Laboratory Animal and Comparative Medicine ›› 2023, Vol. 43 ›› Issue (2): 163-172.DOI: 10.12300/j.issn.1674-5817.2022.171
• Animal Models of Human Diseases • Previous Articles Next Articles
Can LAI1(), Lele LI1, Tala HU1, Yan MENG2(
)(
)
Received:
2022-11-09
Revised:
2023-02-18
Online:
2023-04-25
Published:
2023-05-16
Contact:
Yan MENG
CLC Number:
Can LAI, Lele LI, Tala HU, Yan MENG. Recent Advances of Animal Models of Renal Interstitial Fibrosis[J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 163-172.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.slarc.org.cn/dwyx/EN/10.12300/j.issn.1674-5817.2022.171
1 | LIU X Y, ZHANG X B, ZHAO Y F, et al. Research progress of Chinese herbal medicine intervention in renal interstitial fibrosis[J]. Front Pharmacol, 2022, 13:900491. DOI: 10.3389/fphar.2022.900491 . |
2 | SZETO H H. Pharmacologic approaches to improve mitochondrial function in AKI and CKD[J]. J Am Soc Nephrol, 2017, 28(10):2856-2865. DOI: 10.1681/ASN.2017030247 . |
3 | ZEISBERG M, KALLURI R. Physiology of the renal interstitium[J]. Clin J Am Soc Nephrol, 2015, 10(10):1831-1840. DOI: 10.2215/CJN.00640114 . |
4 | MUÑOZ-FÉLIX J M, MARTÍNEZ-SALGADO C. Dissecting the involvement of ras GTPases in kidney fibrosis[J]. Genes, 2021, 12(6):800. DOI: 10.3390/genes12060800 . |
5 | MARTÍNEZ-SALGADO C, SÁNCHEZ-JUANES F, LÓPEZ-HERNÁNDEZ F J, et al. Endothelial activin receptor-like kinase 1 (ALK1) regulates myofibroblast emergence and peritubular capillary stability in the early stages of kidney fibrosis[J]. Front Pharmacol, 2022, 13:843732. DOI: 10.3389/fphar.2022.843732 . |
6 | GBD CHRONIC KIDNEY DISEASE COLLABORATION. Global, regional, and national burden of chronic kidney disease, 1990‒2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet, 2020, 395(10225):709-733. DOI: 10.1016/S0140-6736(20)30045-3 . |
7 | ZHOU J Q, JIANG H. Livin is involved in TGF-β1-induced renal tubular epithelial-mesenchymal transition through lncRNA-ATB[J]. Ann Transl Med, 2019, 7(18):463. DOI: 10.21037/atm.2019.08.29 . |
8 | MARTÍNEZ-KLIMOVA E, APARICIO-TREJO O E, TAPIA E, et al. Unilateral ureteral obstruction as a model to investigate fibrosis-attenuating treatments[J]. Biomolecules, 2019, 9(4):141. DOI: 10.3390/biom9040141 . |
9 | SONG J, LIU J, LUO J, et al. A modified relief of unilateral ureteral obstruction model[J]. Ren Fail, 2019, 41(1):497-506. DOI: 10.1080/0886022X.2019.1624263 . |
10 | KUMAR R, SONI H, AFOLABI J M, et al. Induction of reactive oxygen species by mechanical stretch drives endothelin production in neonatal pig renal epithelial cells[J]. Redox Biol, 2022, 55:102394. DOI: 10.1016/j.redox.2022.102394 . |
11 | KLINKHAMMER B M, BUCHTLER S, DJUDJAJ S, et al. Current kidney function parameters overestimate kidney tissue repair in reversible experimental kidney disease[J]. Kidney Int, 2022, 102(2):307-320. DOI: 10.1016/j.kint.2022. 02.039 . |
12 | SONG J, XIA Y Y, YAN X, et al. Losartan accelerates the repair process of renal fibrosis in UUO mouse after the surgical recanalization by upregulating the expression of Tregs[J]. Int Urol Nephrol, 2019, 51(11):2073-2081. DOI: 10.1007/s11255-019-02253-8 . |
13 | NARVÁEZ BARROS A, GUITERAS R, SOLA A, et al. Reversal unilateral ureteral obstruction: a mice experimental model[J]. Nephron, 2019, 142(2):125-134. DOI: 10.1159/000497119 . |
