Laboratory Animal and Comparative Medicine ›› 2022, Vol. 42 ›› Issue (5): 423-431.DOI: 10.12300/j.issn.1674-5817.2022.063
• Animal Models of Human Diseases • Previous Articles Next Articles
Qiwen HU1,2(), Zheng BI1,2, Haiping LIU1, Zhihua DONG1, ZHUYanlin1, Jinhua WANG1(
)(
)
Received:
2022-05-11
Revised:
2022-07-26
Online:
2022-10-25
Published:
2022-11-04
Contact:
Jinhua WANG
CLC Number:
Qiwen HU, Zheng BI, Haiping LIU, Zhihua DONG, ZHUYanlin, Jinhua WANG. Research Progress on Animal Models of Intrauterine Growth Restriction[J]. Laboratory Animal and Comparative Medicine, 2022, 42(5): 423-431.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.063
造模办法 Modeling method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
子宫动脉结扎模型 Uterine artery ligation (UAL) | 在大鼠中应用较广;发明时间早(最早由 Wigglesworth在1964年提出),可参考的研究较多[ | 围产期母体和胎儿死亡率高;胎儿体质量(IUGR程度)受胎儿所在的子宫位置影响大,使得离宫角最近的胎儿血供完全被阻,导致胎儿死亡率达30%~85%[ |
选择性子宫胎盘动脉结扎模型 Selective ligature of uteroplacental vessels | 胎儿体质量(IUGR程度)不受胎儿所在子宫位置的影响;可通过调整结扎血管的比例来控制IUGR的时间和严重程度;此模型限制血流,因此可模拟氧和营养的双重限制[ | 结扎比例高时,胎儿死亡率高[ |
卵巢中动脉灼烧模型 Cauterization of meso-ovarian vessels | 手术时间短;CMO对胎儿/胎盘重量比的影响比UAL模型更显著;子宫-胎盘缺血均匀,使得胎儿之间体质量较均匀[ | 胎儿死亡率与UAL相当,都较高 |
子宫动脉灌注减少模型 Reduced uterine perfusion pressure | 可使得子宫灌注压减少约40%;此模型可用于研究胎儿IUGR与高血压的关系 | 后代性别特异性较大,雄性较雌性更易表现为IUGR |
肾脏压迫模型 Kidney wrapped | 可使得胎盘血流灌注减少50% 可通过包裹一个肾或者两个肾来控制高血压程度从而影响IUGR的发生率。此模型可用于研究胎儿IUGR与高血压或肾疾病的关系 | 手术较为复杂,目前应用较少 |
Table 1 Advantage and disadvantage of five models for intrauterine growth restriction (IUGR) surgical intervention
造模办法 Modeling method | 优点 Advantage | 缺点 Disadvantage |
---|---|---|
子宫动脉结扎模型 Uterine artery ligation (UAL) | 在大鼠中应用较广;发明时间早(最早由 Wigglesworth在1964年提出),可参考的研究较多[ | 围产期母体和胎儿死亡率高;胎儿体质量(IUGR程度)受胎儿所在的子宫位置影响大,使得离宫角最近的胎儿血供完全被阻,导致胎儿死亡率达30%~85%[ |
选择性子宫胎盘动脉结扎模型 Selective ligature of uteroplacental vessels | 胎儿体质量(IUGR程度)不受胎儿所在子宫位置的影响;可通过调整结扎血管的比例来控制IUGR的时间和严重程度;此模型限制血流,因此可模拟氧和营养的双重限制[ | 结扎比例高时,胎儿死亡率高[ |
卵巢中动脉灼烧模型 Cauterization of meso-ovarian vessels | 手术时间短;CMO对胎儿/胎盘重量比的影响比UAL模型更显著;子宫-胎盘缺血均匀,使得胎儿之间体质量较均匀[ | 胎儿死亡率与UAL相当,都较高 |
子宫动脉灌注减少模型 Reduced uterine perfusion pressure | 可使得子宫灌注压减少约40%;此模型可用于研究胎儿IUGR与高血压的关系 | 后代性别特异性较大,雄性较雌性更易表现为IUGR |
肾脏压迫模型 Kidney wrapped | 可使得胎盘血流灌注减少50% 可通过包裹一个肾或者两个肾来控制高血压程度从而影响IUGR的发生率。此模型可用于研究胎儿IUGR与高血压或肾疾病的关系 | 手术较为复杂,目前应用较少 |
1 | LANE S L, DOYLE A S, BALES E S, et al. Peroxisome proliferator-activated receptor gamma blunts endothelin-1-mediated contraction of the uterine artery in a murine model of high-altitude pregnancy[J]. FASEB J, 2020, 34(3):4283-4292. DOI:10.1096/fj.201902264RR . |
2 | CORTES-ARAYA Y, STENHOUSE C, SALAVATI M, et al. KLB dysregulation mediates disrupted muscle development in intrauterine growth restriction[J]. J Physiol, 2022, 600(7):1771-1790. DOI:10.1113/JP281647 . |
3 | DARENDELILER F. IUGR: Genetic influences, metabolic problems, environmental associations/triggers, current and future management[J]. Best Pract Res Clin Endocrinol Metab, 2019, 33(3):101260. DOI:10.1016/j.beem.2019.01.001 . |
4 | HUNTER D S, HAZEL S J, KIND K L, et al. Programming the brain: common outcomes and gaps in knowledge from animal studies of IUGR[J]. Physiol Behav, 2016, 164:233-248. DOI:10.1016/j.physbeh.2016.06.005 . |
5 | GONZALEZ-BULNES A, ASTIZ S, PARRAGUEZ V H, et al. Empowering translational research in fetal growth restriction: sheep and swine animal models[J]. Curr Pharm Biotechnol, 2016, 17(10):848-855. DOI:10.2174/1389201017666-160519111529 . |
