Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (2): 156-162.DOI: 10.12300/j.issn.1674-5817.2022.094
• Animal Models of Human Diseases • Previous Articles Next Articles
Danyang YIN(), Yi HU, Rengfei SHI(
)(
)
Received:
2022-06-29
Revised:
2022-09-22
Online:
2023-04-25
Published:
2023-05-16
Contact:
Rengfei SHI
CLC Number:
Danyang YIN, Yi HU, Rengfei SHI. Advances in Animal Aging Models[J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 156-162.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.094
动物 Animal | 模型 Model | 一般寿命 Lifespan | 模型建立方法 Establishment method | 衰老评价指标 Evaluation index | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|---|---|---|
线虫 Caenorhabditis Elegans | 自然衰老模型 | 1个月[ | 实验环境下可观察其完整生命周期;可进行基因干预 | 咽部/头部组织减少,体壁肌肉组织减少,肌团密度减少;身体运动逐渐减少,最大速度下降,趋化反应减少;代谢率下降;生殖细胞少,生产后代数量减少;脂褐质积累,DNA损伤积累,羰基含量增加,卵黄蛋白积累,蛋白酪氨酸激酶活性下降,溶酶体水解酶增加 | 建模快;许多衰老表型与人类相似 | 缺乏特定器官和系统 |
果蝇 Drosophila Melanogaster | 自然衰老模型 | 3个月[ | 实验环境下可观察其完整生命周期;可进行基因干预 | 体质量和胸腔体积减少;活动减少,攀爬和飞行减少,拍打翅膀频率减少;代谢率下降;生殖能力下降;DNA损伤积累,线粒体功能障碍,脂褐素和过氧化物积累 | 建模快;有接近高等脊椎动物的特征 | 缺乏特定器官和系统;缺乏干细胞而没有再生能力 |
斑马鱼 Danio Rerio | 自然衰老模型 | 36~42月[ | 实验环境下可观察其完整生命周期 | 脊柱弯曲,肌肉退化;游泳能力下降;生殖能力下降;视网膜色素上皮中Drusen样病变;SA-β-gal染色增加,脂褐素积累,肌肉中氧化蛋白增加,端粒缩短,线粒体膜成分变化,无症状细胞内胞嘧啶甲基化减少 | 建模快;实验成本较低,胚胎产生数量多 | 作为鱼类,缺少特定器官和系统 |
非洲青鳉鱼 African turquoise killifish | 基因组编辑衰老模型 | 9~26周[ | 通过CRISPR/Cas9基因组编辑,生成基因编辑胚胎,并培育至成年 | 脊柱弯曲,颜色消退,体型变小;生育能力下降;运动/活动减少;认知障碍;脂褐素积累,细胞凋亡增加,端粒缩短,线粒体损伤,神经变性,鳍再生减少 | 基因改造快速高效,建模快;作为脊椎动物与人类更为相似 | 作为鱼类,缺少特定器官和系统 |
小鼠 Mouse | 自然衰老模型 | 2~4年[ | 自然生长至衰老阶段 | 被毛无光泽,脱毛,脊柱弯曲;行动迟缓,活动量减少;SA-β-gal染色增加;衰老相关基因的表达增加 | 呈现自然衰老特征 | 建模时间长 |
D-半乳糖诱导衰老模型 | 注射1月后提早衰老[ | 定期定量注射D-半乳糖 | 骨骼肌的肌质/体质比、横截面积和纤维直径显著降低;SA-β-gal染色增加;衰老相关基因的表达增加 | 建模时间相对较短,重复性好,存活率较高 | 免疫生化指标与自然衰老小鼠存在差异 | |
快速老化模型 | 1年左右[ | 日本京都大学研究人员培育的SAMP快速老化小鼠 | 被毛无光泽,脱毛,皮肤溃疡,脊柱弯曲;行动迟缓,活动量减少;学习记忆力障碍;增龄性骨质疏松;衰老相关生化指标变化 | 缩短衰老周期;衰老症状与自然衰老小鼠一致 | 维系成本较高 | |
基因衰老模型 | 不同敲除模型有差异 | p21和p53基因敲除;P16基因敲除 | 被毛无光泽,皮肤弹性下降,消瘦;学习记忆力下降;行动力下降,运动协调能力下降;衰老相关生化指标变化 | 特异性敲除基因,可研究单个基因对衰老的影响 | 与自然衰老有差异;成本高 | |
大鼠 Rat | D-半乳糖诱导衰老模型 | 2.5~3年 | 定期定量注射D-半乳糖 | 被毛光泽和皮肤弹性下降,形体消瘦;运动协调性、抗疲劳特性和耐力下降;学习和记忆能力下降;生化指标和神经化学指标出现衰老性变化 | 实验大鼠在行为学和形态学上与人类自然衰老相似 | 建模时间较长 |
Table 1 Establishment methods, evaluation indexes, advantages and disadvantages of common aging animal models
动物 Animal | 模型 Model | 一般寿命 Lifespan | 模型建立方法 Establishment method | 衰老评价指标 Evaluation index | 优点 Advantage | 缺点 Disadvantage |
---|---|---|---|---|---|---|
线虫 Caenorhabditis Elegans | 自然衰老模型 | 1个月[ | 实验环境下可观察其完整生命周期;可进行基因干预 | 咽部/头部组织减少,体壁肌肉组织减少,肌团密度减少;身体运动逐渐减少,最大速度下降,趋化反应减少;代谢率下降;生殖细胞少,生产后代数量减少;脂褐质积累,DNA损伤积累,羰基含量增加,卵黄蛋白积累,蛋白酪氨酸激酶活性下降,溶酶体水解酶增加 | 建模快;许多衰老表型与人类相似 | 缺乏特定器官和系统 |
果蝇 Drosophila Melanogaster | 自然衰老模型 | 3个月[ | 实验环境下可观察其完整生命周期;可进行基因干预 | 体质量和胸腔体积减少;活动减少,攀爬和飞行减少,拍打翅膀频率减少;代谢率下降;生殖能力下降;DNA损伤积累,线粒体功能障碍,脂褐素和过氧化物积累 | 建模快;有接近高等脊椎动物的特征 | 缺乏特定器官和系统;缺乏干细胞而没有再生能力 |
