Qian ZHANG, Minli CHEN. Advances in Research on Pathological and Molecular Mechanism of Hyperuricemic Nephropathy Based on Animal Models [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 180-191. |
[2] | Li ZHANG, Yu KUANG, Lingxia HAN. Advances in Comparative Medical Research on Anatomy and Histological Structure of Intervertebral Discs in Humans and Other Animals [J]. Laboratory Animal and Comparative Medicine, 2024, 44(2): 192-201. |
[3] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[4] | . Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[5] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[6] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[7] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[8] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[9] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[10] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[11] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[12] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[13] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[14] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[15] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||