6 | MORRISON J L, BERRY M J, BOTTING K J, et al. Improving pregnancy outcomes in humans through studies in sheep[J]. Am J Physiol Regul Integr Comp Physiol, 2018, 315(6): R1123-R1153. DOI:10.1152/ajpregu.00391.2017 . |
7 | 杨杏, 潘兴芳, 赵天易, 等. 继发性淋巴水肿动物模型的研究进展[J]. 实验动物与比较医学, 2022, 42(1):62-67. |
YANG X, PAN X F, ZHAO T Y, et al. Progress in animal models of secondary lymphedema[J]. Lab Animal Comp Med, 2022, 42(1):62-67. | |
8 | DANIEL-CARLIER N, HARSCOËT E, THÉPOT D, et al. Gonad differentiation in the rabbit: evidence of species-specific features[J]. PLoS One, 2013, 8(4): e60451. DOI:10.1371/journal.pone.0060451 . |
9 | NATURIL-ALFONSO C, MARCO-JIMÉNEZ F, JIMÉNEZ-TRIGOS E, et al. Role of embryonic and maternal genotype on prenatal survival and foetal growth in rabbit[J]. Reprod Domest Anim, 2015, 50(2):312-320. DOI:10.1111/rda.12493 . |
10 | VICENTE J S, LLOBAT M D, JIMÉNEZ-TRIGOS E, et al. Effect of embryonic and maternal genotype on embryo and foetal survival in rabbit[J]. Reprod Domest Anim, 2013, 48(3):402-406. DOI:10.1111/rda.12087 . |
11 | GONZALEZ-BULNES A, CHAVATTE-PALMER P. Contribution of large animals to translational research on prenatal programming of obesity and associated diseases[J]. Curr Pharm Biotechnol, 2017, 18(7):541-551. DOI:10.2174/1389201018666170811150920 . |
12 | DUNLOP K, SARR O, STACHURA N, et al. Differential and synergistic effects of low birth weight and western diet on skeletal muscle vasculature, mitochondrial lipid metabolism and insulin signaling in male Guinea pigs[J]. Nutrients, 2021, 13(12):4315. DOI:10.3390/nu13124315 . |
13 | BAZER F W, JOHNSON G A. Pig blastocyst-uterine inter-actions[J]. Differentiation, 2014, 87(1-2):52-65. DOI:10.1016/j.diff.2013.11.005 . |
14 | FERENC K, PIETRZAK P, GODLEWSKI M M, et al. Intrauterine growth retarded piglet as a model for humans: studies on the perinatal development of the gut structure and function[J]. Reprod Biol, 2014, 14(1):51-60. DOI:10.1016/j.repbio.2014.01.005 . |
15 | GAO H M, ZHANG L C, WANG L G, et al. Liver transcriptome profiling and functional analysis of intrauterine growth restriction (IUGR) piglets reveals a genetic correction and sexual-dimorphic gene expression during postnatal development[J]. BMC Genom, 2020, 21(1):701. DOI:10.1186/s12864-020-07094-9 . |
16 | BAILEY M, CHRISTOFORIDOU Z, LEWIS M C. The evolu-tionary basis for differences between the immune systems of man, mouse, pig and ruminants[J]. Vet Immunol Immuno-pathol, 2013, 152(1-2):13-19. DOI:10.1016/j.vetimm. 2012.09.022 . |
17 | FAVRE-INHOFER A, CARBONNEL M, DOMERT J, et al. Involving animal models in uterine transplantation[J]. Front Surg, 2022, 9:830826. DOI:10.3389/fsurg.2022.830826 . |
18 | CARTER A M. Evolution of placentation in cattle and antelopes[J]. Anim Reprod, 2020, 16(1):3-17. DOI:10.21451/1984-3143-AR2018-00145 . |
19 | MORRISON J L. Sheep models of intrauterine growth restriction: fetal adaptations and consequences[J]. Clin Exp Pharmacol Physiol, 2008, 35(7):730-743. DOI:10.1111/j.1440-1681.2008.04975.x . |
20 | TANNER A R, KENNEDY V C, LYNCH C S, et al. In vivo investigation of ruminant placenta function and physiology–a review[J]. J Anim Sci, 2022, 100(6): skac045. DOI:10.1093/jas/skac045 . |