斑马鱼 Danio Rerio | 自然衰老模型 | 36~42月[ | 实验环境下可观察其完整生命周期 | 脊柱弯曲,肌肉退化;游泳能力下降;生殖能力下降;视网膜色素上皮中Drusen样病变;SA-β-gal染色增加,脂褐素积累,肌肉中氧化蛋白增加,端粒缩短,线粒体膜成分变化,无症状细胞内胞嘧啶甲基化减少 | 建模快;实验成本较低,胚胎产生数量多 | 作为鱼类,缺少特定器官和系统 |
非洲青鳉鱼 African turquoise killifish | 基因组编辑衰老模型 | 9~26周[ | 通过CRISPR/Cas9基因组编辑,生成基因编辑胚胎,并培育至成年 | 脊柱弯曲,颜色消退,体型变小;生育能力下降;运动/活动减少;认知障碍;脂褐素积累,细胞凋亡增加,端粒缩短,线粒体损伤,神经变性,鳍再生减少 | 基因改造快速高效,建模快;作为脊椎动物与人类更为相似 | 作为鱼类,缺少特定器官和系统 |
小鼠 Mouse | 自然衰老模型 | 2~4年[ | 自然生长至衰老阶段 | 被毛无光泽,脱毛,脊柱弯曲;行动迟缓,活动量减少;SA-β-gal染色增加;衰老相关基因的表达增加 | 呈现自然衰老特征 | 建模时间长 |
D-半乳糖诱导衰老模型 | 注射1月后提早衰老[ | 定期定量注射D-半乳糖 | 骨骼肌的肌质/体质比、横截面积和纤维直径显著降低;SA-β-gal染色增加;衰老相关基因的表达增加 | 建模时间相对较短,重复性好,存活率较高 | 免疫生化指标与自然衰老小鼠存在差异 | |
快速老化模型 | 1年左右[ | 日本京都大学研究人员培育的SAMP快速老化小鼠 | 被毛无光泽,脱毛,皮肤溃疡,脊柱弯曲;行动迟缓,活动量减少;学习记忆力障碍;增龄性骨质疏松;衰老相关生化指标变化 | 缩短衰老周期;衰老症状与自然衰老小鼠一致 | 维系成本较高 | |
基因衰老模型 | 不同敲除模型有差异 | p21和p53基因敲除;P16基因敲除 | 被毛无光泽,皮肤弹性下降,消瘦;学习记忆力下降;行动力下降,运动协调能力下降;衰老相关生化指标变化 | 特异性敲除基因,可研究单个基因对衰老的影响 | 与自然衰老有差异;成本高 | |
大鼠 Rat | D-半乳糖诱导衰老模型 | 2.5~3年 | 定期定量注射D-半乳糖 | 被毛光泽和皮肤弹性下降,形体消瘦;运动协调性、抗疲劳特性和耐力下降;学习和记忆能力下降;生化指标和神经化学指标出现衰老性变化 | 实验大鼠在行为学和形态学上与人类自然衰老相似 | 建模时间较长 |
1 | HARPER S, KLIEN E. Forty years of global action on ageing: what has been achieved? [J]. J Popul Ageing, 2022, 15(1):1-5. DOI:10.1007/s12062-022-09362-w . |
2 | IZQUIERDO M, MERCHANT R A, MORLEY J E, et al. International exercise recommendations in older adults (ICFSR): expert consensus guidelines[J]. J Nutr Health Aging, 2021, 25(7):824-853. DOI:10.1007/s12603-021-1665-8 . |
3 | BILSKI J, PIERZCHALSKI P, SZCZEPANIK M, et al. Multifactorial mechanism of sarcopenia and sarcopenic obesity. Role of physical exercise, microbiota and myokines[J]. Cells, 2022, 11(1):160. DOI:10.3390/cells11010160 . |
4 | KRITSILIS M, RIZOU S V, KOUTSOUDAKI P N, et al. Ageing, cellular senescence and neurodegenerative disease[J]. Int J Mol Sci, 2018, 19(10): 2937. DOI:10.3390/ijms19102937 . |
5 | 赵凡凡, 周玉枝, 高丽, 等. D-半乳糖致衰老大鼠模型的研究进展[J]. 药学学报, 2017, 52(3):347-354. DOI:10.16438/j.0513-4870.2016-0696 . |
ZHAO F F, ZHOU Y Z, GAO L, et al. Advances in the study of the rat model of aging induced by D-galactose[J]. Acta Pharmaceutica Sinica, 2017, 52(3):347-354. | |
6 | BRENNER S. The genetics of Caenorhabditis elegans[J]. Genetics, 1974, 77(1):71-94. DOI:10.1093/genetics/77.1.71 . |
7 | COLLINS J J, HUANG C, HUGHES S, et al. The measurement and analysis of age-related changes in Caenorhabditis elegans[J]. WormBook, 2008:1-21. DOI:10.1895/wormbook. 1.137.1 . |
8 | PIPER M D W, PARTRIDGE L. Drosophila as a model for ageing[J]. Biochim Biophys Acta Mol Basis Dis, 2018, 1864(9 Pt A):2707-2717. DOI:10.1016/j.bbadis.2017.09.016 . |
9 | CHINTAPALLI V R, WANG J, DOW J A T. Using FlyAtlas to identify better Drosophila melanogaster models of human disease[J]. Nat Genet, 2007, 39(6):715-720. DOI:10.1038/ng2049 . |
