Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (4): 429-439.DOI: 10.12300/j.issn.1674-5817.2023.015
• Animal Models of Human Diseases • Previous Articles Next Articles
Lei XIANG1()(), Jinzhu JING1, Zhen LIANG1, Guoqiang YAN1, Wenfeng GUO1, Meng ZHANG1, Wei ZHANG1, Yajun LIU2()()
Received:
2023-02-13
Revised:
2023-04-21
Online:
2023-08-25
Published:
2023-09-14
Contact:
Yajun LIU
CLC Number:
Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer[J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2023.015
Figure 1 Statistics of the quantities of research articles on animal models of sarcopeniaNote:A, Statistics on the number of articles published in English(Web of Science core data); B, Statistics on the number of articles published in Chinese(CNKI database).
Figure 2 Co-occurrence visualization map of institutions and countries/ regions for sarcopenia animal model researchNote: Circles and labels form a unit, and units of different colors form different clusters. The countries (or regions) and institutions are classified according to different colors, and the size of the nodes indicates the frequency of publishing articles. The closer the distance between the institutions, the closer the cooperation.
排名 Sort | 国家 Countries | 发文量 Documents | 引用频次 Citations | 排名 Sort | 机构 Organizations | 发文量 Documents | 引用频次 Citations | |
---|---|---|---|---|---|---|---|---|
1 | 美国 | 1 105 | 45 206 | 1 | 美国佛罗里达大学 | 69 | 4 549 | |
2 | 日本 | 369 | 6 570 | 2 | 美国克利夫兰诊所 | 49 | 931 | |
3 | 中国(含港澳台) | 278 | 3 677 | 3 | 美国妙佑医疗国际 | 46 | 958 | |
4 | 意大利 | 211 | 9 291 | 4 | 法国农业科学研究院 | 45 | 1 889 | |
5 | 法国 | 179 | 5 879 | 5 | 美国密歇根大学 | 45 | 2 280 | |
6 | 韩国 | 177 | 2 107 | 6 | 英国利物浦大学 | 42 | 1 117 | |
7 | 英国 | 170 | 5 506 | 7 | 日本东京大学 | 40 | 1 232 | |
8 | 加拿大 | 127 | 4 111 | 8 | 美国威斯康星大学 | 40 | 2 582 | |
9 | 德国 | 96 | 2 267 | 9 | 美国得克萨斯大学 | 37 | 2 067 | |
10 | 西班牙 | 95 | 3 917 | 10 | 美国俄克拉何马医学院 | 36 | 688 |
Table 1 The number of articles and citations statistics of sarcopenia animal models in different countries and institutions (top 10)
排名 Sort | 国家 Countries | 发文量 Documents | 引用频次 Citations | 排名 Sort | 机构 Organizations | 发文量 Documents | 引用频次 Citations | |
---|---|---|---|---|---|---|---|---|
1 | 美国 | 1 105 | 45 206 | 1 | 美国佛罗里达大学 | 69 | 4 549 | |
2 | 日本 | 369 | 6 570 | 2 | 美国克利夫兰诊所 | 49 | 931 | |
3 | 中国(含港澳台) | 278 | 3 677 | 3 | 美国妙佑医疗国际 | 46 | 958 | |
4 | 意大利 | 211 | 9 291 | 4 | 法国农业科学研究院 | 45 | 1 889 | |
5 | 法国 | 179 | 5 879 | 5 | 美国密歇根大学 | 45 | 2 280 | |
6 | 韩国 | 177 | 2 107 | 6 | 英国利物浦大学 | 42 | 1 117 | |
7 | 英国 | 170 | 5 506 | 7 | 日本东京大学 | 40 | 1 232 | |
8 | 加拿大 | 127 | 4 111 | 8 | 美国威斯康星大学 | 40 | 2 582 | |
9 | 德国 | 96 | 2 267 | 9 | 美国得克萨斯大学 | 37 | 2 067 | |
10 | 西班牙 | 95 | 3 917 | 10 | 美国俄克拉何马医学院 | 36 | 688 |
Figure 3 Co-occurrence map of the authors in the study of animal model of sarcopeniaNote: A, The co-occurrence of the authors in the English literature; B, The co-occurrence of the authors in Chinese literature. Circles and labels form a unit, and units of different colors form different clusters. The authors are classified according to different colors that represent different research teams. The size of the node indicates the frequency of the occurrence of the authors. There is no correlation between the authors, and these authors are not shown in the figure.