21 | GRIGSBY P L. Animal models to study placental development and function throughout normal and dysfunctional human pregnancy[J]. Semin Reprod Med, 2016, 34(1):11-16. DOI:10.1055/s-0035-1570031 . |
22 | RYAN A M, BAUMAN M D. Primate models as a translational tool for understanding prenatal origins of neuro-developmental disorders associated with maternal infection[J]. Biol Psychiatry Cogn Neurosci Neuroimaging, 2022, 7(5):510-523. DOI:10.1016/j.bpsc.2022.02.012 . |
23 | 王宏, 付学魏, 陈智岗, 等. 昆明地区恒河猴、食蟹猴种群繁殖规律和繁殖性能研究[J]. 中国比较医学杂志, 2017, 27(7):34-39. DOI:10.3969.j.issn.1671-7856.2017.07.007 . |
WANG H, FU X W, CHEN Z G, et al. Population reproductive regularity and reproductive performance of rhesus monkeys and cynomolgus monkeys in Kunming area[J]. Chin J Comp Med, 2017, 27(7):34-39. DOI:10.3969.j.issn.1671-7856.2017.07.007 . | |
24 | BAUER C. The baboon (Papio sp.) as a model for female reproduction studies[J]. Contraception, 2015, 92(2):120-123. DOI:10.1016/j.contraception.2015.06.007 . |
25 | LI W, LI B, LV J Q, et al. Choline supplementation improves the lipid metabolism of intrauterine-growth-restricted pigs[J]. Asian-Australas J Anim Sci, 2018, 31(5):686-695. DOI:10.5713/ajas.15.0810 . |
26 | TANG X P, XIONG K N. Intrauterine growth retardation affects intestinal health of suckling piglets via altering intestinal antioxidant capacity, glucose uptake, tight junction, and immune responses[J]. Oxid Med Cell Longev, 2022, 2022:2644205. DOI:10.1155/2022/2644205 . |
27 | PAREDES S P, JANSMAN A J M, VERSTEGEN M W A, et al. Identifying the limitations for growth in low performing piglets from birth until 10 weeks of age[J]. Animal, 2014, 8(6):923-930. DOI:10.1017/S175173111400069X . |
28 | VAN GINNEKEN C, AYUSO M, VAN BOCKSTAL L, et al. Preweaning performance in intrauterine growth-restricted piglets: characteristics and interventions[J]. Mol Reprod Dev, 2022:2022 Jun 2. DOI:10.1002/mrd.23614 . |
29 | 段畅, 王曜晖, 高静, 等. 各种宫内发育迟缓动物模型的比较[J]. 重庆医学, 2016, 45(5):696-699. DOI:10.3969/j.issn.1671-8348.2016.05.042 . |
DUAN C, WANG Y H, GAO J, et al. Comparison of various animal models of intrauterine developmental delay [J]. Chongqing Med, 2016, 45(5):696-699. DOI:10.3969/j.issn.1671-8348.2016.05.042 . | |
30 | TAN C Q, HUANG Z H, XIONG W Y, et al. A review of the amino acid metabolism in placental function response to fetal loss and low birth weight in pigs[J]. J Anim Sci Biotechnol, 2022, 13(1):28. DOI:10.1186/s40104-022-00676-5 . |
31 | CHU A, THAMOTHARAN S, GANGULY A, et al. Gestational food restriction decreases placental interleukin-10 expression and markers of autophagy and endoplasmic reticulum stress in murine intrauterine growth restriction[J]. Nutr Res, 2016, 36(10):1055-1067. DOI:10.1016/j.nutres. 2016. 08.001 . |
32 | SELIVANOVA E K, SHVETSOVA A A, SHILOVA L D, et al. Intrauterine growth restriction weakens anticontractile influence of NO in coronary arteries of adult rats[J]. Sci Rep, 2021, 11:14475.DOI:10.1038/s41598-021-93491-3 . |
33 | GARCIA-CONTRERAS C, VAZQUEZ-GOMEZ M, PESANTEZ-PACHECO J L, et al. Maternal metformin treatment improves developmental and metabolic traits of IUGR fetuses[J]. Biomolecules, 2019, 9(5):166. DOI:10.3390/biom9050166 . |