10 | DEMONTIS F, PERRIMON N. FOXO/4E-BP signaling in Drosophila muscles regulates organism-wide proteostasis during aging[J]. Cell, 2010, 143(5):813-825. DOI:10.1016/j.cell.2010.10.007 . |
11 | OCORR K, PERRIN L, LIM H Y, et al. Genetic control of heart function and aging in Drosophila[J]. Trends Cardiovasc Med, 2007, 17(5):177-182. DOI:10.1016/j.tcm.2007.04.001 . |
12 | TISSENBAUM H A. Using C. elegans for aging research[J]. Invertebr Reprod Dev, 2015, 59(Sup1):59-63. DOI:10.1080/07924259.2014.940470 . |
13 | KISHI S, UCHIYAMA J, BAUGHMAN A M, et al. The zebrafish as a vertebrate model of functional aging and very gradual senescence[J]. Exp Gerontol, 2003, 38(7):777-786. DOI:10.1016/s0531-5565(03)00108-6 . |
14 | GILBERT M J H, ZERULLA T C, TIERNEY K B. Zebrafish (Danio rerio) as a model for the study of aging and exercise: physical ability and trainability decrease with age[J]. Exp Gerontol, 2014, 50:106-113. DOI:10.1016/j.exger.2013.11.013 . |
15 | KIKUCHI K. Dedifferentiation, transdifferentiation, and proliferation: mechanisms underlying cardiac muscle regeneration in zebrafish[J]. Curr Pathobiol Rep, 2015, 3(1):81-88. DOI:10.1007/s40139-015-0063-5 . |
16 | ANCHELIN M, ALCARAZ-PÉREZ F, MARTÍNEZ C M, et al. Premature aging in telomerase-deficient zebrafish[J]. Dis Model Mech, 2013, 6(5):1101-1112. DOI:10.1242/dmm.011635 . |
17 | GENADE T, BENEDETTI M, TERZIBASI E, et al. Annual fishes of the genus Nothobranchius as a model system for aging research[J]. Aging Cell, 2005, 4(5):223-233. DOI:10.1111/j.1474-9726.2005.00165.x . |
18 | VALENZANO D R, TERZIBASI E, GENADE T, et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate[J]. Curr Biol, 2006, 16(3):296-300. DOI:10.1016/j.cub.2005.12.038 . |
19 | GEYFMAN M, ANDERSEN B. Clock genes, hair growth and aging (Albany NY)[J]. Aging, 2010, 2(3):122-128. DOI:10.18632/aging.100130 . |
20 | HARTMANN N, REICHWALD K, LECHEL A, et al. Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri[J]. Mech Ageing Dev, 2009, 130(5):290-296. DOI:10.1016/j.mad.2009.01.003 . |
21 | HAREL I, BENAYOUN B A, MACHADO B, et al. A platform for rapid exploration of aging and diseases in a naturally short-lived vertebrate[J]. Cell, 2015, 160(5):1013-1026. DOI:10.1016/j.cell.2015.01.038 . |
22 | HU C K, BRUNET A. The African turquoise killifish: a research organism to study vertebrate aging and diapause[J]. Aging Cell, 2018, 17(3): e12757. DOI:10.1111/acel.12757 . |
23 | DUTTA S, SENGUPTA P. Men and mice: relating their ages[J]. Life Sci, 2016, 152:244-248. DOI:10.1016/j.lfs.2015.10.025 . |
24 | MITCHELL S J, SCHEIBYE-KNUDSEN M, LONGO D L, et al. Animal models of aging research: implications for human aging and age-related diseases[J]. Annu Rev Animal Biosci, 2015, 3:283-303. DOI:10.1146/annurev-animal-022114-110829 . |