排名 | Web of Science核心合集数据库(WOS) | CNKI数据库(CNKI) | |||
---|---|---|---|---|---|
Sort | 作者 Authors | 发文量 No. of published articles | 作者 Authors | 发文量 No. of published articles | |
1 | Van remmen Holly | 50 | 李柱一 | 19 | |
2 | Dasarathy Srinivasan | 48 | 孙圣刚 | 15 | |
3 | Kumar Avinash | 31 | 王云甫 | 15 | |
4 | Mcardle Anne | 29 | 曹学兵 | 14 | |
5 | Leeuwenburgh Christiaan | 28 | 文颖娟 | 10 | |
6 | Walrand Stephane | 26 | 孟繁平 | 9 | |
7 | Davuluri Gangarao | 25 | 杨俊超 | 8 | |
8 | Sieck Gary C | 24 | 梅晓云 | 8 | |
9 | Vasilaki Aphrodite | 24 | 何国厚 | 7 | |
10 | Brotto Marco | 23 | 刘 睿 | 7 |
Table 2 Statistics of the number of articles published by Chinese and foreign authors in the study of animal models of sarcopenia (top 10)
排名 | Web of Science核心合集数据库(WOS) | CNKI数据库(CNKI) | |||
---|---|---|---|---|---|
Sort | 作者 Authors | 发文量 No. of published articles | 作者 Authors | 发文量 No. of published articles | |
1 | Van remmen Holly | 50 | 李柱一 | 19 | |
2 | Dasarathy Srinivasan | 48 | 孙圣刚 | 15 | |
3 | Kumar Avinash | 31 | 王云甫 | 15 | |
4 | Mcardle Anne | 29 | 曹学兵 | 14 | |
5 | Leeuwenburgh Christiaan | 28 | 文颖娟 | 10 | |
6 | Walrand Stephane | 26 | 孟繁平 | 9 | |
7 | Davuluri Gangarao | 25 | 杨俊超 | 8 | |
8 | Sieck Gary C | 24 | 梅晓云 | 8 | |
9 | Vasilaki Aphrodite | 24 | 何国厚 | 7 | |
10 | Brotto Marco | 23 | 刘 睿 | 7 |
Figure 4 Published journals and keywords co-occurrence cluster map in animal model study of sarcopenia in Chinese and English literatureNote:A, co-occurrence analysis of published journals; B, Co-occurrence of key words in English literature; B, Co-occurrence of key words in Chinese literature. Circles and labels form a unit, units of different colors form different clusters, different colors represent different magazines or different research directions, and the size of nodes indicates the frequency of magazine articles or keyword occurrence.
排名 Sort | 杂志名称 Journal | 影响因子(2023) Impact factor | 发文量/篇 Documents | 共引用频次/次 Citations |
---|---|---|---|---|
1 | FASEB Journal | 4.8 | 196 | 3 020 |
2 | Experimental Gerontology | 3.9 | 111 | 3 906 |
3 | Journal of Cachexia Sarcopenia and Muscle | 8.9 | 107 | 1 963 |
4 | Nutrients | 5.9 | 67 | 1 140 |
5 | Aging Cell | 7.8 | 58 | 2 770 |
6 | Aging-Us | 5.2 | 52 | 1 486 |
7 | International Journal of Molecular Sciences | 5.6 | 50 | 356 |
8 | Journals of Gerontology Series A-Biological Sciences and Medical | 5.1 | 48 | 2 295 |
9 | Journal of Applied Physiology | 3.3 | 45 | 1 803 |
10 | Frontiers in Physiology | 4.0 | 44 | 652 |
Table 3 Co-citation statistics of articles published in animal model research journals of sarcopenia(top 10)
排名 Sort | 杂志名称 Journal | 影响因子(2023) Impact factor | 发文量/篇 Documents | 共引用频次/次 Citations |
---|---|---|---|---|
1 | FASEB Journal | 4.8 | 196 | 3 020 |
2 | Experimental Gerontology | 3.9 | 111 | 3 906 |
3 | Journal of Cachexia Sarcopenia and Muscle | 8.9 | 107 | 1 963 |
4 | Nutrients | 5.9 | 67 | 1 140 |
5 | Aging Cell | 7.8 | 58 | 2 770 |
6 | Aging-Us | 5.2 | 52 | 1 486 |
7 | International Journal of Molecular Sciences | 5.6 | 50 | 356 |