34 | PEREIRA S P, TAVARES L C, DUARTE A I, et al. Sex-dependent vulnerability of fetal nonhuman primate cardiac mitochondria to moderate maternal nutrient reduction[J]. Clin Sci (Lond), 2021, 135(9):1103-1126. DOI:10.1042/CS20201339 . |
35 | SIMONCINI S, COPPOLA H, ROCCA A, et al. Endothelial colony-forming cells dysfunctions are associated with arterial hypertension in a rat model of intrauterine growth restriction[J]. Int J Mol Sci, 2021, 22(18):10159. DOI:10.3390/ijms221810159 . |
36 | ROBERTS V H J, GAFFNEY J E, MORGAN T K, et al. Placental adaptations in a nonhuman primate model of gestational protein restriction[J]. J Dev Orig Health Dis, 2021, 12(6):908-914. DOI:10.1017/S204017442000121X . |
37 | ARMENGAUD J B, YZYDORCZYK C, SIDDEEK B, et al. Intrauterine growth restriction: Clinical consequences on health and disease at adulthood[J]. Reproductive Toxicol, 2021, 99:168-176. DOI:10.1016/j.reprotox.2020.10.005 . |
38 | EIXARCH E, HERNANDEZ-ANDRADE E, CRISPI F, et al. Impact on fetal mortality and cardiovascular Doppler of selective ligature of uteroplacental vessels compared with undernutrition in a rabbit model of intrauterine growth restriction[J]. Placenta, 2011, 32(4):304-309. DOI:10.1016/j.placenta.2011.01.014 . |
39 | DUCSAY C A, MLYNARCZYK M, KAUSHAL K M, et al. Long-term hypoxia enhances ACTH response to arginine vasopressin but not corticotropin-releasing hormone in the near-term ovine fetus[J]. Am J Physiol Regul Integr Comp Physiol, 2009, 297(3): R892-R899. DOI:10.1152/ajpregu.00220. 2009 . |
40 | ROUSSEAU-RALLIARD D, AUBRIÈRE M C, DANIEL N, et al. Importance of windows of exposure to maternal high-fat diet and feto-placental effects: discrimination between pre-conception and gestational periods in a rabbit model[J]. Front Physiol, 2021, 12:784268. DOI:10.3389/fphys.2021.784268 . |
41 | LOPEZ-TELLO J, ARIAS-ALVAREZ M, GONZALEZ-BULNES A, et al. Models of Intrauterine growth restriction and fetal programming in rabbits[J]. Mol Reprod Dev, 2019, 86(12):1781-1809. DOI:10.1002/mrd.23271 . |
42 | ROCK C R, WHITE T A, PISCOPO B R, et al. Cardiovascular and cerebrovascular implications of growth restriction: mechanisms and potential treatments[J]. Int J Mol Sci, 2021, 22(14):7555. DOI:10.3390/ijms22147555 . |
43 | AIZER A, CURRIE J. The intergenerational transmission of inequality: maternal disadvantage and health at birth[J]. Science, 2014, 344(6186):856-861. DOI:10.1126/science.1251872 . |
44 | WU D M, HE Z, CHEN T, et al. DNA hypermethylation of acetoacetyl-CoA synthetase contributes to inhibited cholesterol supply and steroidogenesis in fetal rat adrenals under prenatal nicotine exposure[J]. Toxicology, 2016, 340:43-52. DOI:10.1016/j.tox.2016.01.002 . |
45 | ZHANG G H, ZHOU J, HUANG W, et al. Placental mechanism of prenatal nicotine exposure-reduced blood cholesterol levels in female fetal rats[J]. Toxicol Lett, 2018, 296:31-38. DOI:10.1016/j.toxlet.2018.07.022 . |
46 | FENG J H, YAN Y E, LIANG G, et al. Maternal and fetal metabonomic alterations in prenatal nicotine exposure-induced rat intrauterine growth retardation[J]. Mol Cell Endocrinol, 2014, 394(1-2):59-69. DOI:10.1016/j.mce.2014. 06.016 . |
47 | MORALES-PRIETO D M, FUENTES-ZACARÍAS P, MURRIETA-COXCA J M, et al. Smoking for two-effects of tobacco consumption on placenta[J]. Mol Aspects Med, 2022, 87:101023. DOI:10.1016/j.mam.2021.101023 . |