25 | YUAN R, PETERS L L, PAIGEN B. Mice as a mammalian model for research on the genetics of aging[J]. ILAR J, 2011, 52(1):4-15. DOI:10.1093/ilar.52.1.4 . |
26 | GUO Y T, NIU K J, OKAZAKI T, et al. Coffee treatment prevents the progression of sarcopenia in aged mice in vivo and in vitro [J]. Exp Gerontol, 2014, 50:1-8. DOI:10.1016/j.exger.2013.11.005 . |
27 | LEDUC-GAUDET J P, PICARD M, ST-JEAN PELLETIER F, et al. Mitochondrial morphology is altered in atrophied skeletal muscle of aged mice[J]. Oncotarget, 2015, 6(20):17923-17937. DOI:10.18632/oncotarget.4235 . |
28 | CAMPOREZ J P G, PETERSEN M C, ABUDUKADIER A, et al. Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice[J]. Proc Natl Acad Sci USA, 2016, 113(8):2212-2217. DOI:10.1073/pnas.1525795113 . |
29 | KOVACHEVA E L, SINHA HIKIM A P, SHEN R Q, et al. Testosterone supplementation reverses sarcopenia in aging through regulation of myostatin, c-Jun NH2-terminal kinase, Notch, and Akt signaling pathways[J]. Endocrinology, 2010, 151(2):628-638. DOI:10.1210/en.2009-1177 . |
30 | SELDEEN K L, LASKY G, LEIKER M M, et al. High intensity interval training improves physical performance and frailty in aged mice[J]. J Gerontol A Biol Sci Med Sci, 2018, 73(4):429-437. DOI:10.1093/gerona/glx120 . |
31 | 龚国清, 徐黻本. 小鼠衰老模型研究[J]. 中国药科大学学报, 1991, 22(2):101-103. |
GONG G Q, XU F B. Study of aging model in mice[J]. J China Pharm Univ, 1991, 22(2):101-103. | |
32 | SHEN Y X, XU S Y, WEI W, et al. Melatonin reduces memory changes and neural oxidative damage in mice treated with D-galactose[J]. J Pineal Res, 2002, 32(3):173-178. DOI:10.1034/j.1600-079x.2002.1o850.x . |
33 | XU X H, ZHAO T Q. Effects of puerarin on D-galactose-induced memory deficits in mice[J]. Acta Pharmacol Sin, 2002, 23(7):587-590. |
34 | SHANG Y Z, GONG M Y, ZHOU X X, et al. Improving effects of SSF on memory deficits and pathological changes of neural and immunological systems in senescent mice[J]. Acta Pharmacol Sin, 2001, 22(12):1078-1083. |
35 | SHWE T, PRATCHAYASAKUL W, CHATTIPAKORN N, et al. Role of D-galactose-induced brain aging and its potential used for therapeutic interventions[J]. Exp Gerontol, 2018, 101:13-36. DOI:10.1016/j.exger.2017.10.029 . |
36 | CEBE T, ATUKEREN P, YANAR K, et al. Oxidation scrutiny in persuaded aging and chronological aging at systemic redox homeostasis level[J]. Exp Gerontol, 2014, 57:132-140. DOI:10.1016/j.exger.2014.05.017 . |
37 | 秦红兵, 杨朝晔, 范忆江, 等. D-半乳糖诱导衰老小鼠模型的建立与评价[J]. 中国组织工程研究与临床康复, 2009, 13(7):1275-1278. |
QIN H B, YANG Z Y, FAN Y J, et al. Establishment and evaluation of aging models induced by D-galactose in mice[J]. Clin J Rehabil Tissue Eng Res, 2009, 13(7):1275-1278. | |
38 | AZMAN K F, ZAKARIA R. D-Galactose-induced accelerated aging model: an overview[J]. Biogerontology, 2019, 20(6):763-782. DOI:10.1007/s10522-019-09837-y . |