8 | Journals of Gerontology Series A-Biological Sciences and Medical | 5.1 | 48 | 2 295 |
9 | Journal of Applied Physiology | 3.3 | 45 | 1 803 |
10 | Frontiers in Physiology | 4.0 | 44 | 652 |
排名 Sort | 英文关键词 English keywords | 共现频率 Co-occurrence frequency | 排名 Sort | 中文关键词 Chinese keywords | 共现频率 Co-occurrence frequency | |
---|---|---|---|---|---|---|
1 | sarcopenia | 961 | 1 | 重症肌无力 | 153 | |
2 | aging | 590 | 2 | 肌萎缩 | 124 | |
3 | skeletal muscle/muscle | 529 | 3 | 大鼠 | 41 | |
4 | muscle atrophy | 239 | 4 | 失神经 | 23 | |
5 | mitochondria | 142 | 5 | 乙酰胆碱受体 | 21 | |
6 | oxidative stress | 123 | 6 | 骨骼肌 | 17 | |
7 | exercise | 93 | 7 | 小鼠 | 16 | |
8 | inflammation | 75 | 8 | 失重模拟 | 14 | |
9 | autophagy | 70 | 9 | 肌少症 | 13 | |
10 | cachexia | 68 | 10 | 乙酰胆碱受体抗体 | 11 |
Table 4 English and Chinese keywords analysis in the study of animal model of sarcopenia (top 10)
排名 Sort | 英文关键词 English keywords | 共现频率 Co-occurrence frequency | 排名 Sort | 中文关键词 Chinese keywords | 共现频率 Co-occurrence frequency | |
---|---|---|---|---|---|---|
1 | sarcopenia | 961 | 1 | 重症肌无力 | 153 | |
2 | aging | 590 | 2 | 肌萎缩 | 124 | |
3 | skeletal muscle/muscle | 529 | 3 | 大鼠 | 41 | |
4 | muscle atrophy | 239 | 4 | 失神经 | 23 | |
5 | mitochondria | 142 | 5 | 乙酰胆碱受体 | 21 | |
6 | oxidative stress | 123 | 6 | 骨骼肌 | 17 | |
7 | exercise | 93 | 7 | 小鼠 | 16 | |
8 | inflammation | 75 | 8 | 失重模拟 | 14 | |
9 | autophagy | 70 | 9 | 肌少症 | 13 | |
10 | cachexia | 68 | 10 | 乙酰胆碱受体抗体 | 11 |
聚类 Clusters | 英文文献关键词 Keywords in English literature | 中文文献关键词 Keywords in Chinese literature |
---|---|---|
1 | body composition, cachexia, cancer cachexia, chronic kidney disease, inflammation, insulin resistance, metabolism, muscle atrophy, muscle regeneration, muscle wasting, myogenesis, myostatin, obesity, sarcopenia, sarcopenia obesity, skeletal muscle atrophy | 动物、失重模拟、小鼠、模拟失重、比目鱼肌、电针、肌、骨骼 |
2 | aging, atrophy, hypertrophy, motor, protein synthesis, regeneration, satellite cells, skeletal muscle | 乙酰胆碱受体、兔、动物模型、实验性自身免疫性重症肌无力、糖尿病、肌少症 |
3 | aging, apoptosis, autophagy, mice, mitochondria, mitophagy, oxidative stress, reactive oxygen species | 多发性硬化、帕金森病大鼠、肌阵挛、阿尔茨海默病 |
4 | bone, muscle, osteoporosis, senescence, vitamin D | 中枢神经系统、乙酰胆碱受体抗体、受体、抗体、胆碱能 |
5 | Exercise, frailty, nutrition | Bcl-2、大鼠、细胞凋亡、肌损伤、腓肠肌 |
6 | denervation, neuromuscular junction | MAFBX、去神经支配、肌纤维、肌萎缩、骨骼肌 |
7 | muscle mass | 咬肌、线粒体、葛根复方、超微结构 |
8 | 失神经、胫前肌、补阳还五汤、黄芪 | |
9 | 免疫性、细胞因子、重症肌无力 |
Table 5 Cluster analysis of key words in animal model of sarcopenia in English and Chinese literature
聚类 Clusters | 英文文献关键词 Keywords in English literature | 中文文献关键词 Keywords in Chinese literature |
---|---|---|
1 | body composition, cachexia, cancer cachexia, chronic kidney disease, inflammation, insulin resistance, metabolism, muscle atrophy, muscle regeneration, muscle wasting, myogenesis, myostatin, obesity, sarcopenia, sarcopenia obesity, skeletal muscle atrophy | 动物、失重模拟、小鼠、模拟失重、比目鱼肌、电针、肌、骨骼 |
2 | aging, atrophy, hypertrophy, motor, protein synthesis, regeneration, satellite cells, skeletal muscle | 乙酰胆碱受体、兔、动物模型、实验性自身免疫性重症肌无力、糖尿病、肌少症 |