14 | BASILE D P, DONOHOE D L, ROETHE K, et al. Chronic renal hypoxia after acute ischemic injury: effects of L-arginine on hypoxia and secondary damage[J]. Am J Physiol Renal Physiol, 2003, 284(2): F338-F348. DOI: 10.1152/ajprenal.00169.2002 . |
15 | YANG L, BESSCHETNOVA T Y, BROOKS C R, et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury[J]. Nat Med, 2010, 16(5):535-543, 143. DOI: 10.1038/nm.2144 . |
16 | 陈国晓, 刘修恒, 张祥生, 等. 臭氧氧化后处理对肾脏缺血再灌注损伤的作用[J]. 中国现代医学杂志, 2017, 27(9): 19-24. DOI: 10.3969/j.issn.1005-8982.2017.09.004 . |
CHEN G X, LIU X H, ZHANG X S, et al. Ozone oxidative post-conditioning protects rat kidney from ischemia reperfusion injury[J]. China J Mod Med, 2017, 27(9): 19-24. DOI: 10.3969/j.issn.1005-8982.2017.09.004 . | |
17 | SATO Y, YANAGITA M. Immune cells and inflammation in AKI to CKD progression[J]. Am J Physiol Renal Physiol, 2018, 315(6): F1501-F1512. DOI: 10.1152/ajprenal.00195.2018 . |
18 | LIU B C, TANG T T, LV L L, et al. Renal tubule injury: a driving force toward chronic kidney disease[J]. Kidney Int, 2018, 93(3):568-579. DOI: 10.1016/j.kint.2017.09.033 . |
19 | ZHENG Z H, LI C L, SHAO G Z, et al. Hippo-YAP/MCP-1 mediated tubular maladaptive repair promote inflammation in renal failed recovery after ischemic AKI[J]. Cell Death Dis, 2021, 12(8):754. DOI: 10.1038/s41419-021-04041-8 . |
20 | LE CLEF N, VERHULST A, D'HAESE P C, et al. Unilateral renal ischemia-reperfusion as a robust model for acute to chronic kidney injury in mice[J]. PLoS One, 2016, 11(3): e0152153. DOI: 10.1371/journal.pone.0152153 . |
21 | HESKETH E E, CZOPEK A, CLAY M, et al. Renal ischaemia reperfusion injury: a mouse model of injury and regeneration[J]. J Vis Exp, 2014(88): e51816. DOI: 10.3791/51816 . |
22 | 许辉, 刘惺, 宁旺斌, 等. HIF-1α在5/6肾切除大鼠慢性肾纤维化模型中的表达[J]. 中南大学学报(医学版), 2009, 34(4):308-312. |
XU H, LIU X, NING W B, et al. Expression of HIF-1α in 5/6-nephrectomized rat models of chronic kidney fibrosis[J]. J Central South Univ Med Sci, 2009, 34(4):308-312. | |
23 | KIM K, ANDERSON E M, THOME T, et al. Skeletal myopathy in CKD: a comparison of adenine-induced nephropathy and 5/6 nephrectomy models in mice[J]. Am J Physiol Renal Physiol, 2021, 321(1): F106-F119. DOI: 10.1152/ajprenal.00117.2021 . |
24 | WANG X L, CHAUDHRY M A, NIE Y, et al. A mouse 5/6th nephrectomy model that induces experimental uremic cardiomyopathy[J]. J Vis Exp, 2017(129):55825. DOI: 10.3791/55825 . |
25 | TAN R Z, ZHONG X, LI J C, et al. An optimized 5/6 nephrectomy mouse model based on unilateral kidney ligation and its application in renal fibrosis research[J]. Ren Fail, 2019, 41(1):555-566. DOI: 10.1080/0886022X.2019.1627220 . |
26 | KIMURA M, SUZUKI T, HISHIDA A. A rat model of progressive chronic renal failure produced by microembolism[J]. Am J Pathol, 1999, 155(4):1371-1380. DOI: 10.1016/S0002-9440(10)65239-X . |
27 | BERSANI-AMADO L E, ROCHA B A DA, SCHNEIDER L C L, et al. Nephropathy induced by renal microembolism: a characterization of biochemical and histopathological changes in rats[J]. Int J Clin Exp Pathol, 2019, 12(6):2311-2323. |
28 | ROSEN S, GREENFELD Z, BREZIS M. Chronic cyclosporine-induced nephropathy in the rat. A medullary ray and inner stripe injury[J]. Transplantation, 1990, 49(2):445-452.DOI: 10.1097/00007890-199002000-00041 . |