39 | TAKEDA T, HOSOKAWA M, TAKESHITA S, et al. A new murine model of accelerated senescence[J]. Mech Ageing Dev, 1981, 17(2):183-194. DOI:10.1016/0047-6374(81)90084-1 . |
40 | TAKEDA T, HOSOKAWA M, HIGUCHI K. Senescence-accelerated mouse (SAM): a novel murine model of senescence[J]. Exp Gerontol, 1997, 32(1-2):105-109. DOI:10.1016/s0531-5565(96)00036-8 . |
41 | CHIBA Y, SHIMADA A, KUMAGAI N, et al. The senescence-accelerated mouse (SAM): a higher oxidative stress and age-dependent degenerative diseases model[J]. Neurochem Res, 2009, 34(4):679-687. DOI:10.1007/s11064-008-9812-8 . |
42 | TAKEDA T, MATSUSHITA T, KUROZUMI M, et al. Pathobiology of the senescence-accelerated mouse (SAM)[J]. Exp Gerontol, 1997, 32(1-2):117-127. DOI:10.1016/S0531-5565(96)00068-X . |
43 | TAKEDA T. Senescence-accelerated mouse (SAM): with special reference to age-associated pathologies and their modulation[J]. Nihon Eiseigaku Zasshi, 1996, 51(2):569-578. DOI:10.1265/jjh.51.569 . |
44 | DERAVE W, EIJNDE B O, RAMAEKERS M, et al. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence[J]. Exp Gerontol, 2005, 40(7):562-572. DOI:10.1016/j.exger.2005.05.005 . |
45 | HERRANZ N, GIL J. Mechanisms and functions of cellular senescence[J]. J Clin Investig, 2018, 128(4):1238-1246. DOI:10.1172/jci95148 . |
46 | BENSON E K, ZHAO B, SASSOON D A, et al. Effects of p21 deletion in mouse models of premature aging[J]. Cell Cycle, 2009, 8(13):2002-2004. DOI:10.4161/cc.8.13.8997 . |
47 | VARELA I, CADIÑANOS J, PENDÁS A M, et al. Accelerated ageing in mice deficient in Zmpste24 protease is linked to p53 signalling activation[J]. Nature, 2005, 437(7058):564-568. DOI:10.1038/nature04019 . |
48 | BAKER D J, WIJSHAKE T, TCHKONIA T, et al. Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders[J]. Nature, 2011, 479(7372):232-236. DOI:10.1038/nature10600 . |
49 | AKKI A, YANG H L, GUPTA A, et al. Skeletal muscle ATP kinetics are impaired in frail mice[J]. AGE, 2014, 36(1):21-30. DOI:10.1007/s11357-013-9540-0 . |
50 | XIE W Q, HE M, YU D J, et al. Mouse models of sarcopenia: classification and evaluation[J]. J Cachexia Sarcopenia Muscle, 2021, 12(3):538-554. DOI:10.1002/jcsm.12709 . |
51 | ACOSTA P B, GROSS K C. Hidden sources of galactose in the environment[J]. Eur J Pediatr, 1995, 154(7 ): S87-S92. DOI:10.1007/BF02143811 . |
52 | WU D M, LU J, ZHENG Y L, et al. Purple sweet potato color repairs D-galactose-induced spatial learning and memory impairment by regulating the expression of synaptic proteins[J]. Neurobiol Learn Mem, 2008, 90(1):19-27. DOI:10.1016/j.nlm.2008.01.010 . |
53 | ULLAH F, ALI T, ULLAH N, et al. Caffeine prevents D-galactose-induced cognitive deficits, oxidative stress, neuroinflammation and neurodegeneration in the adult rat brain[J]. Neurochem Int, 2015, 90:114-124. DOI:10.1016/j.neuint.2015.07.001 . |