3 | aging, apoptosis, autophagy, mice, mitochondria, mitophagy, oxidative stress, reactive oxygen species | 多发性硬化、帕金森病大鼠、肌阵挛、阿尔茨海默病 |
4 | bone, muscle, osteoporosis, senescence, vitamin D | 中枢神经系统、乙酰胆碱受体抗体、受体、抗体、胆碱能 |
5 | Exercise, frailty, nutrition | Bcl-2、大鼠、细胞凋亡、肌损伤、腓肠肌 |
6 | denervation, neuromuscular junction | MAFBX、去神经支配、肌纤维、肌萎缩、骨骼肌 |
7 | muscle mass | 咬肌、线粒体、葛根复方、超微结构 |
8 | 失神经、胫前肌、补阳还五汤、黄芪 | |
9 | 免疫性、细胞因子、重症肌无力 |
1 | CRUZ-JENTOFT A J, BAEYENS J P, BAUER J M, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4):412-423. DOI: 10.1093/ageing/afq034 . |
2 | CRUZ-JENTOFT A J, BAHAT G, BAUER J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(4):601. DOI: 10.1093/ageing/afz046 . |
3 | CHEN L K, WOO J, ASSANTACHAI P, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment[J]. J Am Med Dir Assoc, 2020, 21(3):300-307. e2. DOI: 10.1016/j.jamda.2019.12.012 . |
4 | VAN ECK N J, WALTMAN L. Software survey: VOSviewer, a computer program for bibliometric mapping[J]. Sciento-metrics, 2010, 84(2):523–538. DOI: 10.1007/s11192-009-0146-3 . |
5 | ARRUDA H, SILVA E R, LESSA M, et al. VOSviewer and bibliometrix[J]. J Med Libr Assoc, 2022, 110(3):392-395. DOI: 10.5195/jmla.2022.1434 . |
6 | XU D, WANG Y L, WANG K T, et al. A scientometrics analysis and visualization of depressive disorder[J]. Curr Neuro-pharmacol, 2021,19(6):766-786. DOI: 10.2174/1570159X18666200905151333 . |
7 | SHEN J M, SHEN H, KE L X, et al. Knowledge mapping of immunotherapy for hepatocellular carcinoma: a bibliometric study[J]. Front Immunol, 2022, 31(13):815575. DOI: 10.3389/fimmu.2022.815575 . |
8 | MA D, YANG B, GUAN B Y, et al. A bibliometric analysis of pyroptosis from 2001 to 2021[J]. Front Immunol, 2021, 12:731933. DOI: 10.3389/fimmu.2021.731933 . |
9 | AGEEL M. Pandemic critical care research during the COVID-19 (2020-2022): a bibliometric analysis using VOSviewer[J]. Biomed Res Int, 2022, 2022:8564649. DOI: 10.1155/2022/8564649 |
10 | 刘玉旋, 史大卓, 高铸烨, 等. 基于CiteSpace和VOSviewer可视化分析心房颤动与电重构研究的热点与趋势[J]. 中国医药导报,2023, 20(20):91-96. DOI:10.20047/j.issn1673-7210.2023.20.19 . |
LIU Y X, SHI D Z, GAO Z Y, et al. Hotspots and trends in visual analysis of atrial fibrillation and electrical remodeling based on CiteSpace and VOSviewer[J]. China Med Her, 2023, 20(20): 91-96. DOI:10.20047/j.issn1673-7210.2023.20.19 . | |
11 | 王亚洁, 宋心宇, 徐霞. 基于VOSviewer软件的神经根型颈椎病护理研究热点分析[J].华南预防医学杂志, 2020, 34(2):78-81, 95. DOI: 10.13730/j.issn.1009-2595.2020.02.002 . |
WANG Y J, SONG X Y, XU X. Hot spot analysis of nursing research on cervical spondylotic radiculopathy based on VOSviewer software[J]. Mil Med J South China, 2020, 34(2):78- 81, 95. DOI: 10.13730/j.issn.1009-2595.2020.02.002 . | |
12 | CHRISTIAN C J, BENIAN G M. Animal models of sarcopenia[J]. Aging Cell, 2020, 19(10):e13223. DOI: 10.1111/acel.13223 . |
13 | PARKS R J, FARES E, MACDONALD J K, et al. A procedure for creating a frailty index based on deficit accumulation in aging mice[J]. J Gerontol Ser A, 2012, 67A(3):217-227. DOI: 10.1093/gerona/glr193 . |
14 | SCHIAFFINO S, REGGIANI C. Fiber types in mammalian skeletal muscles[J]. Physiol Rev, 2011, 91(4):1447-1531. DOI: 10.1152/physrev.00031.2010 . |