29 | LIM S W, DOH K C, JIN L, et al. Ginseng treatment attenuates autophagic cell death in chronic cyclosporine nephropathy[J]. Nephrology (Carlton), 2014, 19(8):490-499. DOI: 10.1111/nep.12273 . |
30 | CAIRES A, FERNANDES G S, LEME A M, et al. Endothelin-1 receptor antagonists protect the kidney against the nephrotoxicity induced by cyclosporine-a in normotensive and hypertensive rats[J]. Braz J Med Biol Res, 2017, 51(2): e6373. DOI: 10.1590/1414-431X20176373 . |
31 | AMADOR C A, BERTOCCHIO J P, ANDRE-GREGOIRE G, et al. Deletion of mineralocorticoid receptors in smooth muscle cells blunts renal vascular resistance following acute cyclosporine administration[J]. Kidney Int, 2016, 89(2):354-362. DOI: 10.1038/ki.2015.312 . |
32 | HOUÉE-LÉVIN C, BOBROWSKI K, HORAKOVA L, et al. Exploring oxidative modifications of tyrosine: an update on mechanisms of formation, advances in analysis and biological consequences[J]. Free Radic Res, 2015, 49(4):347-373. DOI: 10.3109/10715762.2015.1007968 . |
33 | WEI Z H, XUE Y R, XUE Y C, et al. Ferulic acid attenuates non-alcoholic steatohepatitis by reducing oxidative stress and inflammation through inhibition of the ROCK/NF-κB signaling pathways[J]. J Pharmacol Sci, 2021, 147(1):72-80. DOI: 10.1016/j.jphs.2021.05.006 . |
34 | MONTAGNINO G, BANFI G, CAMPISE M R, et al. Impact of chronic allograft nephropathy and subsequent modifications of immunosuppressive therapy on late graft outcomes in renal transplantation[J]. Nephrol Dial Transplant, 2004, 19(10):2622-2629. DOI: 10.1093/ndt/gfh453 . |
35 | 李渭敏, 仲吉英, 陈奕豪, 等. 蛋白激酶B介导的APPL1在肾缺血再灌注损伤致肾脏慢性纤维化的机制研究[J]. 临床肾脏病杂志, 2019, 19(10):772-777. DOI: 10.3969/j.issn.1671-2390.2019.10.012 . |
LI W M, ZHONG J Y, CHEN Y H, et al. The mechanism of Akt-mediated APPL1 in chronic renal fibrosis induced by acute renal ischemia-reperfusion injury[J]. J Clin Nephrol, 2019, 19(10): 772-777. DOI: 10.3969/j.issn.1671-2390.2019.10.012 . | |
36 | LI A P, YANG L, ZHANG L C, et al. Evaluation of injury degree of adriamycin-induced nephropathy in rats based on serum metabolomics combined with proline marker[J]. J Proteome Res, 2020, 19(7):2575-2584. DOI: 10.1021/acs.jproteome.9b00785 . |
37 | PIPPIN J W, BRINKKOETTER P T, CORMACK-ABOUD F C, et al. Inducible rodent models of acquired podocyte diseases[J]. Am J Physiol Renal Physiol, 2009, 296(2):F213-F229. DOI: 10.1152/ajprenal.90421.2008 . |
38 | BOHNERT B N, ESSIGKE D, JANESSA A, et al. Experimental nephrotic syndrome leads to proteolytic activation of the epithelial Na+ channel in the mouse kidney[J]. Am J Physiol Renal Physiol, 2021, 321(4): F480-F493. DOI: 10.1152/ajprenal.00199.2021 . |
39 | HULKKO J, PATRAKKA J, LAL M, et al. Neph1 is reduced in primary focal segmental glomerulosclerosis, minimal change nephrotic syndrome, and corresponding experimental animal models of adriamycin-induced nephropathy and puromycin aminonucleoside nephrosis[J]. Nephron Extra, 2014, 4(3):146-154. DOI: 10.1159/000365091 . |
40 | WANG Y L, FAN S N, YANG M, et al. Evaluation of the mechanism of Danggui-Shaoyao-San in regulating the metabolome of nephrotic syndrome based on urinary metabonomics and bioinformatics approaches[J]. J Ethnopharmacol, 2020, 261:113020. DOI: 10.1016/j.jep. 2020. 113020 . |