54 | TAKIGAWA K, MATSUDA R, UCHITOMI R, et al. Effects of long-term physical exercise on skeletal muscles in senescence-accelerated mice (SAMP8)[J]. Biosci Biotechnol Biochem, 2019, 83(3):518-524. DOI:10.1080/09168451. 2018.1547625 . |
55 | XIE W Q, HE M, YU D J, et al. Mouse models of sarcopenia: classification and evaluation[J]. J Cachexia Sarcopenia Muscle, 2021, 12(3):538-554. DOI:10.1002/jcsm.12709 . |
56 | PARTADIREDJA G, KARIMA N, UTAMI K P, et al. The effects of light and moderate intensity exercise on the femoral bone and cerebellum of d-galactose-exposed rats[J]. Rejuvenation Res, 2019, 22(1):20-30. DOI:10.1089/rej.2018.2050 . |
57 | CHEN W K, TSAI Y L, SHIBU M A, et al. Exercise training augments Sirt1-signaling and attenuates cardiac inflammation in D-galactose induced-aging rats[J]. Aging (Albany NY, 2018, 10(12):4166-4174. DOI:10.18632/aging.101714 . |
58 | FAN J J, YANG X Q, LI J, et al. Spermidine coupled with exercise rescues skeletal muscle atrophy from D-gal-induced aging rats through enhanced autophagy and reduced apoptosis via AMPK-FOXO3a signal pathway[J]. Oncotarget, 2017, 8(11):17475-17490. DOI:10.18632/oncotarget.15728 . |
59 | KOU X J, LI J, LIU X R, et al. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics[J]. J Appl Physiol (1985), 2017, 122(6):1462-1469. DOI:10.1152/japplphysiol.00018.2017 . |
60 | 唐慧青, 常书福, 于志锋, 等. SHJHhr小鼠部分生物学特性及衰老表型的测定与分析[J]. 实验动物与比较医学, 2023, 43(1): 44-52. DOI:10.12300/j.issn.1674-5817.2022.069 . |
TANG H Q, CHANG S F, YU Z F, et al. Investigation on biological characteristics and aging phenotype of SHJHhr mice[J]. Lab Anim Comp Med, 2023, 43(1): 44-52. DOI:10.12300/j.issn.1674-5817.2022.069 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Shuo WANG, Yunhui LÜ, Xiaokang WANG, Zhenhao ZHANG, Yongchun CUI. Construction and Verification of Quality Evaluation Indicator System for Extracorporeal Membrane Oxygenation Animal Experimental Platform [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 604-611. |
[5] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[6] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[7] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[8] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[9] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[10] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[11] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[12] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[13] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[14] | Hui CHENG, Fei FANG, Jiahao SHI, Hua YANG, Mengjie ZHANG, Ping YANG, Jian FEI. H1 Linker Histone Gene Regulates Lifespan via Dietary Restriction Pathways in Caenorhabditis elegans [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 271-281. |
[15] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||