15 | HERNDON L A, SCHMEISSNER P J, DUDARONEK J M,et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans [J]. Nature, 2002, 419:808-814. DOI: 10.1038/nature01135 . |
16 | GERHARD G S. Comparative aspects of zebrafish (Danio rerio) as a model for aging research[J]. Exp Gerontol, 2003, 38(11-12):1333-1341. DOI: 10.1016/j.exger.2003.10.022 . |
17 | GARCIA-CONTRERAS C, VAZQUEZ-GOMEZ M, TORRES-ROVIRA L, et al. Characterization of ageing- and diet-related swine models of sarcopenia and sarcopenic obesity[J]. Int J Mol Sci, 2018, 19(3):823. DOI: 10.3390/ijms19030823 . |
18 | CHOW S K H, VAN MOURIK M, HUNG V W Y, et al. HR-pQCT for the evaluation of muscle quality and intramuscular fat infiltration in ageing skeletal muscle[J]. J Pers Med, 2022, 12(6):1016. DOI: 10.3390/jpm12061016 . |
19 | KOB R, FELLNER C, BERTSCH T, et al. Gender-specific differences in the development of sarcopenia in the rodent model of the ageing high-fat rat[J]. J Cachexia Sarcopenia Muscle, 2015, 6(2):181-191. DOI: 10.1002/jcsm.12019 . |
20 | FERNÁNDEZ A M, KIM J K, YAKAR S, et al. Functional inactivation of the IGF-I and insulin receptors in skeletal muscle causes type 2 diabetes[J]. Genes Dev, 2001, 15(15):1926-1934. DOI: 10.1101/gad.908001 . |
21 | MAVALLI M D, DIGIROLAMO D J, FAN Y, et al. Distinct growth hormone receptor signaling modes regulate skeletal muscle development and insulin sensitivity in mice[J]. J Clin Invest, 2010, 120(11):4007-4020. DOI: 10.1172/JCI42447 . |
22 | LIU J P, BAKER J, PERKINS A S, et al. Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r)[J]. Cell, 1993, 75(1):59-72. DOI: 10.1016/S0092-8674(05)80084-4 . |
23 | ROMANICK M, THOMPSON L V, BROWN-BORG H M. Murine models of atrophy, cachexia, and sarcopenia in skeletal muscle[J]. Biochim Biophys Acta BBA Mol Basis Dis, 2013, 1832(9):1410-1420. DOI: 10.1016/j.bbadis.2013.03.011 . |
24 | HAMBRIGHT W S, NIEDERNHOFER L J, HUARD J, et al. Murine models of accelerated aging and musculoskeletal disease[J]. Bone, 2019, 125:122-127. DOI: 10.1016/j.bone. 2019. 03.002 . |
25 | COLMAN R J, MCKIERNAN S H, AIKEN J M, et al. Muscle mass loss in Rhesus monkeys: age of onset[J]. Exp Gerontol, 2005, 40(7):573-581. DOI: 10.1016/j.exger.2005.05.001 . |
26 | SHETH K A, IYER C C, WIER C G, et al. Muscle strength and size are associated with motor unit connectivity in aged mice[J]. Neurobiol Aging, 2018, 67:128-136. DOI: 10.1016/j.neurobiolaging.2018.03.016 . |
27 | 郭丹, 温旭, 吴丹妮, 等. 增龄性肌肉减少症小鼠肌肉组织抗氧化能力的特点[J]. 吉林大学学报(医学版), 2022, 48(5): 1209-1215. DOI: 10.13481/j.1671-587X.20220514 . |
GUO D, WEN X, WU D N, et al. Characteristics of antioxidant capacity of muscle tissue in aging sarcopenia mice[J]. J Jilin Univ Med Ed, 2022, 48(5): 1209-1215. DOI: 10.13481/j.1671-587X.20220514 . | |
28 | 朱师宇, 吕安康, 赵宇星, 等. 基质金属蛋白酶-1、金属蛋白酶组织抑制因子-1在老年肌少症大鼠中的表达及意义[J]. 南方医科大学学报, 2020, 40(1): 104-109. DOI: 10.12122/j.issn.1673-4254.2020.01.17 . |
ZHU S Y, LÜ A K, ZHAO Y X, et al. Expressions of matrix metalloproteinase-1 and tissue inhibitor of metalloproteinases 1 in skeletal muscles of aged rats with sarcopenia[J]. J South Med Univ, 2020, 40(1): 104-109. DOI: 10.12122/j.issn.1673-4254.2020.01.17 . | |