41 | LI A P, YANG L, CUI T, et al. Uncovering the mechanism of Astragali Radix against nephrotic syndrome by intergrating lipidomics and network pharmacology[J]. Phytomedicine, 2020, 77:153274. DOI: 10.1016/j.phymed.2020.153274 . |
42 | URATE S, WAKUI H, AZUSHIMA K, et al. Aristolochic acid induces renal fibrosis and senescence in mice[J]. Int J Mol Sci, 2021, 22(22):12432. DOI: 10.3390/ijms222212432 . |
43 | TAGUCHI S, AZUSHIMA K, YAMAJI T, et al. Effects of tumor necrosis factor-α inhibition on kidney fibrosis and inflammation in a mouse model of aristolochic acid nephropathy[J]. Sci Rep, 2021, 11(1):23587. DOI: 10.1038/s41598-021-02864-1 . |
44 | WANG S F, FAN J J, MEI X B, et al. Interleukin-22 attenuated renal tubular injury in aristolochic acid nephropathy via suppressing activation of NLRP3 inflammasome[J]. Front Immunol, 2019, 10:2277. DOI: 10.3389/fimmu.2019.02277 . |
45 | WANG Q L, YUAN J L, TAO Y Y, et al. Fuzheng Huayu recipe and vitamin E reverse renal interstitial fibrosis through counteracting TGF-beta1-induced epithelial-to-mesenchymal transition[J]. J Ethnopharmacol, 2010, 127(3):631-640. DOI: 10.1016/j.jep.2009.12.011 . |
46 | ABDEL HALEEM N Y, EL-AASAR H M, ZAKI S M, et al. Concomitant protective and therapeutic role of verapamil in chronic mercury induced nephrotoxicity in the adult rat: histological, morphometric and ultrastructural study[J]. Arch Med Sci, 2015, 11(1):199-209. DOI: 10.5114/aoms.2013.37342 . |
47 | ROJAS-FRANCO P, FRANCO-COLÍN M, TORRES-MANZO A P, et al. Endoplasmic reticulum stress participates in the pathophysiology of mercury-caused acute kidney injury[J]. Ren Fail, 2019, 41(1):1001-1010. DOI: 10.1080/0886022X.2019.1686019 . |
48 | HUANG H H, JIN W W, HUANG M, et al. Gentamicin-induced acute kidney injury in an animal model involves programmed necrosis of the collecting duct[J]. J Am Soc Nephrol, 2020, 31(9):2097-2115. DOI: 10.1681/ASN.2019020204 . |
49 | ALBINO A H, ZAMBOM F F F, FORESTO-NETO O, et al. Renal inflammation and innate immune activation underlie the transition from gentamicin-induced acute kidney injury to renal fibrosis[J]. Front Physiol, 2021, 12:606392. DOI: 10.3389/fphys.2021.606392 . |
50 | YE L, PANG W X, HUANG Y H, et al. Lansoprazole promotes cisplatin-induced acute kidney injury via enhancing tubular necroptosis[J]. J Cell Mol Med, 2021, 25(5):2703-2713. DOI: 10.1111/jcmm.16302 . |
51 | HAMROUN A, LENAIN R, BIGNA J J, et al. Prevention of cisplatin-induced acute kidney injury: a systematic review and meta-analysis[J]. Drugs, 2019, 79(14):1567-1582. DOI: 10.1007/s40265-019-01182-1 . |
52 | GHOSH S. Cisplatin: The first metal based anticancer drug[J]. Bioorg Chem, 2019, 88:102925. DOI: 10.1016/j.bioorg.2019. 102925 . |
53 | CIARIMBOLI G. Membrane transporters as mediators of cisplatin side-effects[J]. Anticancer Res, 2014, 34(1):547-550. |
54 | OH G S, KIM H J, SHEN A H, et al. Cisplatin-induced kidney dysfunction and perspectives on improving treatment strategies[J]. Electrolyte Blood Press, 2014, 12(2):55. DOI: 10.5049/EBP.2014.12.2.55 . |
55 | DEWAELES E, CARVALHO K, FELLAH S, et al. Istradefylline protects from cisplatin-induced nephrotoxicity and peripheral neuropathy while preserving cisplatin antitumor effects[J]. J Clin Invest, 2022, 132(22): e152924. DOI: 10.1172/JCI152924 . |
56 | 陈建新, 刘刚, 杨麟, 等. 5种方法制备高尿酸血症大鼠模型的实验研究[J]. 广州中医药大学学报, 2021, 38(11):2456-2461. DOI: 10.13359/j.cnki.gzxbtcm.2021.11.027 . |