48 | COLL T A, CHAUFAN G, PÉREZ-TITO L G, et al. Cellular and molecular oxidative stress-related effects in uterine myometrial and trophoblast-decidual tissues after perigestational alcohol intake up to early mouse organogenesis[J]. Mol Cell Biochem, 2018, 440(1):89-104. DOI:10.1007/s11010-017-3158-y . |
49 | LI Y, YAN Y E, WANG H. Enhancement of placental antioxidative function and P-gp expression by sodium ferulate mediated its protective effect on rat IUGR induced by prenatal tobacco/alcohol exposure[J]. Environ Toxicol Pharmacol, 2011, 32(3):465-471. DOI:10.1016/j.etap.2011.08.013 . |
50 | GHADHANFAR E, ALSALEM A, AL-KANDARI S, et al. The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction[J]. Reprod Biol Endocrinol, 2017, 15(1):97. DOI:10.1186/s12958-017-0316-8 . |
51 | HUNG T H, LIU Y C, WU C H, et al. Antenatal low-intensity pulsed ultrasound reduces neurobehavioral deficits and brain injury following dexamethasone-induced intrauterine growth restriction[J]. Brain Pathol, 2021, 31(6): e12968. DOI:10.1111/bpa.12968 . |
52 | CUFFE J S M, SAIF Z, PERKINS A V, et al. Dexamethasone and sex regulate placental glucocorticoid receptor isoforms in mice[J]. J Endocrinol, 2017, 234(2):89-100. DOI:10.1530/JOE-17-0171 . |
53 | ARIAS A, SCHANDER J A, BARIANI M V, et al. Dexamethasone-induced intrauterine growth restriction modulates expression of placental vascular growth factors and fetal and placental growth[J]. Mol Hum Reprod, 2021, 27(3): gaab006. DOI:10.1093/molehr/gaab006 . |
54 | SHALOM-PAZ E, WEILL S, GINZBERG Y, et al. IUGR induced by maternal chronic inflammation: long-term effect on offspring's ovaries in rat model—a preliminary report[J]. J Endocrinol Invest, 2017, 40(10):1125-1131. DOI:10.1007/s40618-017-0681-3 . |
55 | CADARET C N, MERRICK E M, BARNES T L, et al. Sustained maternal inflammation during the early third-trimester yields intrauterine growth restriction, impaired skeletal muscle glucose metabolism, and diminished β-cell function in fetal sheep 1,2[J]. J Anim Sci, 2019, 97(12):4822-4833. DOI:10.1093/jas/skz321 . |
56 | WANG B, XU S, LU X, et al. Reactive oxygen species-mediated cellular genotoxic stress is involved in 1-nitropyrene-induced trophoblast cycle arrest and fetal growth restriction[J]. Environ Pollut, 2020, 260:113984. DOI:10.1016/j.envpol.2020.113984 . |
57 | LI R, WANG X L, WANG B, et al. Gestational 1-nitropyrene exposure causes gender-specific impairments on postnatal growth and neurobehavioral development in mice[J]. Ecotoxicol Environ Saf, 2019, 180:123-129. DOI:10.1016/j.ecoenv.2019.05.016 . |
58 | GUO C, YANG Y, SHI M X, et al. Critical time window of fenvalerate-induced fetal intrauterine growth restriction in mice[J]. Ecotoxicol Environ Saf, 2019, 172:186-193. DOI:10.1016/j.ecoenv.2019.01.054 . |
59 | RUFF C A, FAULKNER S D, RUMAJOGEE P, et al. The extent of intrauterine growth restriction determines the severity of cerebral injury and neurobehavioural deficits in rodents[J]. PLoS One, 2017, 12(9): e0184653. DOI:10.1371/journal.pone. 0184653 . |
60 | SUTHERLAND A E, YAWNO T, CASTILLO-MELENDEZ M, et al. Does antenatal betamethasone alter white matter brain development in growth restricted fetal sheep? [J]. Front Cell Neurosci, 2020, 14:100. DOI:10.3389/fncel.2020.00100 . |