29 | ZHANG N, CHOW S K, LEUNG K S, et al. An animal model of co-existing sarcopenia and osteoporotic fracture in senescence accelerated mouse prone 8 (SAMP8)[J]. Exp Gerontol, 2017, 97:1-8. DOI: 10.1016/j.exger.2017.07.008 . |
30 | HIROFUJI C, ISHIHARA A, ROY R R, et al. SDH activity and cell size of tibialis anterior motoneurons and muscle fibers in SAMP6[J]. Neuroreport, 2000, 11(4):823-828. DOI: 10.1097/00001756-200003200-00033 . |
31 | NISHIKAWA T, TAKAHASHI J A, MATSUSHITA T, et al. Tubular aggregates in the skeletal muscle of the senescence-accelerated mouse; SAM[J]. Mech Ageing Dev, 2000, 114(2):89-99. DOI: 10.1016/s0047-6374(00)00088-9 . |
32 | DERAVE W, EIJNDE B O, RAMAEKERS M, et al. Soleus muscles of SAMP8 mice provide an accelerated model of skeletal muscle senescence[J]. Exp Gerontol, 2005, 40(7):562-572. DOI: 10.1016/j.exger.2005.05.005 . |
33 | TRIFUNOVIC A, WREDENBERG A, FALKENBERG M, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase[J]. Nature, 2004, 429(6990):417-423. DOI: 10.1038/nature02517 . |
34 | ARU M R, ALEV K, PEHME A, et al. Changes in body composition of old rats at different time points after dexamethasone administration[J]. Curr Aging Sci, 2019, 11(4):255-260. DOI: 10.2174/1874609812666190114144238 . |
35 | CHIU C S, WEBER H, ADAMSKI S, et al. Non-invasive muscle contraction assay to study rodent models of sarcopenia[J]. BMC Musculoskelet Disord, 2011, 12:246. DOI: 10.1186/1471-2474-12-246 . |
36 | CLEGG A, HASSAN-SMITH Z. Frailty and the endocrine system[J]. Lancet Diabetes Endocrinol, 2018, 6(9):743-752. DOI: 10.1016/s2213-8587(18)30110-4 . |
37 | 王丛丛, 李军, 鲁飞翔, 等. 尿石素B对地塞米松诱导小鼠肌萎缩的改善作用及机制[J]. 中国老年学杂志, 2018, 38(8): 1963-1966. DOI: 10.3969/j.issn.1005-9202.2018.08.070 . |
WANG C C, LI J, LU F X, et al. Effect and mechanism of urushin B on dexamethasone-induced muscle atrophy in mice[J]. Chin J Gerontol, 2018, 38(8): 1963-1966. DOI: 10.3969/j.issn.1005-9202.2018.08.070 . | |
38 | DAMAS F, PHILLIPS S, VECHIN F C, et al. A review of resistance training-induced changes in skeletal muscle protein synthesis and their contribution to hypertrophy[J]. Sports Med, 2015, 45(6):801-807. DOI: 10.1007/s40279-015-0320-0 . |
39 | NAKAOKA K, YAMADA A, NODA S, et al. Influence of dietary vitamin D deficiency on bone strength, body composition, and muscle in ovariectomized rats fed a high-fat diet[J]. Nutrition, 2019, 60:87-93. DOI: 10.1016/j.nut.2018.09.001 . |
40 | 鲁飞翔, 李军, 周仙杰, 等. 地塞米松诱导少肌性肥胖小鼠模型的建立与评价[J]. 中华灾害救援医学, 2017, 5(3): 152-156. DOI: 10.13919/j.issn.2095-6274.2017.03.008 . |
LU F X, LI J, ZHOU X J, et al. Evaluation and establishment of a sarcopenic obesity mouse model induced by dexa-methasone[J]. Chin J Disaster Med, 2017, 5(3): 152-156. DOI: 10.13919/j.issn.2095-6274.2017.03.008 . | |
41 | MOREY-HOLTON E R, GLOBUS R K. Hindlimb unloading rodent model: technical aspects[J]. J Appl Physiol, 2002, 92(4):1367-1377. DOI: 10.1152/japplphysiol.00969.2001 . |