CHEN J X, LIU G, YANG L, et al. Experimental study on preparation of hyperuricemia rat model by five methods[J]. J Guangzhou Univ Tradit Chin Med, 2021, 38(11):2456-2461. DOI: 10.13359/j.cnki.gzxbtcm.2021.11.027 . | |
57 | JOHNSON R J, KANG D H, FEIG D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease?[J]. Hypertension, 2003, 41(6):1183-1190. DOI: 10.1161/01.HYP.0000069700.62727.C5 . |
58 | HASEGAWA J, MAEJIMA I, IWAMOTO R, et al. Selective autophagy: lysophagy[J]. Methods, 2015, 75: 128-132. DOI: 10.1016/j.ymeth.2014.12.014 . |
59 | KIELSTEIN J T, PONTREMOLI R, BURNIER M. Management of hyperuricemia in patients with chronic kidney disease: a focus on renal protection[J]. Curr Hypertens Rep, 2020, 22(12):102. DOI: 10.1007/s11906-020-01116-3 . |
60 | JAFFE D H, KLEIN A B, BENIS A, et al. Incident gout and chronic Kidney Disease: healthcare utilization and survival[J]. BMC Rheumatol, 2019, 3(1):1-11. DOI: 10.1186/s41927-019-0060-0 . |
61 | SELLMAYR M, HERNANDEZ PETZSCHE M R, MA Q Y, et al. Only hyperuricemia with crystalluria, but not asymptomatic hyperuricemia, drives progression of chronic kidney disease[J]. J Am Soc Nephrol, 2020, 31(12):2773-2792. DOI: 10.1681/ASN.2020040523 . |
62 | LIM B J, YANG J W, ZOU J, et al. Tubulointerstitial fibrosis can sensitize the kidney to subsequent glomerular injury[J]. Kidney Int, 2017, 92(6):1395-1403. DOI: 10.1016/j.kint. 2017. 04.010 . |
63 | HUMPHREYS B D, XU F F, SABBISETTI V, et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis[J]. J Clin Invest, 2013, 123(9):4023-4035. DOI: 10.1172/JCI45361 . |
64 | XU L Y, SHARKEY D, CANTLEY L G. Tubular GM-CSF promotes late MCP-1/CCR2-mediated fibrosis and inflammation after ischemia/reperfusion injury[J]. J Am Soc Nephrol, 2019, 30(10):1825-1840. DOI: 10.1681/ASN.2019010068 . |
65 | PIETRUKANIEC M, MIGACZ M, ŻAK-GOŁĄB A, et al. Could KIM-1 and NGAL levels predict acute kidney injury after paracentesis?‒preliminary study[J]. Ren Fail, 2020, 42(1):853-859. DOI: 10.1080/0886022X.2020.1801468 . |
66 | ZHANG C, GEORGE S K, WU R P, et al. Reno-protection of urine-derived stem cells in a chronic kidney disease rat model induced by renal ischemia and nephrotoxicity[J]. Int J Biol Sci, 2020, 16(3):435-446. DOI: 10.7150/ijbs.37550 . |
67 | 陈建, 曾莉, 陈刚, 等. 单侧肾切除及微渗透泵灌注血管紧张素Ⅱ诱导小鼠肾纤维化与高血压模型的建立[J]. 中国比较医学杂志, 2015, 25(2):26-29, 37. DOI: 10.3969/j.issn.1671-7856.2015.02.008 . |
CHEN J, ZENG L, CHEN G, et al. Establishment of a mouse model of renal fibrosis and hypertension induced by unilateral nephrectomy and infusion of angiotensin Ⅱ using a micro-osmotic pump[J]. Chin J Comp Med, 2015, 25(2):26-29, 37. DOI: 10.3969/j.issn.1671-7856.2015.02.008 . | |
68 | ZHU H L, LIAO J L, ZHOU X K, et al. Tenascin-C promotes acute kidney injury to chronic kidney disease progression by impairing tubular integrity via αvβ6 integrin signaling[J]. Kidney Int, 2020, 97(5):1017-1031. DOI: 10.1016/j.kint.2020.01.026 . |
69 | SKRYPNYK N I, HARRIS R C, DE CAESTECKER M P. Ischemia-reperfusion model of acute kidney injury and post injury fibrosis in mice[J]. J Vis Exp, 2013(78):50495. DOI: 10.3791/50495 . |
[1] | Tianwei LIANG, Yasheng DENG, Hui HUANG, Na RONG, Xin LIU, Yujie WANG, Jiang LIN. Preparation Methods and Evaluation Criteria Analysis of Animal Models for Perimenopausal Syndrome [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 74-84. |