61 | EIXARCH E, FIGUERAS F, HERNÁNDEZ-ANDRADE E, et al. An experimental model of fetal growth restriction based on selective ligature of uteroplacental vessels in the pregnant rabbit[J]. Fetal Diagn Ther, 2009, 26(4):203-211. DOI:10.1159/000264063 . |
62 | CAMPRUBÍ M, ORTEGA Á, BALAGUER A, et al. Cauterization of meso-ovarian vessels, a new model of intrauterine growth restriction in rats[J]. Placenta, 2009, 30(9):761-766. DOI:10.1016/j.placenta.2009.06.010 . |
63 | COATS L E, BAKRANIA B A, BAMRICK-FERNANDEZ D R, et al. Soluble guanylate cyclase stimulation in late gestation does not mitigate asymmetric intrauterine growth restriction or cardiovascular risk induced by placental ischemia in the rat[J]. Am J Physiol Heart Circ Physiol, 2021, 320(5): H1923-H1934. DOI:10.1152/ajpheart.00033.2021 . |
64 | LIN C, HE H, CUI N, et al. Decreased uterine vascularization and uterine arterial expansive remodeling with reduced matrix metalloproteinase-2 and-9 in hypertensive pregnancy[J]. Am J Physiol Heart Circ Physiol, 2020, 318(1): H165-H180. DOI:10.1152/ajpheart.00602.2019 . |
65 | COATS L E, BAMRICK-FERNANDEZ D R, ARIATTI A M, et al. Stimulation of soluble guanylate cyclase diminishes intrauterine growth restriction in a rat model of placental ischemia[J]. Am J Physiol Regul Integr Comp Physiol, 2021, 320(2): R149-R161. DOI:10.1152/ajpregu.00234.2020 . |
66 | SEKIMOTO A, TANAKA K, HASHIZUME Y, et al. Tadalafil alleviates preeclampsia and fetal growth restriction in RUPP model of preeclampsia in mice[J]. Biochem Biophys Res Commun, 2020, 521(3):769-774. DOI:10.1016/j.bbrc.2019.10.186 . |
67 | TRAVIS O K, BAIK C, TARDO G A, et al. Adoptive transfer of placental ischemia-stimulated natural killer cells causes a preeclampsia-like phenotype in pregnant rats[J]. Am J Reprod Immunol, 2021, 85(6): e13386. DOI:10.1111/aji.13386 . |
68 | GILBERT J S, BAUER A J, GINGERY A, et al. Circulating and utero-placental adaptations to chronic placental ischemia in the rat[J]. Placenta, 2012, 33(2):100-105. DOI:10.1016/j.placenta.2011.11.025 . |
69 | MCARDLE A M, ROBERTS C T, MADUWEGEDERA D, et al. Chronic maternal hypertension characterized by renal dysfunction is associated with reduced placental blood flow during late gestation in rabbits[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(4): R1043-R1049. DOI:10.1152/ajpregu. 00202.2009 . |
70 | BEUNE I M, BLOOMFIELD F H, GANZEVOORT W, et al. Consensus based definition of growth restriction in the newborn[J]. J Pediatr, 2018, 196:71-76.e1. DOI:10.1016/j.jpeds.2017.12.059 . |
71 | LAI J, SYNGELAKI A, NICOLAIDES K H, et al. Using ultrasound and angiogenic markers from a 19- to 23-week assessment to inform the subsequent diagnosis of preeclampsia[J]. Am J Obstet Gynecol, 2022, 227(2):294.e1-294.e11. DOI:10.1016/j.ajog.2022.03.007 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[6] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[7] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[8] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[9] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[10] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[11] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[12] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[13] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[14] | Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172. |
[15] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||