42 | GOLDSPINK D F, MORTON A J, LOUGHNA P, et al. The effect of hypokinesia and hypodynamia on protein turnover and the growth of four skeletal muscles of the rat[J]. Pflügers Arch, 1986, 407(3):333-340. DOI: 10.1007/BF00585311 . |
43 | OHIRA Y, YOSHINAGA T, OHARA M, et al. The role of neural and mechanical influences in maintaining normal fast and slow muscle properties[J]. Cells Tissues Organs, 2006, 182(3-4):129-142. DOI: 10.1159/000093963 . |
44 | SAUL D, KOSINSKY R L. Dextran sodium sulfate-induced colitis as a model for sarcopenia in mice[J]. Inflamm Bowel Dis, 2020, 26(1):56-65. DOI: 10.1093/ibd/izz127 . |
45 | CAMPOS F, ABRIGO J, AGUIRRE F, et al. Sarcopenia in a mice model of chronic liver disease: role of the ubiquitin-proteasome system and oxidative stress[J]. Pflugers Arch, 2018, 470(10):1503-1519. DOI: 10.1007/s00424-018-2167-3 . |
46 | AGUIRRE F, ABRIGO J, GONZALEZ F, et al. Protective effect of angiotensin 1-7 on sarcopenia induced by chronic liver disease in mice[J]. Int J Mol Sci, 2020, 21(11):3891. DOI: 10.3390/ijms21113891 . |
47 | SATO E, MORI T, MISHIMA E, et al. Metabolic alterations by indoxyl sulfate in skeletal muscle induce uremic sarcopenia in chronic kidney disease[J]. Sci Rep, 2016, 6:36618. DOI: 10.1038/srep36618 . |
48 | 吴永耀, 余日臻, 孙京华, 等. 尿毒症大鼠肌少症模型的造模方法及评价[J]. 现代实用医学, 2022, 34(8)1006-1008. DOI: 10.3969/j.issn.1671-0800.2022.08.010 . |
WU Y Y, YU R Z, SUN J H, et al. Modeling method and evaluation of sarcopenia model in uremia rats[J]. Mod Pract Med, 2022, 34(8)1006-1008. DOI: 10.3969/j.issn.1671-0800.2022.08.010 . | |
49 | 黄研, 邢三丽, 胡怡然, 等. 补肾还精方通过调节铁死亡干预小鼠肌少症的效应和机制研究[J]. 上海中医药杂志, 2022, 56(7): 74-82. DOI: 10.16305/j.1007-1334.2022.2107040 . |
HUANG Y, XING S L, HU Y R, et al. Effect and mechanism of Bushen Huanjing recipe on sarcopenia in mice by regulating iron death[J]. Shanghai J Tradit Chin Med, 2022, 56(7): 74-82. DOI: 10.16305/j.1007-1334.2022.2107040 . | |
50 | 左祥宇, 姚荣飞, 赵麟毅, 等. 中药土党参激活PI3K/AKT/mTOR信号通路并减少2型糖尿病大鼠骨骼肌减少症[J]. 针灸和草药(英文), 2022(2):99-108. |
ZUO X Y, YAO R F, ZHAO L Y, et al. Campanumoea javanica Bl. activates the PI3K/AKT/mTOR signaling pathway and reduces sarcopenia in a T2DM rat model[J]. Acupunct Herb Med, 2022(2):99-108. |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Jinhuan MIAO, Xia XU, Lu ZHOU, Haiyan CHENG, Yan HE. Visual Analysis of Animal Experiments on Traditional Chinese Medicine (TCM) Nursing Technology Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 626-635. |
[5] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[6] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[7] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[8] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[9] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[10] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[11] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[12] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[13] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[14] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[15] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||