[2] | Committee of Experts on Medical Animal Experiments, Chinese Research Hospital Association. Guidelines for the Selection of Animal Models and Preclinical Drug Trials for Spontaneous Intracerebral Hemorrhage (2024 Edition) [J]. Laboratory Animal and Comparative Medicine, 2024, 44(1): 3-30. |
[3] | Xin LIU, Shaobo SHI, Cui ZHANG, Bo YANG, Chuan QU. Construction and Evaluation of End-to-side Anastomosis Model of Autologous Arteriovenous Fistula in Mice [J]. Laboratory Animal and Comparative Medicine, 2023, 43(6): 595-603. |
[4] | Shuwu XIE, Ruling SHEN, Jinxing LIN, Chun FAN. Progress in Establishment and Application of Laboratory Animal Models Related to Development of Male Infertility Drugs [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 504-511. |
[5] | Yanjuan CHEN, Ruling SHEN. Progress in the Application of Animal Disease Models in the Medical Research on Colorectal Cancer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(5): 512-523. |
[6] | Rui ZHANG, Meiyu LÜ, Jianjun ZHANG, Jinlian LIU, Yan CHEN, Zhiqiang HUANG, Yao LIU, Lanhua ZHOU. Research Progress on Establishing and Evaluation of Acne Animal Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 398-405. |
[7] | Jin LU, Jian WANG, Lian ZHU, Guofeng YAN, Zhengwen MA, Yao LI, Jianjun DAI, Yinqiu ZHU, Jing ZHOU. Establishment of Preeclampsia Model in Goat and Evaluation on Maternal Biological Characteristics [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 371-380. |
[8] | Jiahui YU, Qian GONG, Lenan ZHUANG. Animal Models of Pulmonary Arterial Hypertension and Their Application in Drug Research [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 381-397. |
[9] | Yasheng DENG, Jiang LIN, Chiling GAN, Guanfeng ZENG, Jiayin HUANG, Huifang DENG, Yingxian MA, Siyin HAN. Literature Analysis of the Preparation Elements of Animal Models of Skin Photoaging and the Data of Subjects [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 406-414. |
[10] | Xue WANG, Yonghe HU. Analysis of Common Types and Construction Elements of Diabetic Mouse Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 415-421. |
[11] | Hui HUANG, Yasheng DENG, Tianwei LIANG, Yiqing ZHENG, Yanping FAN, Na RONG, Jiang LIN. Evaluation and Analysis of Modeling Methods for Animal Models with Diminished Ovarian Reserve [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 422-428. |
[12] | Lei XIANG, Jinzhu JING, Zhen LIANG, Guoqiang YAN, Wenfeng GUO, Meng ZHANG, Wei ZHANG, Yajun LIU. A Visual Analysis on Animal Model of Sarcopenia Based on VOSviewer [J]. Laboratory Animal and Comparative Medicine, 2023, 43(4): 429-439. |
[13] | Zhigang TAN, Jinxin LIU, Chuya ZHENG, Wenfeng LIAO, Luping FENG, Hongli PENG, Xiu YAN, Zhenjian ZHUO. Advances and Applications in Animal Models of Neuroblastoma [J]. Laboratory Animal and Comparative Medicine, 2023, 43(3): 288-296. |
[14] | Ling HU, Zhibin HU, Yunqing HU, Yuqiang DING. Overview of Studies in Animal Models of Schizophrenia [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 145-155. |
[15] | Danyang YIN, Yi HU, Rengfei SHI. Advances in Animal Aging Models [J]. Laboratory Animal and Comparative Medicine, 2023, 43(2): 156-162. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||